1
|
Schmidt M, Poser C, Janster C, von Maltzahn J. The hairpin region of WNT7A is sufficient for binding to the Frizzled7 receptor and to elicit signaling in myogenic cells. Comput Struct Biotechnol J 2022; 20:6348-6359. [PMID: 36420144 PMCID: PMC9678774 DOI: 10.1016/j.csbj.2022.10.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022] Open
Abstract
Wnt signaling is essential for embryonic development and tissue homeostasis. So far, little is known about the importance and functional relevance of the different regions in WNT proteins including regions in their C-terminus identified as hairpin and linker. However, it was shown that the C-terminus of WNT7A comprising the linker and the hairpin region is sufficient to elicit signaling. Here, we demonstrate that actually the hairpin region of WNT7A in its C-terminus is fully sufficient to induce non-canonical signaling in myogenic cells while the linker region alone did not show biological activity. Of note, all known non-canonical signaling branches of WNT7A signaling in skeletal muscle were activated by the hairpin region of WNT7A thereby inducing hypertrophy in myotubes, symmetric expansion of satellite stem cells and migration of myoblasts. Furthermore, we demonstrate that the linker region in the C-terminus of WNT7A binds to the FZD7 receptor while it does not activate non-canonical Wnt signaling. However, the hairpin and the linker region of WNT7A can activate canonical Wnt signaling independent of each other suggesting that specificity of downstream signaling might be depending on those specific regions in the C-terminus.
Collapse
Affiliation(s)
- Manuel Schmidt
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Christine Poser
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Christina Janster
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technoogy Cottbus-Senftenberg, Germany
- Corresponding author.
| |
Collapse
|
2
|
González P, González-Fernández C, Campos-Martín Y, Mollejo M, Carballosa-Gautam M, Marcillo A, Norenberg M, Rodríguez FJ. Frizzled 1 and Wnt1 as new potential therapeutic targets in the traumatically injured spinal cord. Cell Mol Life Sci 2020; 77:4631-4662. [PMID: 31900623 PMCID: PMC11104978 DOI: 10.1007/s00018-019-03427-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Despite the experimental evidence pointing to a significant role of the Wnt family of proteins in physiological and pathological rodent spinal cord functioning, its potential relevance in the healthy and traumatically injured human spinal cord as well as its therapeutic potential in spinal cord injury (SCI) are still poorly understood. To get further insight into these interesting issues, we first demonstrated by quantitative Real-Time PCR and simple immunohistochemistry that detectable mRNA expression of most Wnt components, as well as protein expression of all known Wnt receptors, can be found in the healthy human spinal cord, supporting its potential involvement in human spinal cord physiology. Moreover, evaluation of Frizzled (Fz) 1 expression by double immunohistochemistry showed that its spatio-temporal and cellular expression pattern in the traumatically injured human spinal cord is equivalent to that observed in a clinically relevant model of rat SCI and suggests its potential involvement in SCI progression/outcome. Accordingly, we found that long-term lentiviral-mediated overexpression of the Fz1 ligand Wnt1 after rat SCI improves motor functional recovery, increases myelin preservation and neuronal survival, and reduces early astroglial reactivity and NG2+ cell accumulation, highlighting the therapeutic potential of Wnt1 in this neuropathological situation.
Collapse
Affiliation(s)
- Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain.
