1
|
Li H, Zhou X, Chen R, Xiao Y, Zhou T. The Src-Kinase Fyn is Required for Cocaine-Associated Memory Through Regulation of Tau. Front Pharmacol 2022; 13:769827. [PMID: 35185557 PMCID: PMC8850722 DOI: 10.3389/fphar.2022.769827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Drug-associated context-induced relapse of cocaine-seeking behaviour requires the retrieval of drug-associated memory. Studies exploring the underlying neurobiological mechanism of drug memory formation will likely contribute to the development of treatments for drug addiction and the prevention of relapse. In our study, we applied a cocaine-conditioned place preference (CPP) paradigm and a self-administration paradigm (two drug-associated memory formation model) to confirm the hypothesis that the Src kinase Fyn critically regulates cocaine-associated memory formation in the hippocampus. For this experiment, we administered the Src kinase inhibitor PP2 into the bilateral hippocampus before cocaine-CPP and self-administration training, and the results showed that pharmacological manipulation of the Src kinase Fyn activity significantly attenuated the response to cocaine-paired cues in the cocaine-CPP and self-administration paradigms, indicating that hippocampal Fyn activity contributes to cocaine-associated memory formation. In addition, the regulation of cocaine-associated memory formation by Fyn depends on Tau expression, as restoring Tau to normal levels disrupted cocaine memory formation. Together, these results indicate that hippocampal Fyn activity plays a key role in the formation of cocaine-associated memory, which underlies cocaine-associated contextual stimulus-mediated regulation of cocaine-seeking behaviour, suggesting that Fyn represents a promising therapeutic target for weakening cocaine-related memory and treating cocaine addiction.
Collapse
Affiliation(s)
- Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hongchun Li,
| | - Xinglong Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuzhou Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhou
- Department of Drug and Equipment, China Rongtong Bayi Orthopaedic Hospital, Chengdu, China
| |
Collapse
|
2
|
Carvajal FJ, Cerpa W. Regulation of Phosphorylated State of NMDA Receptor by STEP 61 Phosphatase after Mild-Traumatic Brain Injury: Role of Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101575. [PMID: 34679709 PMCID: PMC8533270 DOI: 10.3390/antiox10101575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023] Open
Abstract
Traumatic Brain Injury (TBI) mediates neuronal death through several events involving many molecular pathways, including the glutamate-mediated excitotoxicity for excessive stimulation of N-methyl-D-aspartate receptors (NMDARs), producing activation of death signaling pathways. However, the contribution of NMDARs (distribution and signaling-associated to the distribution) remains incompletely understood. We propose a critical role of STEP61 (Striatal-Enriched protein tyrosine phosphatase) in TBI; this phosphatase regulates the dephosphorylated state of the GluN2B subunit through two pathways: by direct dephosphorylation of tyrosine-1472 and indirectly via dephosphorylation and inactivation of Fyn kinase. We previously demonstrated oxidative stress’s contribution to NMDAR signaling and distribution using SOD2+/− mice such a model. We performed TBI protocol using a controlled frontal impact device using C57BL/6 mice and SOD2+/− animals. After TBI, we found alterations in cognitive performance, NMDAR-dependent synaptic function (decreased synaptic form of NMDARs and decreased synaptic current NMDAR-dependent), and increased STEP61 activity. These changes are reduced partially with the STEP61-inhibitor TC-2153 treatment in mice subjected to TBI protocol. This study contributes with evidence about the role of STEP61 in the neuropathological progression after TBI and also the alteration in their activity, such as an early biomarker of synaptic damage in traumatic lesions.
