1
|
Ruschig M, Nerlich J, Becker M, Meier D, Polten S, Cervantes-Luevano K, Kuhn P, Licea-Navarro AF, Hallermann S, Dübel S, Schubert M, Brown J, Hust M. Human antibodies neutralizing the alpha-latrotoxin of the European black widow. Front Immunol 2024; 15:1407398. [PMID: 38933276 PMCID: PMC11199383 DOI: 10.3389/fimmu.2024.1407398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 06/28/2024] Open
Abstract
Poisoning by widow-spider (genus Latrodectus) bites occurs worldwide. The illness, termed latrodectism, can cause severe and persistent pain and can lead to muscle rigidity, respiratory complications, and cardiac problems. It is a global health challenge especially in developing countries. Equine serum-derived polyclonal anti-sera are commercially available as a medication for patients with latrodectism, but the use of sera imposes potential inherent risks related to its animal origin. The treatment may cause allergic reactions in humans (serum sickness), including anaphylactic shock. Furthermore, equine-derived antivenom is observed to have batch-to-batch variability and poor specificity, as it is always an undefined mix of antibodies. Because latrodectism can be extremely painful but is rarely fatal, the use of antivenom is controversial and only a small fraction of patients is treated. In this work, recombinant human antibodies were selected against alpha-latrotoxin of the European black widow (Latrodectus tredecimguttatus) by phage display from a naïve antibody gene library. Alpha-Latrotoxin (α-LTX) binding scFv were recloned and produced as fully human IgG. A novel alamarBlue assay for venom neutralization was developed and used to select neutralizing IgGs. The human antibodies showed in vitro neutralization efficacy both as single antibodies and antibody combinations. This was also confirmed by electrophysiological measurements of neuronal activity in cell culture. The best neutralizing antibodies showed nanomolar affinities. Antibody MRU44-4-A1 showed outstanding neutralization efficacy and affinity to L. tredecimguttatus α-LTX. Interestingly, only two of the neutralizing antibodies showed cross-neutralization of the venom of the Southern black widow (Latrodectus mactans). This was unexpected, because in the current literature the alpha-latrotoxins are described as highly conserved. The here-engineered antibodies are candidates for future development as potential therapeutics and diagnostic tools, as they for the first time would provide unlimited supply of a chemically completely defined drug of constant quality and efficacy, which is also made without the use of animals.
Collapse
Affiliation(s)
- Maximilian Ruschig
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jana Nerlich
- Faculty of Medicine, Carl-Ludwig-Institute of Physiology, Leipzig University, Leipzig, Germany
| | - Marlies Becker
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Doris Meier
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Polten
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karla Cervantes-Luevano
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | | | - Alexei Fedorovish Licea-Navarro
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Stefan Hallermann
- Faculty of Medicine, Carl-Ludwig-Institute of Physiology, Leipzig University, Leipzig, Germany
| | - Stefan Dübel
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Schubert
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jeffrey Brown
- PETA Science Consortium International e.V., Stuttgart, Germany
| | - Michael Hust
- Departments of Biotechnology and Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Kramer S, Kotapati C, Cao Y, Fry BG, Palpant NJ, King GF, Cardoso FC. High-content fluorescence bioassay investigates pore formation, ion channel modulation and cell membrane lysis induced by venoms. Toxicon X 2024; 21:100184. [PMID: 38389571 PMCID: PMC10882159 DOI: 10.1016/j.toxcx.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Venoms comprise highly sophisticated bioactive molecules modulating ion channels, receptors, coagulation factors, and the cellular membranes. This array of targets and bioactivities requires advanced high-content bioassays to facilitate the development of novel envenomation treatments and biotechnological and pharmacological agents. In response to the existing gap in venom research, we developed a cutting-edge fluorescence-based high-throughput and high-content cellular assay. This assay enables the simultaneous identification of prevalent cellular activities induced by venoms such as membrane lysis, pore formation, and ion channel modulation. By integrating intracellular calcium with extracellular nucleic acid measurements, we have successfully distinguished these venom mechanisms within a single cellular assay. Our high-content bioassay was applied across three cell types exposed to venom components representing lytic, ion pore-forming or ion channel modulator toxins. Beyond unveiling distinct profiles for these action mechanisms, we found that the pore-forming latrotoxin α-Lt1a prefers human neuroblastoma to kidney cells and cardiomyocytes, while the lytic bee peptide melittin is not selective. Furthermore, evaluation of snake venoms showed that Elapid species induced rapid membrane lysis, while Viper species showed variable to no activity on neuroblastoma cells. These findings underscore the ability of our high-content bioassay to discriminate between clades and interspecific traits, aligning with clinical observations at venom level, beyond discriminating among ion pore-forming, membrane lysis and ion channel modulation. We hope our research will expedite the comprehension of venom biology and the diversity of toxins that elicit cytotoxic, cardiotoxic and neurotoxic effects, and assist in identifying venom components that hold the potential to benefit humankind.