| | | | | | - Manuela Mollejo
- Department of Pathology, Hospital Virgen de La Salud, Toledo, Spain
| | | | - Alexander Marcillo
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | - Michael Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | | |
Collapse
|
3
|
Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM. Melatonin promotes Schwann cell dedifferentiation and proliferation through the Ras/Raf/ERK and MAPK pathways, and glial cell-derived neurotrophic factor expression. Exp Ther Med 2020; 20:16. [PMID: 32934681 PMCID: PMC7471953 DOI: 10.3892/etm.2020.9143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Upon peripheral nerve injury (PNI), continuous proliferation of Schwann cells is critical for axon regeneration and tubular reconstruction for nerve regeneration. Melatonin is a hormone that is able to induce proliferation in various cell types. In the present study, the effects of melatonin on promoting Schwann cell proliferation and the molecular mechanism involved were investigated. The present results showed that melatonin enhanced the melatonin receptors (MT1 and MT2) expression in Schwann cells. Melatonin induced Schwann cell dedifferentiation into progenitor-like Schwann cells, as observed by immunofluorescence staining, which showed Sox2 marker expression. In addition, melatonin enhanced Schwann cell proliferation, mediated by the upregulation of glial cell-derived neurotropic factor (GNDF) and protein kinase C (PKC). Furthermore, the Ras/Raf/ERK and MAPK signaling pathways were also involved in Schwann cell dedifferentiation and proliferation. In conclusion, melatonin induced Schwann cell dedifferentiation and proliferation via the Ras/Raf/ERK, MAPK and GDNF/PKC pathways. The present results suggested that melatonin could be used to enhance the recovery of PNI.
Collapse
Affiliation(s)
- Yee Lian Tiong
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | | | - Soi Moi Chye
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
4
|
EGb-761 Attenuates the Anti-proliferative Activity of Fluoride via DDK1 in PC-12 Cells. Neurochem Res 2016; 42:606-614. [DOI: 10.1007/s11064-016-2115-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/08/2023]
|
5
|
A truncated Wnt7a retains full biological activity in skeletal muscle. Nat Commun 2014; 4:2869. [PMID: 24287629 PMCID: PMC3868162 DOI: 10.1038/ncomms3869] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022] Open
Abstract
Wnt signaling has essential roles during embryonic development and tissue homoeostasis. Wnt proteins are post-translationally modified and the attachment of a palmitate moiety at two conserved residues is believed to be a prerequisite for the secretion and function of Wnt proteins. Here we demonstrate that a mammalian Wnt protein can be fully functional without palmitoylation. We generate a truncated Wnt7a variant, consisting of the C-terminal 137 amino acids lacking the conserved palmitoylation sites and show that it retains full biological activity in skeletal muscle. This includes binding to and signaling through its receptor Fzd7 to stimulate symmetric expansion of satellite stem cells by activating the planar-cell polarity pathway and inducing myofibre hypertrophy by signaling through the AKT/mTOR pathway. Furthermore, this truncated Wnt7a shows enhanced secretion and dispersion compared with the full-length protein. Together, these findings open important new avenues for the development of Wnt7a as a treatment for muscle-wasting diseases and have broad implications for the therapeutic use of Wnts as biologics. Wnt7a regulates various aspects of skeletal muscle function. Here, the authors show that a truncated Wnt7a protein lacking the palmitoylation domain retains its biological activity in skeletal muscle, suggesting that simplified Wnt7a proteins may be viable as Wnt-based therapeutics.
Collapse
|
6
|
Van Camp JK, Beckers S, Zegers D, Van Hul W. Wnt Signaling and the Control of Human Stem Cell Fate. Stem Cell Rev Rep 2013; 10:207-29. [DOI: 10.1007/s12015-013-9486-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
García-Castro B, Alvarez-Zavala M, Riveros-Magaña AR, Ortíz-Lazareno PC, Ratkovich-González S, Hernández-Flores G, Bravo-Cuellar A, Jave-Suarez LF, Aguilar-Lemarroy A. Restoration of WNT4 inhibits cell growth in leukemia-derived cell lines. BMC Cancer 2013; 13:557. [PMID: 24274766 PMCID: PMC4222640 DOI: 10.1186/1471-2407-13-557] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 11/22/2013] [Indexed: 01/29/2023] Open
Abstract