Collapse
Affiliation(s)
- Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Correspondence: ; Tel.: +56-2-2354-2656; Fax: +56-2-2354-2660
| |
Collapse
|
3
|
Smaga I, Sanak M, Filip M. Cocaine-induced Changes in the Expression of NMDA Receptor Subunits. Curr Neuropharmacol 2020; 17:1039-1055. [PMID: 31204625 PMCID: PMC7052821 DOI: 10.2174/1570159x17666190617101726] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 11/28/2022] Open
Abstract
Cocaine use disorder is manifested by repeated cycles of drug seeking and drug taking. Cocaine exposure causes synaptic transmission in the brain to exhibit persistent changes, which are poorly understood, while the pharmacotherapy of this disease has not been determined. Multiple potential mechanisms have been indicated to be involved in the etiology of co-caine use disorder. The glutamatergic system, especially N-methyl-D-aspartate (NMDA) receptors, may play a role in sever-al physiological processes (synaptic plasticity, learning and memory) and in the pathogenesis of cocaine use disorder. The composition of the NMDA receptor subunits changes after contingent and noncontingent cocaine administration and after drug abstinence in a region-specific and time-dependent manner, as well as depending on the different protocols used for co-caine administration. Changes in the expression of NMDA receptor subunits may underlie the transition from cocaine abuse to dependence, as well as the transition from cocaine dependence to cocaine withdrawal. In this paper, we summarize the cur-rent knowledge regarding neuroadaptations within NMDA receptor subunits and scaffolding proteins observed following voluntary and passive cocaine intake, as well as the effects of NMDA receptor antagonists on cocaine-induced behavioral changes during cocaine seeking and relapse.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, PL 31-066 Kraków, Poland.,Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, PL 31-066 Kraków, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
4
|
Buchta WC, Moutal A, Hines B, Garcia-Keller C, Smith ACW, Kalivas P, Khanna R, Riegel AC. Dynamic CRMP2 Regulation of CaV2.2 in the Prefrontal Cortex Contributes to the Reinstatement of Cocaine Seeking. Mol Neurobiol 2020; 57:346-357. [PMID: 31359322 PMCID: PMC6980501 DOI: 10.1007/s12035-019-01711-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Cocaine addiction remains a major health concern with limited effective treatment options. A better understanding of mechanisms underlying relapse may help inform the development of new pharmacotherapies. Emerging evidence suggests that collapsin response mediator protein 2 (CRMP2) regulates presynaptic excitatory neurotransmission and contributes to pathological changes during diseases, such as neuropathic pain and substance use disorders. We examined the role of CRMP2 and its interactions with a known binding partner, CaV2.2, in cocaine-seeking behavior. We employed the rodent self-administration model of relapse to drug seeking and focused on the prefrontal cortex (PFC) for its well-established role in reinstatement behaviors. Our results indicated that repeated cocaine self-administration resulted in a dynamic and persistent alteration in the PFC expression of CRMP2 and its binding partner, the CaV2.2 (N-type) voltage-gated calcium channel. Following cocaine self-administration and extinction training, the expression of both CRMP2 and CaV2.2 was reduced relative to yoked saline controls. By contrast, cued reinstatement potentiated CRMP2 expression and increased CaV2.2 expression above extinction levels. Lastly, we utilized the recently developed peptide myr-TAT-CBD3 to disrupt the interaction between CRMP2 and CaV2.2 in vivo. We assessed the reinstatement behavior after infusing this peptide directly into the medial PFC and found that it decreased cue-induced reinstatement of cocaine seeking. Taken together, these data suggest that neuroadaptations in the CRMP2/CaV2.2 signaling cascade in the PFC can facilitate drug-seeking behavior. Targeting such interactions has implications for the treatment of cocaine relapse behavior.
Collapse
Affiliation(s)
- William C Buchta
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Bethany Hines
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alexander C W Smith
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peter Kalivas
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
- Department of Anesthesiology, University of Arizona, Tucson, AZ, 85724, USA
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Arthur C Riegel
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
5
|
Magid L, Heymann S, Elgali M, Avram L, Cohen Y, Liraz-Zaltsman S, Mechoulam R, Shohami E. Role of CB 2 Receptor in the Recovery of Mice after Traumatic Brain Injury. J Neurotrauma 2019; 36:1836-1846. [PMID: 30489198 PMCID: PMC6551996 DOI: 10.1089/neu.2018.6063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cannabis is one of the most widely used plant drugs in the world today. In spite of the large number of scientific reports on medical marijuana, there still exists much controversy surrounding its use and the potential for abuse due to the undesirable psychotropic effects. However, recent developments in medicinal chemistry of novel non-psychoactive synthetic cannabinoids have indicated that it is possible to separate some of the therapeutic effects from the psychoactivity. We have previously shown that treatment with the endocannabinoid 2-AG, which binds to both CB1 and CB2 receptors 1 h after traumatic brain injury in mice, attenuates neurological deficits, edema formation, infarct volume, blood-brain barrier permeability, neuronal cell loss at the CA3 hippocampal region, and neuroinflammation. Recently, we synthesized a set of camphor-resorcinol derivatives, which represent a novel series of CB2 receptor selective ligands. Most of the novel compounds exhibited potent binding and agonistic properties at the CB2 receptors with very low affinity for the CB1 receptor, and some were highly anti-inflammatory. This selective binding correlated with their intrinsic activities. HU-910 and HU-914 were selected in the present study to evaluate their potential effect in the pathophysiology of traumatic brain injury (TBI). In mice and rats subjected to closed-head injury and treated with these novel compounds, we showed enhanced neurobehavioral recovery, inhibition of tumor necrosis factor α production, increased synaptogenesis, and partial recovery of the cortical spinal tract. We propose these CB2 agonists as potential drugs for development of novel therapeutic modality to TBI.