Collapse
Affiliation(s)
- Simon Kramer
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Charan Kotapati
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Bryan G Fry
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia, 4072
| |
Collapse
|
3
|
Torres SL, Landeros A, Penhallegon EJ, Salazar K, Porter LM. Expression of Brown and Southern Black Widow Spider (Araneae: Theridiidae) Latrotoxins Is Tissue- and Life Stage-Specific for α-Latroinsectotoxins and δ-Latroinsectotoxins and Is Ubiquitous for α-Latrotoxins. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:184-191. [PMID: 34632517 DOI: 10.1093/jme/tjab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Widow spiders are widely known for their potent venom toxins that make them among the few spiders of medical concern. The latrotoxins are the most well-studied widow toxins and include both the vertebrate-specific latrotoxins and the insect-specific latroinsectotoxins (LITs). Previous studies have shown that toxins are not limited to expression in the venom glands of adult spiders; however, gaps exist in latrotoxin screening across all life stages for brown widows, Latrodectus geometricus and southern black widows, Latrodectus mactans. In this study, we screened male and female venom gland, cephalothorax, and abdomen tissues, spiderling cephalothorax and abdomen tissues, and eggs of both L. geometricus and L. mactans, for the presence of three latrotoxins: α-latrotoxin (α-LTX), and α- and δ-latroinsectotoxins (α/δ-LITs). Widows were locally collected. Extracted RNA was used to prepare cDNA that was analyzed by PCR for the presence or absence of latrotoxin expression. Results show that expression profiles between the two species are very similar but not identical. Expression of α-LTX was found in all life stages in all tissues examined for both species. For both species, no LIT expression was detected in eggs and variable patterns of α-LIT expression were detected in spiderlings and adults. Notably, δ-LIT could only be detected in females for both species. Our results show that latrotoxin expression profiles differ within and between widow species. Data on their expression distribution provide further insight into the specific latrotoxins that contribute to toxicity profiles for each life stage in each species and their specific role in widow biology.