Background WNT signaling pathways are significantly altered during cancer development. Vertebrates possess two classes of WNT signaling pathways: the “canonical” WNT/β-catenin signaling pathway, and the “non-canonical” pathways including WNT/Ca2+ and WNT/Planar cell polarity [PCP] signaling. WNT4 influences hematopoietic progenitor cell expansion and survival; however, WNT4 function in cancer development and the resulting implications for oncogenesis are poorly understood. The aim of this study was twofold: first, to determine the expression of WNT4 in mature peripheral blood cells and diverse leukemia-derived cells including cell lines from hematopoietic neoplasms and cells from patients with leukemia; second, to identify the effect of this ligand on the proliferation and apoptosis of the blast-derived cell lines BJAB, Jurkat, CEM, K562, and HL60. Methods We determined WNT4 expression by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) in peripheral blood mononuclear cells (PBMCs) and T- and B-lymphocytes from healthy individuals, as well as from five leukemia-derived cell lines and blasts derived from patients with leukemia. To analyze the effect of WNT4 on cell proliferation, PBMCs and cell lines were exposed to a commercially available WNT4 recombinant human protein. Furthermore, WNT4 expression was restored in BJAB cells using an inducible lentiviral expression system. Cell viability and proliferation were measured by the addition of WST-1 to cell cultures and counting cells; in addition, the progression of the cell cycle and the amount of apoptosis were analyzed in the absence or presence of WNT4. Finally, the expression of WNT-pathway target genes was measured by qRT-PCR. Results WNT4 expression was severely reduced in leukemia-derived cell lines and blasts derived from patients with leukemia. The exposure of cell lines to WNT4 recombinant protein significantly inhibited cell proliferation; inducing WNT4 expression in BJAB cells corroborated this observation. Interestingly, restoration of WNT4 expression in BJAB cells increased the accumulation of cells in G1 phase, and did not induce activation of canonical WNT/β-catenin target genes. Conclusions Our findings suggest that the WNT4 ligand plays a role in regulating the cell growth of leukemia-derived cells by arresting cells in the G1 cell cycle phase in an FZD6-independent manner, possibly through antagonizing the canonical WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Beatriz García-Castro
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada No, 800, Col, Independencia, 44340 Guadalajara, Jalisco, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Wnt signaling has emerged as a potent regulator of hippocampal synaptic function, although no evidence yet supports a critical role for Wnt signaling in hippocampal memory. Here, we sought to determine whether canonical β-catenin-dependent Wnt signaling is necessary for hippocampal memory consolidation. Immediately after training in a hippocampal-dependent object recognition task, mice received a dorsal hippocampal (DH) infusion of vehicle or the canonical Wnt antagonist Dickkopf-1 (Dkk-1; 50, 100, or 200 ng/hemisphere). Twenty-four hours later, mice receiving vehicle remembered the familiar object explored during training. However, mice receiving Dkk-1 exhibited no memory for the training object, indicating that object recognition memory consolidation is dependent on canonical Wnt signaling. To determine how Dkk-1 affects canonical Wnt signaling, mice were infused with vehicle or 50 ng/hemisphere Dkk-1 and protein levels of Wnt-related proteins (Dkk-1, GSK3β, β-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, Wnt1, and PSD95) were measured in the dorsal hippocampus 5 min or 4 h later. Dkk-1 produced a rapid increase in Dkk-1 protein levels and a decrease in phosphorylated GSK3β levels, followed by a decrease in β-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, and PSD95 protein levels 4 h later. These data suggest that alterations in Wnt/GSK3β/β-catenin signaling may underlie the memory impairments induced by Dkk-1. In a subsequent experiment, object training alone rapidly increased DH GSK3β phosphorylation and levels of β-catenin and Cyclin D1. These data suggest that canonical Wnt signaling is regulated by object learning and is necessary for hippocampal memory consolidation.
Collapse
|
9
|
Serrat R, López-Doménech G, Mirra S, Quevedo M, Garcia-Fernàndez J, Ulloa F, Burgaya F, Soriano E. The non-canonical Wnt/PKC pathway regulates mitochondrial dynamics through degradation of the arm-like domain-containing protein Alex3. PLoS One 2013; 8:e67773. [PMID: 23844091 PMCID: PMC3699457 DOI: 10.1371/journal.pone.0067773] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/24/2013] [Indexed: 11/17/2022] Open
Abstract
The regulation of mitochondrial dynamics is vital in complex cell types, such as neurons, that transport and localize mitochondria in high energy-demanding cell domains. The Armcx3 gene encodes a mitochondrial-targeted protein (Alex3) that contains several arm-like domains. In a previous study we showed that Alex3 protein regulates mitochondrial aggregation and trafficking. Here we studied the contribution of Wnt proteins to the mitochondrial aggregation and dynamics regulated by Alex3. Overexpression of Alex3 in HEK293 cells caused a marked aggregation of mitochondria, which was attenuated by treatment with several Wnts. We also found that this decrease was caused by Alex3 degradation induced by Wnts. While the Wnt canonical pathway did not alter the pattern of mitochondrial aggregation induced by Alex3, we observed that the Wnt/PKC non-canonical pathway regulated both mitochondrial aggregation and Alex3 protein levels, thereby rendering a mitochondrial phenotype and distribution similar to control patterns. Our data suggest that the Wnt pathway regulates mitochondrial distribution and dynamics through Alex3 protein degradation.