Collapse
Affiliation(s)
- Lital Magid
- Department of Medicinal Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sami Heymann
- Department of Neurosurgery, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Elgali
- Department of Pharmacology, Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liat Avram
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Liraz-Zaltsman
- Department of Pharmacology, Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Raphael Mechoulam
- Department of Medicinal Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Jin DZ, Mao LM, Wang JQ. Amphetamine activates non-receptor tyrosine kinase Fyn and stimulates ERK phosphorylation in the rat striatum in vivo. Eur J Pharmacol 2018; 843:45-54. [PMID: 30419241 DOI: 10.1016/j.ejphar.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
The psychostimulant amphetamine (AMPH) has an impact on a variety of cellular activities in striatal neurons, although underlying signaling mechanisms are incompletely understood. The Src family kinase (SFK) is among key signaling molecules enriched in striatal neurons and is involved in the regulation of a set of discrete downstream targets. Given the likelihood that AMPH may regulate SFKs, we investigated and characterized the effect of AMPH on SFK phosphorylation and enzymatic activity in rat striatal neurons in vivo. We found that AMPH elevated SFK Y416 phosphorylation in striatal slices and the adult rat striatum. This elevation was concentration- and time-dependent and occurred in all subdivisions of the striatum, including the caudate putamen and nucleus accumbens (core and shell). The dopamine D1 receptor antagonist SCH23390 blocked the effect of AMPH. Between Fyn and Src, AMPH elevated phosphorylation of immunoprecipitated Fyn but not Src and increased Fyn kinase activity in the striatum. In parallel with SFKs, striatal ERK phosphorylation was increased by AMPH. This increase in ERK phosphorylation was reduced by the SFK inhibitor PP2. These results demonstrate that AMPH is able to activate SFKs (mainly Fyn) in striatal neurons via a D1 receptor-dependent mechanism. Activated SFKs participate in processing the concomitant ERK response to AMPH.
Collapse
Affiliation(s)
- Dao-Zhong Jin
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| | - Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
7
|
Decrease of cocaine, but not heroin, self-administration and relapse by the tyrosine kinase inhibitor masitinib in male Sprague Dawley rats. Psychopharmacology (Berl) 2018; 235. [PMID: 29520592 PMCID: PMC5920000 DOI: 10.1007/s00213-018-4865-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Accumulating evidence shows that cocaine, and also heroin, influence several tyrosine kinases, expressed in neurons and in non-neuronal populations such as microglia, astrocytes and mast-cells. Drug-induced activation of mast cells both triggers inflammatory processes in the brain mediated by the glial cells they activate, and facilitates histamine release which may directly influence the dopamine system. Thus, by triggering the activation and degranulation of mast cells dependent on the tyrosine kinase c-kit and Fyn, the latter being also involved in NMDA-dependent synaptic plasticity, cocaine and heroin may indirectly influence the neural mechanisms that mediate their reinforcing properties. Masitinib, a novel tyrosine kinase inhibitor with high selectivity for c-Kit, Fyn and Lyn, may alter the aberrant consequences of the activation of these tyrosine kinases by cocaine and heroin. OBJECTIVE We investigated in rats the effect of a chronic oral treatment with masitinib (20 mg/kg) on the reinforcing and motivational properties of self-administered cocaine (250 μg/infusion) and heroin (40 μg/infusion). METHODS Three different cohorts of rats were trained instrumentally to respond for cocaine, heroin or food under continuous reinforcement. In each group, we assessed the influence of chronic daily treatment with masitinib on the maintenance of instrumental responding and intake and the motivation for the reinforcer. Thus, masitinib and vehicle-treated rats were challenged to adapt to high behavioural demand, to respond under a progressive ratio schedule of reinforcement and to reinstate instrumental responding after extinction and/or abstinence. RESULTS Masitinib selectively decreased cocaine intake, the motivation for cocaine and the subsequent propensity to respond for cocaine under extinction, while having no effect on instrumental responding for heroin or food. CONCLUSION The present findings suggest masitinib, a drug with proven efficacy in CNS disorders, could represent a novel treatment for cocaine addiction provided its influence on the reinforcing and incentive properties of the drug is confirmed.