Collapse
Affiliation(s)
- Sebastian L Torres
- Department of Biology, Stephen F. Austin State University, SFA Station, Nacogdoches, TX, USA
| | - Abraham Landeros
- Department of Biology, Stephen F. Austin State University, SFA Station, Nacogdoches, TX, USA
| | - Eleanor J Penhallegon
- Department of Biology, Stephen F. Austin State University, SFA Station, Nacogdoches, TX, USA
| | - Kaleth Salazar
- Department of Biology, Stephen F. Austin State University, SFA Station, Nacogdoches, TX, USA
| | - Lindsay M Porter
- Department of Biology, Stephen F. Austin State University, SFA Station, Nacogdoches, TX, USA
| |
Collapse
|
4
|
Chen M, Blum D, Engelhard L, Raunser S, Wagner R, Gatsogiannis C. Molecular architecture of black widow spider neurotoxins. Nat Commun 2021; 12:6956. [PMID: 34845192 PMCID: PMC8630228 DOI: 10.1038/s41467-021-26562-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Latrotoxins (LaTXs) are presynaptic pore-forming neurotoxins found in the venom of Latrodectus spiders. The venom contains a toxic cocktail of seven LaTXs, with one of them targeting vertebrates (α-latrotoxin (α-LTX)), five specialized on insects (α, β, γ, δ, ε- latroinsectotoxins (LITs), and one on crustaceans (α-latrocrustatoxin (α-LCT)). LaTXs bind to specific receptors on the surface of neuronal cells, inducing the release of neurotransmitters either by directly stimulating exocytosis or by forming Ca2+-conductive tetrameric pores in the membrane. Despite extensive studies in the past decades, a high-resolution structure of a LaTX is not yet available and the precise mechanism of LaTX action remains unclear. Here, we report cryoEM structures of the α-LCT monomer and the δ-LIT dimer. The structures reveal that LaTXs are organized in four domains. A C-terminal domain of ankyrin-like repeats shields a central membrane insertion domain of six parallel α-helices. Both domains are flexibly linked via an N-terminal α-helical domain and a small β-sheet domain. A comparison between the structures suggests that oligomerization involves major conformational changes in LaTXs with longer C-terminal domains. Based on our data we propose a cyclic mechanism of oligomerization, taking place prior membrane insertion. Both recombinant α-LCT and δ-LIT form channels in artificial membrane bilayers, that are stabilized by Ca2+ ions and allow calcium flux at negative membrane potentials. Our comparative analysis between α-LCT and δ-LIT provides first crucial insights towards understanding the molecular mechanism of the LaTX family. The venom of Latrodectus spiders contains seven Latrotoxins (LaTXs), among them α-latrocrustatoxin (LCT) and δ- latroinsectotoxins δ-LIT. LaTXs bind to specific receptors on the surface of neuronal cells and target the molecular exocytosis machinery. Here, the authors present the cryo-EM structure of the α-LCT monomer and the δ-LIT dimer, which reveal that LaTXs are organized in four domains and they discuss the potential oligomerisation mechanism that takes place before LaTXs membrane insertion. Both recombinant α-LCT and δ-LIT form channels in artificial membrane bilayers, that are stabilized by Ca2+ ions.
Collapse
Affiliation(s)
- Minghao Chen
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, 48149, Münster, Germany.,Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Daniel Blum
- MOLIFE Research Center, Jacobs University Bremen, 28759, Bremen, Germany
| | - Lena Engelhard
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Richard Wagner
- MOLIFE Research Center, Jacobs University Bremen, 28759, Bremen, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, 48149, Münster, Germany. .,Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany.
| |
Collapse
|
5
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
6
|
Rahman MA, Manser C, Benlaouer O, Suckling J, Blackburn JK, Silva JP, Ushkaryov YA. C-terminal phosphorylation of latrophilin-1/ADGRL1 affects the interaction between its fragments. Ann N Y Acad Sci 2019; 1456:122-143. [PMID: 31553068 DOI: 10.1111/nyas.14242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/22/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Latrophilin-1 is an adhesion G protein-coupled receptor that mediates the effect of α-latrotoxin, causing massive release of neurotransmitters from nerve terminals and endocrine cells. Autoproteolysis cleaves latrophilin-1 into two parts: the extracellular N-terminal fragment (NTF) and the heptahelical C-terminal fragment (CTF). NTF and CTF can exist as independent proteins in the plasma membrane, but α-latrotoxin binding to NTF induces their association and G protein-mediated signaling. We demonstrate here that CTF in synapses is phosphorylated on multiple sites. Phosphorylated CTF has a high affinity for NTF and copurifies with it on affinity columns and sucrose density gradients. Dephosphorylated CTF has a lower affinity for NTF and can behave as a separate protein. α-Latrotoxin (and possibly other ligands of latrophilin-1) binds both to the NTF-CTF complex and receptor-like protein tyrosine phosphatase σ, bringing them together. This leads to CTF dephosphorylation and facilitates CTF release from the complex. We propose that ligand-dependent phosphorylation-dephosphorylation of latrophilin-1 could affect the interaction between its fragments and functions as a G protein-coupled receptor.