Collapse
Affiliation(s)
- Román Serrat
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Guillermo López-Doménech
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Serena Mirra
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Martí Quevedo
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Faculty of Biology, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Fausto Ulloa
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Ferrán Burgaya
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Fundación CIEN, Vallecas, Madrid, Spain
| |
Collapse
|
10
|
Abstract
Wnt signals contribute to melanoma progression by boosting their proliferation and survival. Initially, we expected that activated Wnt signaling also improves their proficiency to recruit blood and lymph vessels. To assess this, we added cell culture supernatants (SNs) of Wnt1(+) and Wnt1(-) melanoma to endothelial spheroids. Whereas SNs of Wnt1(-) melanoma cells induced lymphatic sprouts, those of Wnt1(+) cells were unable to do so and this was restored by vascular endothelial growth factor C (VEGF-C). Subsequent testing of several human melanoma lines revealed that Wnt1 suppressed their VEGF-C expression. This Wnt1 effect did not depend on glycogen synthase kinase-3β (GSK3β), β-catenin, or activator protein-1, but was blocked by cyclosporine A (CsA). To analyze Wnt1 effects in melanoma in vivo, we selected Wnt1(-) melanoma cell lines, overexpressed Wnt1, and injected them subepidermally into severe combined immunodeficient (SCID) mice. We found reduced VEGF-C expression, reduced lymphangiogenesis, and delayed metastasis to sentinel nodes in Wnt1(+) as compared with Wnt1(-) melanoma (P<0.05). Concomitant overexpression of VEGF-C or feeding of animals with CsA restored lymphangiogenesis and metastasis in Wnt1(+) melanoma. In conclusion, Wnt1 is anti-lymphangiogenic by suppressing melanoma-derived VEGF-C expression.
Collapse
|
11
|
Ochoa-Hernández AB, Ramos-Solano M, Meza-Canales ID, García-Castro B, Rosales-Reynoso MA, Rosales-Aviña JA, Barrera-Chairez E, Ortíz-Lazareno PC, Hernández-Flores G, Bravo-Cuellar A, Jave-Suarez LF, Barros-Núñez P, Aguilar-Lemarroy A. Peripheral T-lymphocytes express WNT7A and its restoration in leukemia-derived lymphoblasts inhibits cell proliferation. BMC Cancer 2012; 12:60. [PMID: 22313908 PMCID: PMC3299642 DOI: 10.1186/1471-2407-12-60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 02/07/2012] [Indexed: 12/21/2022] Open
Abstract
Background WNT7a, a member of the Wnt ligand family implicated in several developmental processes, has also been reported to be dysregulated in some types of tumors; however, its function and implication in oncogenesis is poorly understood. Moreover, the expression of this gene and the role that it plays in the biology of blood cells remains unclear. In addition to determining the expression of the WNT7A gene in blood cells, in leukemia-derived cell lines, and in samples of patients with leukemia, the aim of this study was to seek the effect of this gene in proliferation. Methods We analyzed peripheral blood mononuclear cells, sorted CD3 and CD19 cells, four leukemia-derived cell lines, and blood samples from 14 patients with Acute lymphoblastic leukemia (ALL), and 19 clinically healthy subjects. Reverse transcription followed by quantitative Real-time Polymerase chain reaction (qRT-PCR) analysis were performed to determine relative WNT7A expression. Restoration of WNT7a was done employing a lentiviral system and by using a recombinant human protein. Cell proliferation was measured by addition of WST-1 to cell cultures. Results WNT7a is mainly produced by CD3 T-lymphocytes, its expression decreases upon activation, and it is severely reduced in leukemia-derived cell lines, as well as in the blood samples of patients with ALL when compared with healthy controls (p ≤0.001). By restoring WNT7A expression in leukemia-derived cells, we were able to demonstrate that WNT7a inhibits cell growth. A similar effect was observed when a recombinant human WNT7a protein was used. Interestingly, restoration of WNT7A expression in Jurkat cells did not activate the canonical Wnt/β-catenin pathway. Conclusions To our knowledge, this is the first report evidencing quantitatively decreased WNT7A levels in leukemia-derived cells and that WNT7A restoration in T-lymphocytes inhibits cell proliferation. In addition, our results also support the possible function of WNT7A as a tumor suppressor gene as well as a therapeutic tool.