Collapse
|
8
|
Sun Y, Zhan L, Cheng X, Zhang L, Hu J, Gao Z. The Regulation of GluN2A by Endogenous and Exogenous Regulators in the Central Nervous System. Cell Mol Neurobiol 2017; 37:389-403. [PMID: 27255970 DOI: 10.1007/s10571-016-0388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/25/2016] [Indexed: 12/25/2022]
Abstract
The NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders. This review will examine the regulation of GluN2A by endogenous and exogenous regulators in the central nervous system.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Liying Zhan
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
| | - Xiaokun Cheng
- North China Pharmaceutical Group New Drug Research and Development Co., Ltd, Shijiazhuang, 050015, People's Republic of China
| | - Linan Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jie Hu
- School of Nursing, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China.
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
9
|
Contribution of an SFK-Mediated Signaling Pathway in the Dorsal Hippocampus to Cocaine-Memory Reconsolidation in Rats. Neuropsychopharmacology 2016; 41. [PMID: 26202103 PMCID: PMC4707834 DOI: 10.1038/npp.2015.217] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Environmentally induced relapse to cocaine seeking requires the retrieval of context-response-cocaine associative memories. These memories become labile when retrieved and must undergo reconsolidation into long-term memory storage to be maintained. Identification of the molecular underpinnings of cocaine-memory reconsolidation will likely facilitate the development of treatments that mitigate the impact of cocaine memories on relapse vulnerability. Here, we used the rat extinction-reinstatement procedure to test the hypothesis that the Src family of tyrosine kinases (SFK) in the dorsal hippocampus (DH) critically controls contextual cocaine-memory reconsolidation. To this end, we evaluated the effects of bilateral intra-DH microinfusions of the SFK inhibitor, PP2 (62.5 ng per 0.5 μl per hemisphere), following re-exposure to a cocaine-associated (cocaine-memory reactivation) or an unpaired context (no memory reactivation) on subsequent drug context-induced instrumental cocaine-seeking behavior. We also assessed alterations in the phosphorylation state of SFK targets, including GluN2A and GluN2B N-methyl-D-aspartate (NMDA) and GluA2 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits at the putative time of memory restabilization and following PP2 treatment. Finally, we evaluated the effects of intra-DH PEAQX (2.5 μg per 0.5 μl per hemisphere), a GluN2A-subunit-selective NMDAR antagonist, following, or in the absence of, cocaine-memory reactivation on subsequent drug context-induced cocaine-seeking behavior. GluN2A phosphorylation increased in the DH during putative memory restabilization, and intra-DH PP2 treatment inhibited this effect. Furthermore, PP2-as well as PEAQX-attenuated subsequent drug context-induced cocaine-seeking behavior, in a memory reactivation-dependent manner, relative to VEH. These findings suggest that hippocampal SFKs contribute to the long-term stability of cocaine-related memories that underlie contextual stimulus control over cocaine-seeking behavior.
Collapse
|
10
|
Chiodi V, Mallozzi C, Ferrante A, Chen JF, Lombroso PJ, Di Stasi AMM, Popoli P, Domenici MR. Cocaine-induced changes of synaptic transmission in the striatum are modulated by adenosine A2A receptors and involve the tyrosine phosphatase STEP. Neuropsychopharmacology 2014; 39:569-78. [PMID: 23989619 PMCID: PMC3895235 DOI: 10.1038/npp.2013.229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 11/09/2022]
Abstract
The striatum is a brain area implicated in the pharmacological action of drugs of abuse. Adenosine A2A receptors (A2ARs) are highly expressed in the striatum and mediate, at least in part, cocaine-induced psychomotor effects in vivo. Here we studied the synaptic mechanisms implicated in the pharmacological action of cocaine in the striatum and investigated the influence of A2ARs. We found that synaptic transmission was depressed in corticostriatal slices after perfusion with cocaine (10 μM). This effect was reduced by the A2AR antagonist ZM241385 and almost abolished in striatal A2AR-knockout mice (mice lacking A2ARs in striatal neurons, stA2ARKO). The effect of cocaine on synaptic transmission was also prevented by the protein tyrosine phosphatases (PTPs) inhibitor sodium orthovanadate (Na3VO4). In synaptosomes prepared from striatal slices, we found that the activity of striatal-enriched protein tyrosine phosphatase (STEP) was upregulated by cocaine, prevented by ZM241385, and absent in synaptosomes from stA2ARKO. The role played by STEP in cocaine modulation of synaptic transmission was investigated in whole-cell voltage clamp recordings from medium spiny neurons of the striatum. We found that TAT-STEP, a peptide that renders STEP enzymatically inactive, prevented cocaine-induced reduction in AMPA- and NMDA-mediated excitatory post-synaptic currents, whereas the control peptide, TAT-myc, had no effect. These results demonstrate that striatal A2ARs modulate cocaine-induced synaptic depression in the striatum and highlight the potential role of PTPs and specifically STEP in the effects of cocaine.