Collapse
Affiliation(s)
- M Atiqur Rahman
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Catherine Manser
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ouafa Benlaouer
- School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Jason Suckling
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - John-Paul Silva
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yuri A Ushkaryov
- Department of Life Sciences, Imperial College London, London, United Kingdom
- School of Pharmacy, University of Kent, Chatham, United Kingdom
| |
Collapse
|
7
|
Haney RA, Matte T, Forsyth FS, Garb JE. Alternative Transcription at Venom Genes and Its Role as a Complementary Mechanism for the Generation of Venom Complexity in the Common House Spider. Front Ecol Evol 2019; 7. [PMID: 31431897 PMCID: PMC6700725 DOI: 10.3389/fevo.2019.00085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The complex composition of venom, a proteinaceous secretion used by
diverse animal groups for predation or defense, is typically viewed as being
driven by gene duplication in conjunction with positive selection, leading to
large families of diversified toxins with selective venom gland expression. Yet,
the production of alternative transcripts at venom genes is often overlooked as
another potentially important process that could contribute proteins to venom,
and requires comprehensive datasets integrating genome and transcriptome
sequences together with proteomic characterization of venom to be fully
documented. In the common house spider, Parasteatoda
tepidariorum, we used RNA sequencing of four tissue types in
conjunction with the sequenced genome to provide a comprehensive transcriptome
annotation. We also used mass spectrometry to identify a minimum of 99 distinct
proteins in P tepidariorum venom, including at least 33
latrotoxins, pore-forming neurotoxins shared with the confamilial black widow.
We found that venom proteins are much more likely to come from multiple
transcript genes, whose transcripts produced distinct protein sequences. The
presence of multiple distinct proteins in venom from transcripts at individual
genes was confirmed for eight loci by mass spectrometry, and is possible at 21
others. Alternative transcripts from the same gene, whether encoding or not
encoding a protein found in venom, showed a range of expression patterns, but
were not necessarily restricted to the venom gland. However, approximately half
of venom protein encoding transcripts were found among the 1,318 transcripts
with strongly venom gland biased expression. Our findings revealed an important
role for alternative transcription in generating venom protein complexity and
expanded the traditional model of venom evolution.
Collapse
Affiliation(s)
- Robert A Haney
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Taylor Matte
- Center for Regenerative Medicine, Boston University, Medical, Boston, MA, United States
| | - FitzAnthony S Forsyth
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
8
|
Ushkaryov YA, Lelianova V, Vysokov NV. Catching Latrophilin With Lasso: A Universal Mechanism for Axonal Attraction and Synapse Formation. Front Neurosci 2019; 13:257. [PMID: 30967757 PMCID: PMC6438917 DOI: 10.3389/fnins.2019.00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/05/2019] [Indexed: 11/24/2022] Open
Abstract
Latrophilin-1 (LPHN1) was isolated as the main high-affinity receptor for α-latrotoxin from black widow spider venom, a powerful presynaptic secretagogue. As an adhesion G-protein-coupled receptor, LPHN1 is cleaved into two fragments, which can behave independently on the cell surface, but re-associate upon binding the toxin. This triggers intracellular signaling that involves the Gαq/phospholipase C/inositol 1,4,5-trisphosphate cascade and an increase in cytosolic Ca2+, leading to vesicular exocytosis. Using affinity chromatography on LPHN1, we isolated its endogenous ligand, teneurin-2/Lasso. Both LPHN1 and Ten2/Lasso are expressed early in development and are enriched in neurons. LPHN1 primarily resides in axons, growth cones and presynaptic terminals, while Lasso largely localizes on dendrites. LPHN1 and Ten2/Lasso form a trans-synaptic receptor pair that has both structural and signaling functions. However, Lasso is proteolytically cleaved at multiple sites and its extracellular domain is partially released into the intercellular space, especially during neuronal development, suggesting that soluble Lasso has additional functions. We discovered that the soluble fragment of Lasso can diffuse away and bind to LPHN1 on axonal growth cones, triggering its redistribution on the cell surface and intracellular signaling which leads to local exocytosis. This causes axons to turn in the direction of spatio-temporal Lasso gradients, while LPHN1 knockout blocks this effect. These results suggest that the LPHN1-Ten2/Lasso pair can participate in long- and short-distance axonal guidance and synapse formation.