Collapse
Affiliation(s)
- Alejandra B Ochoa-Hernández
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hagan N, Zervas M. Wnt1 expression temporally allocates upper rhombic lip progenitors and defines their terminal cell fate in the cerebellum. Mol Cell Neurosci 2012; 49:217-29. [PMID: 22173107 PMCID: PMC3351839 DOI: 10.1016/j.mcn.2011.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/30/2011] [Accepted: 11/28/2011] [Indexed: 01/07/2023] Open
Abstract
The cerebellum (Cb) controls movement related physiology using a diverse array of morphologically and biochemically distinct neurons. During development, the Cb is derived from rhombomere 1 (r1), an embryonic compartment patterned by a signaling center referred to as the isthmus organizer. The secreted glycoprotein WNT1 is expressed in the midbrain primordia (mesencephalon, mes) and at the posterior limit of the mes. WNT1 plays a pivotal role in maintaining the isthmus organizer and mutations in Wnt1 produce severe Cb defects that are generally attributed to aberrant organizer activity. Interestingly, Wnt1 is also expressed at the most posterior limit of dorsal r1, in a region known as the upper rhombic lip (URL). However, the distribution and molecular identity of Wnt1 expressing progenitors have not been carefully described in r1. We used Wnt1-Venus transgenic mice to generate a molecular map of Wnt1 expressing progenitors in relation to other well characterized Cb biomarkers such as MATH1 (ATOH1), LMX1a and OTX2. Our analysis validated Wnt1 expression in the URL and revealed molecularly-defined developmental zones in r1. We then used genetic inducible fate mapping (GIFM) to link transient Wnt1 expression in r1 to terminal cell fates in the mature Cb. Wnt1 expressing progenitors primarily contributed to neurons in deep cerebellar nuclei, granule cells, and unipolar brush cells in distinct but overlapping temporal windows and sparsely contributed to inhibitory neurons and Bergmann glia. We further demonstrate that the Wnt1 lineage does not follow a competency model of progressive lineage restriction to generate the Cb or the functionally related precerebellar system. Instead, progenitors initiate Wnt1 expression de novo to give rise to each Cb cell type and precerebellar nuclei. We also used GIFM to determine how the temporal control of Wnt1 expression is related to molecular identity and cell migration in Cb development. Our findings provide new insight into how lineage and timing establish cell diversity within the Cb system.