Collapse
Affiliation(s)
- Valentina Chiodi
- Department Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Cinzia Mallozzi
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Antonella Ferrante
- Department Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Jiang F Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Paul J Lombroso
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | | | - Patrizia Popoli
- Department Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Maria Rosaria Domenici
- Department Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Roma, Italy,Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 299, Roma 00161, Italy, Tel: +390649902947, Fax: +3906495782, E-mail:
| |
Collapse
|
11
|
Role of a hippocampal SRC-family kinase-mediated glutamatergic mechanism in drug context-induced cocaine seeking. Neuropsychopharmacology 2013; 38:2657-65. [PMID: 23872878 PMCID: PMC3828537 DOI: 10.1038/npp.2013.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 12/20/2022]
Abstract
Glutamatergic neurotransmission in the dorsal hippocampus (DH) is necessary for drug context-induced reinstatement of cocaine-seeking behavior in an animal model of drug relapse. Furthermore, in vitro studies suggest that the Src family of tyrosine kinases critically regulates glutamatergic cellular functions within the DH. Thus, Src-family kinases in the DH may similarly control contextual cocaine-seeking behavior. To test this hypothesis, rats were trained to lever press for un-signaled cocaine infusions in a distinct context followed by extinction training in a different context. Cocaine-seeking behavior (non-reinforced active lever pressing) was then assessed in the previously cocaine-paired and extinction contexts after AP5 (N-methyl-D-aspartate glutamate (NMDA) receptor (NMDAR) antagonist; 0.25 or 2.5 μg/0.5 μl/hemisphere), PP2 (Src-family kinase inhibitor; 6.25 or 62.5 ng/0.5 μl/hemisphere), Ro25-6981 (NR2B subunit-containing NMDAR antagonist; 0.2 or 2 μg/0.5 μl/hemisphere), or vehicle administration into the DH. Administration of AP5, PP2, or Ro25-6981 into the DH dose-dependently impaired drug context-induced reinstatement of cocaine-seeking behavior relative to vehicle, without altering instrumental behavior in the extinction context or food-reinforced instrumental responding and general motor activity in control experiments. Cocaine-seeking behavior during the first 20 min of the test session in the cocaine-paired context was associated with an increase in NR2B subunit activation, and intra-DH PP2 pretreatment disrupted this relationship. Together, these findings suggest that Src-family kinase activation, NMDAR stimulation, and likely Src-family kinase-mediated NR2B subunit-containing NMDAR activation in the DH are necessary for incentive motivational and/or memory processes that promote contextual cocaine-seeking behavior.
Collapse
|
12
|
Chandrasekar R. Alcohol and NMDA receptor: current research and future direction. Front Mol Neurosci 2013; 6:14. [PMID: 23754976 PMCID: PMC3664776 DOI: 10.3389/fnmol.2013.00014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/07/2013] [Indexed: 01/05/2023] Open
Abstract
The brain is one of the major targets of alcohol actions. Most of the excitatory synaptic transmission in the central nervous system is mediated by N-methyl-D-aspartate (NMDA) receptors. However, one of the most devastating effects of alcohol leads to brain shrinkage, loss of nerve cells at specific regions through a mechanism involving excitotoxicity, oxidative stress. Earlier studies have indicated that chronic exposure to ethanol both in vivo and in vitro, increases NR1 and NR2B gene expression and their polypeptide levels. The effect of alcohol and molecular changes on the regulatory process, which modulates NMDAR functions including factors altering transcription, translation, post-translational modifications, and protein expression, as well as those influencing their interactions with different regulatory proteins (downstream effectors) are incessantly increasing at the cellular level. Further, I discuss the various genetically altered mice approaches that have been used to study NMDA receptor subunits and their functional implication. In a recent countable review, epigenetic dimension (i.e., histone modification-induced chromatin remodeling and DNA methylation, in the process of alcohol related neuroadaptation) is one of the key molecular mechanisms in alcohol mediated NMDAR alteration. Here, I provide a recount on what has already been achieved, current trends and how the future research/studies of the NMDA receptor might lead to even greater engagement with many possible new insights into the neurobiology and treatment of alcoholism.