Collapse
Affiliation(s)
- Yuri A Ushkaryov
- Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Vera Lelianova
- Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | | |
Collapse
|
9
|
Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. Pharmacol Ther 2019; 193:135-155. [DOI: 10.1016/j.pharmthera.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Vezain M, Lecuyer M, Rubio M, Dupé V, Ratié L, David V, Pasquier L, Odent S, Coutant S, Tournier I, Trestard L, Adle-Biassette H, Vivien D, Frébourg T, Gonzalez BJ, Laquerrière A, Saugier-Veber P. A de novo variant in ADGRL2 suggests a novel mechanism underlying the previously undescribed association of extreme microcephaly with severely reduced sulcation and rhombencephalosynapsis. Acta Neuropathol Commun 2018; 6:109. [PMID: 30340542 PMCID: PMC6195752 DOI: 10.1186/s40478-018-0610-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/13/2022] Open
Abstract
Extreme microcephaly and rhombencephalosynapsis represent unusual pathological conditions, each of which occurs in isolation or in association with various other cerebral and or extracerebral anomalies. Unlike microcephaly for which several disease-causing genes have been identified with different modes of inheritance, the molecular bases of rhombencephalosynapsis remain unknown and rhombencephalosynapsis presents mainly as a sporadic condition consistent with de novo dominant variations. We report for the first time the association of extreme microcephaly with almost no sulcation and rhombencephalosynapsis in a fœtus for which comparative patient-parent exome sequencing strategy revealed a heterozygous de novo missense variant in the ADGRL2 gene. ADGRL2 encodes latrophilin 2, an adhesion G-protein-coupled receptor whose exogenous ligand is α-latrotoxin. Adgrl2 immunohistochemistry and in situ hybridization revealed expression in the telencephalon, mesencephalon and rhombencephalon of mouse and chicken embryos. In human brain embryos and fœtuses, Adgrl2 immunoreactivity was observed in the hemispheric and cerebellar germinal zones, the cortical plate, basal ganglia, pons and cerebellar cortex. Microfluorimetry experiments evaluating intracellular calcium release in response to α-latrotoxin binding showed significantly reduced cytosolic calcium release in the fœtus amniocytes vs amniocytes from age-matched control fœtuses and in HeLa cells transfected with mutant ADGRL2 cDNA vs wild-type construct. Embryonic lethality was also observed in constitutive Adgrl2−/− mice. In Adgrl2+/− mice, MRI studies revealed microcephaly and vermis hypoplasia. Cell adhesion and wound healing assays demonstrated that the variation increased cell adhesion properties and reduced cell motility. Furthermore, HeLa cells overexpressing mutant ADGRL2 displayed a highly developed cytoplasmic F-actin network related to cytoskeletal dynamic modulation. ADGRL2 is the first gene identified as being responsible for extreme microcephaly with rhombencephalosynapsis. Increased cell adhesion, reduced cell motility and cytoskeletal dynamic alterations induced by the variant therefore represent a new mechanism responsible for microcephaly.