Collapse
Affiliation(s)
- Nellwyn Hagan
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
13
|
Tomasoni R, Negrini S, Fiordaliso S, Klajn A, Tkatch T, Mondino A, Meldolesi J, D'Alessandro R. A signaling loop of REST, TSC2 and β-catenin governs proliferation and function of PC12 neural cells. J Cell Sci 2011; 124:3174-86. [DOI: 10.1242/jcs.087551] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The RE-1-specific silencing transcription factor (REST or NRSF) is a transcription repressor that orchestrates differentiation and also operates in differentiated neurons and neurosecretory cells (neural cells). Its role in proliferation has been investigated so far only in rapidly growing tumors, with conflicting results: suppression in non-neural tumors, stimulation in medulloblastomas. Working with two clones of chromaffin–neuronal PC12 cells, which express different levels of REST, and using genetic complementation and knockdown approaches, we show that REST also promotes proliferation in differentiated neural cells. Mechanistically, this occurs by a signaling pathway involving REST, the GTPase-activating protein tuberin (TSC2) and the transcription co-factor β-catenin. In PC12 cells, raised expression of REST correlates with reduced TSC2 levels, nuclear accumulation and co-transcriptional activation of β-catenin, and increased expression of its target oncogenes Myc and Ccnd1, which might account for the proliferation advantage and the distinct morphology. Rest transcription is also increased, unveiling the existence of a self-sustaining, feed-forward REST–TSC2–β-catenin signaling loop that is also operative in another neural cell model, NT2/D1 cells. Transfection of REST, knockdown of TSC2 or forced expression of active β-catenin recapitulated the biochemical, functional and morphological properties of the high-expressing REST clone in wild-type PC12 cells. Upregulation of REST promoted proliferation and phenotypic changes, thus hindering neurosecretion. The new REST–TSC2–β-catenin signaling paradigm might have an important role in various aspects of neural cell physiology and pathology, including the regulation of proliferation and neurosecretion.
Collapse
Affiliation(s)
- Romana Tomasoni
- Division of Immunology, Transplantation/Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Sara Negrini
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- IIT Network, Research Unit of Molecular Neuroscience, Via Olgettina 58, 20132 Milan, Italy
| | - Stefania Fiordaliso
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- IIT Network, Research Unit of Molecular Neuroscience, Via Olgettina 58, 20132 Milan, Italy
| | - Andrijana Klajn
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe Str., PO Box 23, 11010 Belgrade, Serbia
| | - Tatiana Tkatch
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation/Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Jacopo Meldolesi
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- IIT Network, Research Unit of Molecular Neuroscience, Via Olgettina 58, 20132 Milan, Italy
| | - Rosalba D'Alessandro
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- IIT Network, Research Unit of Molecular Neuroscience, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
14
|
Avila ME, Sepúlveda FJ, Burgos CF, Moraga-Cid G, Parodi J, Moon RT, Aguayo LG, Opazo C, De Ferrari GV. Canonical Wnt3a modulates intracellular calcium and enhances excitatory neurotransmission in hippocampal neurons. J Biol Chem 2010; 285:18939-47. [PMID: 20404321 PMCID: PMC2881816 DOI: 10.1074/jbc.m110.103028] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/16/2010] [Indexed: 11/06/2022] Open
Abstract
A role for Wnt signal transduction in the development and maintenance of brain structures is widely acknowledged. Recent studies have suggested that Wnt signaling may be essential for synaptic plasticity and neurotransmission. However, the direct effect of a Wnt protein on synaptic transmission had not been demonstrated. Here we show that nanomolar concentrations of purified Wnt3a protein rapidly increase the frequency of miniature excitatory synaptic currents in embryonic rat hippocampal neurons through a mechanism involving a fast influx of calcium from the extracellular space, induction of post-translational modifications on the machinery involved in vesicle exocytosis in the presynaptic terminal leading to spontaneous Ca(2+) transients. Our results identify the Wnt3a protein and a member of its complex receptor at the membrane, the low density lipoprotein receptor-related protein 6 (LRP6) coreceptor, as key molecules in neurotransmission modulation and suggest cross-talk between canonical and Wnt/Ca(2+) signaling in central neurons.
Collapse
Affiliation(s)
- Miguel E. Avila
- From the Departments of Biochemistry and Molecular Biology and
| | - Fernando J. Sepúlveda
- Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción P.O. Box 4070386, Chile
| | | | - Gustavo Moraga-Cid
- Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción P.O. Box 4070386, Chile
| | - Jorge Parodi
- Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción P.O. Box 4070386, Chile
| | - Randall T. Moon
- Howard Hughes Medical Institute, Department of Pharmacology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington 98195, and
| | - Luis G. Aguayo
- Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción P.O. Box 4070386, Chile
| | - Carlos Opazo
- Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción P.O. Box 4070386, Chile
| | - Giancarlo V. De Ferrari
- From the Departments of Biochemistry and Molecular Biology and
- the Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andrés Bello, Santiago P.O. Box 8370134, Chile
| |
Collapse
|