Collapse
Affiliation(s)
- Raman Chandrasekar
- Department of Biochemistry and Biotechnology Core Facility, Kansas State University Manhattan, KS, USA
| |
Collapse
|
13
|
Zhang F, Guo A, Liu C, Comb M, Hu B. Phosphorylation and assembly of glutamate receptors after brain ischemia. Stroke 2012; 44:170-6. [PMID: 23212166 DOI: 10.1161/strokeaha.112.667253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Overassembly of synaptic glutamate receptors leads to excitotoxicity. The goal of this study is to investigate phosphorylation and assembly of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors after brain ischemia with reperfusion (I/R). METHODS Rats were subjected to 15 minutes of global ischemia followed by 0.5, 4, and 24 hours of reperfusion. Phosphotyrosine peptides of glutamate receptors in synaptosomal fraction after I/R were identified and quantified by state-of-the-art immuno-affinity purification of phosphotyrosine peptides followed by liquid chromatography/mass spectrometry/mass spectrometry analysis (immunoaffinity purification-coupled liquid chromatography/mass spectrometry/mass spectrometry). Glutamate receptor phosphorylation and synaptic assembly after I/R were studied by biochemical methods. RESULTS Numerous phosphotyrosine-sites of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate were upregulated by approximately 2- to 37-fold after I/R. A core glutamate receptor kinase, Src kinase, was significantly activated. GluR2/3 and NR2A/B were rapidly clustered from extrasynaptic to synaptic membrane fractions after I/R. GluR2/3 was then translocated into the intracellular pool, whereas NR2A/B remained in the synaptic fraction for as long as 24 hours. Consistently, trafficking-related phosphorylation of GluR2/3-S880 was significantly but transiently upregulated, whereas NR2A/B-Y1246 and NR2A/B-Y1472 were significantly and persistently upregulated after I/R. CONCLUSIONS Phosphorylation of glutamate receptors at synapses may lead to overassembly of glutamate receptors, probably via activation of Src family kinases, after I/R. This study provides global proteomic information about glutamate receptor tyrosine phosphorylation after brain ischemia.
Collapse
Affiliation(s)
- Fan Zhang
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
14
|
Rehni AK, Singh TG, Arora S. SU-6656, a Selective Src Kinase Inhibitor, Attenuates Mecamylamine-Precipitated Nicotine Withdrawal Syndrome in Mice. Nicotine Tob Res 2011; 14:407-14. [DOI: 10.1093/ntr/ntr228] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
5-HT6 receptor signal transduction second messenger systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 94:89-110. [PMID: 21081203 DOI: 10.1016/b978-0-12-384976-2.00004-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
16
|
Mao LM, Guo ML, Jin DZ, Fibuch EE, Choe ES, Wang JQ. Post-translational modification biology of glutamate receptors and drug addiction. Front Neuroanat 2011; 5:19. [PMID: 21441996 PMCID: PMC3062099 DOI: 10.3389/fnana.2011.00019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/03/2011] [Indexed: 01/26/2023] Open
Abstract
Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | | | | | | | | | | |
Collapse
|
17
|
Lee BR, Dong Y. Cocaine-induced metaplasticity in the nucleus accumbens: silent synapse and beyond. Neuropharmacology 2011; 61:1060-9. [PMID: 21232547 DOI: 10.1016/j.neuropharm.2010.12.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/15/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
The neuroadaptation theory of addiction suggests that, similar to the development of most memories, exposure to drugs of abuse induces adaptive molecular and cellular changes in the brain which likely mediate addiction-related memories or the addictive state. Compared to other types of memories, addiction-related memories develop fast and last extremely long, suggesting that the cellular and molecular processes that mediate addiction-related memories are exceptionally adept and efficient. We recently demonstrated that repeated exposure to cocaine generated a large portion of "silent" glutamatergic synapses within the nucleus accumbens (NAc). Silent glutamatergic synapses are synaptic connections in which only N-methyl-D-aspartic acid receptor (NMDAR)-mediated responses are readily detected whereas alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are absent or highly labile. Extensive experimental evidence suggests that silent synapses are conspicuously efficient plasticity sites at which long-lasting plastic changes can be more easily induced and maintained. Thus, generation of silent synapses can be regarded as a process of metaplasticity, which primes the NAc for subsequent durable and robust plasticity for addiction-related memories. Focusing on silent synapse-based metaplasticity, this review discusses how key brain regions, such as the NAc, utilize the metaplasticity mechanism to optimize the plasticity machineries to achieve fast and durable plastic changes following exposure to cocaine. A summary of recent related results suggests that upon cocaine exposure, newly generated silent synapses may prime excitatory synapses within the NAc for long-term potentiation (LTP), thus setting the direction of future plasticity. Furthermore, because cocaine-generated silent synapses are enriched in NMDARs containing the NR2B subunit, the enhanced NR2B-signaling may set up a selective recruitment of certain types of AMPARs. Thus, silent synapse-based metaplasticity may lead to not only quantitative but also qualitative alterations in excitatory synapses within the NAc. This review is one of the first systematic analyses regarding the hypothesis that drugs of abuse induce metaplasticity, which regulates the susceptibility, the direction, and the molecular details of subsequent plastic changes. Taken together, metaplasticity ultimately serves as a key step in mediating cascades of addiction-related plastic alterations.