Collapse
|
11
|
Vysokov NV, Silva JP, Lelianova VG, Ho C, Djamgoz MB, Tonevitsky AG, Ushkaryov YA. The Mechanism of Regulated Release of Lasso/Teneurin-2. Front Mol Neurosci 2016; 9:59. [PMID: 27499734 PMCID: PMC4956664 DOI: 10.3389/fnmol.2016.00059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/08/2016] [Indexed: 01/25/2023] Open
Abstract
Teneurins are large cell-surface receptors involved in axon guidance. Teneurin-2 (also known as latrophilin-1-associated synaptic surface organizer (Lasso)) interacts across the synaptic cleft with presynaptic latrophilin-1, an adhesion G-protein-coupled receptor that participates in regulating neurotransmitter release. Lasso-latrophilin-1 interaction mediates synapse formation and calcium signaling, highlighting the important role of this trans-synaptic receptor pair. However, Lasso is thought to be proteolytically cleaved within its ectodomain and released into the medium, making it unclear whether it acts as a proper cell-surface receptor or a soluble protein. We demonstrate here that during its intracellular processing Lasso is constitutively cleaved at a furin site within its ectodomain. The cleaved fragment, which encompasses almost the entire ectodomain of Lasso, is potentially soluble; however, it remains anchored on the cell surface via its non-covalent interaction with the transmembrane fragment of Lasso. Lasso is also constitutively cleaved within the intracellular domain (ICD). Finally, Lasso can be further proteolytically cleaved within the transmembrane domain. The third cleavage is regulated and releases the entire ectodomain of Lasso into the medium. The released ectodomain of Lasso retains its functional properties and binds latrophilin-1 expressed on other cells; this binding stimulates intracellular Ca2+ signaling in the target cells. Thus, Lasso not only serves as a bona fide cell-surface receptor, but also as a partially released target-derived signaling factor.
Collapse
Affiliation(s)
- Nickolai V Vysokov
- School of Pharmacy, University of KentChatham, UK; Division of Cell and Molecular Biology, Imperial College LondonLondon, UK
| | - John-Paul Silva
- Division of Cell and Molecular Biology, Imperial College London London, UK
| | - Vera G Lelianova
- School of Pharmacy, University of KentChatham, UK; Division of Cell and Molecular Biology, Imperial College LondonLondon, UK
| | - Claudia Ho
- Division of Cell and Molecular Biology, Imperial College London London, UK
| | - Mustafa B Djamgoz
- Division of Cell and Molecular Biology, Imperial College London London, UK
| | - Alexander G Tonevitsky
- Department of Translational Oncology, P.A. Hertzen Moscow Oncology Research Institute, National Center of Medical Radiological Research Moscow, Russia
| | - Yuri A Ushkaryov
- School of Pharmacy, University of KentChatham, UK; Division of Cell and Molecular Biology, Imperial College LondonLondon, UK
| |
Collapse
|
12
|
Yan S, Wang X. Recent Advances in Research on Widow Spider Venoms and Toxins. Toxins (Basel) 2015; 7:5055-67. [PMID: 26633495 PMCID: PMC4690112 DOI: 10.3390/toxins7124862] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/02/2015] [Accepted: 11/16/2015] [Indexed: 01/29/2023] Open
Abstract
Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species.
Collapse
Affiliation(s)
- Shuai Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
13
|
Morton A, Marland JRK, Cousin MA. Synaptic vesicle exocytosis and increased cytosolic calcium are both necessary but not sufficient for activity-dependent bulk endocytosis. J Neurochem 2015; 134:405-15. [PMID: 25913068 PMCID: PMC4950031 DOI: 10.1111/jnc.13132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 01/22/2023]
Abstract
Activity‐dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. By definition this mode is triggered by neuronal activity; however, key questions regarding its mechanism of activation remain unaddressed. To determine the basic requirements for ADBE triggering in central nerve terminals, we decoupled SV fusion events from activity‐dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. ADBE was monitored both optically and morphologically by observing uptake of the fluid phase markers tetramethylrhodamine‐dextran and horse radish peroxidase respectively. Ablation of SV fusion with tetanus toxin resulted in the arrest of ADBE, but had no effect on other calcium‐dependent events such as activity‐dependent dynamin I dephosphorylation, indicating that SV exocytosis is necessary for triggering. Furthermore, the calcium chelator EGTA abolished ADBE while leaving SV exocytosis intact, demonstrating that ADBE is triggered by intracellular free calcium increases outside the active zone. Activity‐dependent dynamin I dephosphorylation was also arrested in EGTA‐treated neurons, consistent with its proposed role in triggering ADBE. Thus, SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient individually to trigger ADBE.![]() Activity‐dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. To determine the minimal requirements for ADBE triggering, we decoupled SV fusion events from activity‐dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. We found that SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient to trigger ADBE.