Collapse
Affiliation(s)
- Brian R Lee
- Program in Neuroscience, Washington State University, Wegner 205, PO Box 646520, Pullman, WA 99164-6520, USA
| | | |
Collapse
|
18
|
Friedman A, Lax E, Dikshtein Y, Abraham L, Flaumenhaft Y, Sudai E, Ben-Tzion M, Ami-Ad L, Yaka R, Yadid G. Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior. Neuropharmacology 2010; 59:452-9. [PMID: 20600170 DOI: 10.1016/j.neuropharm.2010.06.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
Abstract
The lateral habenula (LHb) is critical for modulation of negative reinforcement, punishment and aversive responses. In light of the success of deep-brain-stimulation (DBS) in the treatment of neurological disorders, we explored the use of LHb DBS as a method of intervention in cocaine self-administration, extinction, and reinstatement in rats. An electrode was implanted into the LHb and rats were trained to self-administer cocaine (21 days; 0.25-1 mg/kg) until they achieved at least three days of stable performance (as measured by daily recordings of active lever presses in self-administration cages). Thereafter, rats received DBS in the presence or absence of cocaine. DBS reduced cocaine seeking behavior during both self-administration and extinction training. DBS also attenuated the rats' lever presses following cocaine reinstatement (5-20 mg/kg) in comparison to sham-operated rats. These results were also controlled by the assessment of physical performance as measured by water self-administration and an open field test, and by evaluation of depressive-like manifestations as measured by the swim and two-bottles-choice tests. In contrast, LHb lesioned rats demonstrated increased cocaine seeking behavior as demonstrated by a delayed extinction response. In the ventral tegmental area, cocaine self-administration elevated glutamatergic receptor subunits NR1 and GluR1 and scaffolding protein PSD95, but not GABA(A)β, protein levels. Following DBS treatment, levels of these subunits returned to control values. We postulate that the effect of both LHb modulation and LHb DBS on cocaine reinforcement may be via attenuation of the cocaine-induced increase in glutaminergic input to the VTA.
Collapse
Affiliation(s)
- Alexander Friedman
- Leslie Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: implication for increased monocyte transmigration. Blood 2010; 115:4951-62. [PMID: 20354174 DOI: 10.1182/blood-2010-01-266221] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cocaine abuse hastens the neurodegeneration often associated with advanced HIV-1 infection. The mechanisms, in part, revolve around the neuroinflammatory processes mediated by the chemokine monocyte chemotactic protein-1 (MCP-1/CCL2). Understanding factors that modulate MCP-1 and, in turn, facilitate monocyte extravasation in the brain is thus of paramount importance. We now demonstrate that cocaine induces MCP-1 in rodent microglia through translocation of the sigma receptor to the lipid raft microdomains of the plasma membrane. Sequential activation of Src, mitogen-activated protein kinases (MAPKs), and phosphatidylinositol-3' kinase (PI3K)/Akt and nuclear factor kappaB (NF-kappaB) pathways resulted in increased MCP-1 expression. Furthermore, conditioned media from cocaine-exposed microglia increased monocyte transmigration, and thus was blocked by antagonists for CCR2 or sigma receptor. These findings were corroborated by demonstrating increased monocyte transmigration in mice exposed to cocaine, which was attenuated by pretreatment of mice with the sigma receptor antagonist. Interestingly, cocaine-mediated transmigratory effects were not observed in CCR2 knockout mice. We conclude that cocaine-mediated induction of MCP-1 accelerates monocyte extravasation across the endothelium. Understanding the regulation of MCP-1 expression and functional changes by cocaine/sigma receptor system may provide insights into the development of potential therapeutic targets for HIV-1-associated neurocognitive disorders.
Collapse
|
20
|
Peng HY, Chen GD, Lai CH, Tung KC, Chang JL, Lin TB. Endogenous ephrinB2 mediates colon-urethra cross-organ sensitization via Src kinase-dependent tyrosine phosphorylation of NR2B. Am J Physiol Renal Physiol 2009; 298:F109-17. [PMID: 19864302 DOI: 10.1152/ajprenal.00287.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recently, the role of EphB receptor (EphBR) tyrosine kinase and their ephrinB ligands in spinal pain-related neural plasticity has been identified. To test whether Src-family non-receptor tyrosine kinase-dependent glutamatergic N-methyl-d-aspartate receptor (NMDAR) NR2B subunit phosphorylation underlies lumbosacral spinal EphBR activation to mediate cross-organ sensitization between the colon and the urethra, external urethra sphincter electromyogram activity evoked by pelvic nerve stimulation and protein expression in the lumbosacral (L6-S2) dorsal horn were studied before and after intracolonic mustard oil (MO) instillation. We found MO instillation produced colon-urethra reflex sensitization along with an upregulation of endogenous ephrinB2 expression as well as phosphorylation of EphB 1/2, Src-family kinase, and NR2B tyrosine residues. Intrathecal immunoglobulin fusion protein of EphB1 and EphB2 as well as PP2 reversed the reflex sensitization and NR2B phosphorylation caused by MO. All these results suggest that EphBR-ephrinB interactions, which provoke Src-family kinase-dependent NMDAR NR2B phosphorylation at the lumbosacral spinal cord level, are involved in cross-organ sensitization, contributing to the development of viscero-visceral referred pain between the bowel and the urethra.
Collapse
Affiliation(s)
- Hsien-Yu Peng
- Department of Physiology, College of Medicine, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
NR2A/B-containing NMDA receptors mediate cocaine-induced synaptic plasticity in the VTA and cocaine psychomotor sensitization. Neurosci Lett 2009; 461:159-62. [PMID: 19524640 DOI: 10.1016/j.neulet.2009.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/02/2009] [Indexed: 01/21/2023]
Abstract
Cocaine-induced modifications of glutamatergic synaptic transmission in the mesolimbic system play a key role in adaptations that promote addictive behaviors. In particular, the activation of ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) in the ventral tegmental area (VTA) is critical for both cocaine-induced synaptic plasticity induced by a single cocaine injection and for the initiation of cocaine psychomotor sensitization. In this study, we set to determine whether the NR2 subunits of the NMDAR play a specific role in triggering cocaine-induced alterations in synaptic plasticity and the development of psychomotor sensitization. We found that inhibition of NR2A-containing NMDARs by NVP-AAM077, or NR2B-containing receptors by ifenprodil, blocked cocaine-induced increase in the AMPAR/NMDAR currents ratio, a measure of long-term potentiation (LTP) in vivo, in VTA neurons 24h following a single cocaine injection. Furthermore, inhibition of the NR2A subunit during the development of psychomotor sensitization attenuated the enhanced locomotor activity following repeated cocaine injections. Together, these results suggest that NR2-containing NMDA receptors play an important role in the machinery that triggers synaptic and behavioral adaptations to drugs of abuse such as cocaine.
Collapse
|
22
|
Schumann J, Yaka R. Prolonged withdrawal from repeated noncontingent cocaine exposure increases NMDA receptor expression and ERK activity in the nucleus accumbens. J Neurosci 2009; 29:6955-63. [PMID: 19474322 PMCID: PMC6665581 DOI: 10.1523/jneurosci.1329-09.2009] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 11/21/2022] Open
Abstract
Cocaine-induced changes in glutamatergic synaptic transmission in the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play a key role in cocaine behavioral effects. Activation of ionotropic glutamate receptor NMDA receptor (NMDAR) in the VTA is critical for the development of cocaine psychomotor sensitization. However, the role of NMDAR in the NAc, a brain area critical for the expression of cocaine psychomotor sensitization, remains to be explored. Here, we show that repeated noncontingent cocaine injections increased NAc NMDAR subunits, NR1, NR2A, and NR2B 21 d, but not 1 d, after withdrawal from cocaine. These changes were associated with an increase in the GluR1 subunit of the AMPA receptor. We also found a time-dependent increase in extracellular signal-regulated kinase (ERK) activity which correlated with the increased expression of NMDAR subunits. Furthermore, the increase in GluR1 and ERK activity was blocked after inhibition of NR2B-containing NMDAR during the development of cocaine psychomotor sensitization or when the MEK (mitogen-activated protein/ERK kinase) inhibitor was microinjected into the NAc 21 d after withdrawal from cocaine. Together, these results suggest that the development of cocaine psychomotor sensitization triggers a delayed increase in the expression of NMDAR subunits in the NAc, which in turn enhances the activity of ERK. Enhanced ERK activity drives the increased expression of the GluR1 subunits, which increases the excitability of NAc neurons after prolonged withdrawal from cocaine and results in enduring expression of psychomotor sensitization.
Collapse
Affiliation(s)
- Johanna Schumann
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Rami Yaka
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|