Collapse
Affiliation(s)
- Andrew Morton
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland
| | - Jamie R K Marland
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland
| | - Michael A Cousin
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland
| |
Collapse
|
14
|
Igarashi M. Proteomic identification of the molecular basis of mammalian CNS growth cones. Neurosci Res 2014; 88:1-15. [PMID: 25066522 DOI: 10.1016/j.neures.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/02/2014] [Indexed: 11/28/2022]
Abstract
The growth cone, which is a unique structure with high motility that forms at the tips of extending axons and dendrites, is crucial to neuronal network formation. Axonal growth of the mammalian CNS is most likely achieved by the complicated coordination of cytoskeletal rearrangement and vesicular trafficking via many proteins. Before recent advances, no methods to identify numerous proteins existed; however, proteomics revolutionarily resolved such problems. In this review, I summarize the profiles of the mammalian growth cone proteins revealed by proteomics as the molecular basis of the growth cone functions, with molecular mapping. These results should be used as a basis for understanding the mechanisms of the complex mammalian CNS developmental process.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Trans-disciplinary Program, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|
15
|
Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genomics 2014; 15:366. [PMID: 24916504 PMCID: PMC4058007 DOI: 10.1186/1471-2164-15-366] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/08/2014] [Indexed: 12/22/2022] Open
Abstract
Background Animal venoms attract enormous interest given their potential for pharmacological discovery and understanding the evolution of natural chemistries. Next-generation transcriptomics and proteomics provide unparalleled, but underexploited, capabilities for venom characterization. We combined multi-tissue RNA-Seq with mass spectrometry and bioinformatic analyses to determine venom gland specific transcripts and venom proteins from the Western black widow spider (Latrodectus hesperus) and investigated their evolution. Results We estimated expression of 97,217 L. hesperus transcripts in venom glands relative to silk and cephalothorax tissues. We identified 695 venom gland specific transcripts (VSTs), many of which BLAST and GO term analyses indicate may function as toxins or their delivery agents. ~38% of VSTs had BLAST hits, including latrotoxins, inhibitor cystine knot toxins, CRISPs, hyaluronidases, chitinase, and proteases, and 59% of VSTs had predicted protein domains. Latrotoxins are venom toxins that cause massive neurotransmitter release from vertebrate or invertebrate neurons. We discovered ≥ 20 divergent latrotoxin paralogs expressed in L. hesperus venom glands, significantly increasing this biomedically important family. Mass spectrometry of L. hesperus venom identified 49 proteins from VSTs, 24 of which BLAST to toxins. Phylogenetic analyses showed venom gland specific gene family expansions and shifts in tissue expression. Conclusions Quantitative expression analyses comparing multiple tissues are necessary to identify venom gland specific transcripts. We present a black widow venom specific exome that uncovers a trove of diverse toxins and associated proteins, suggesting a dynamic evolutionary history. This justifies a reevaluation of the functional activities of black widow venom in light of its emerging complexity. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-366) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA.
| |
Collapse
|
16
|
Zhou Y, Zhao M, Fields GB, Wu CF, Branton WD. δ/ω-Plectoxin-Pt1a: an excitatory spider toxin with actions on both Ca(2+) and Na(+) channels. PLoS One 2013; 8:e64324. [PMID: 23691198 PMCID: PMC3653879 DOI: 10.1371/journal.pone.0064324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/13/2013] [Indexed: 11/22/2022] Open
Abstract
The venom of spider Plectreurys tristis contains a variety of peptide toxins that selectively target neuronal ion channels. O-palmitoylation of a threonine or serine residue, along with a characteristic and highly constrained disulfide bond structure, are hallmarks of a family of toxins found in this venom. Here, we report the isolation and characterization of a new toxin, δ/ω-plectoxin-Pt1a, from this spider venom. It is a 40 amino acid peptide containing an O-palmitoylated Ser-39. Analysis of δ/ω-plectoxin-Pt1a cDNA reveals a small precursor containing a secretion signal sequence, a 14 amino acid N-terminal propeptide, and a C-terminal amidation signal. The biological activity of δ/ω-plectoxin-Pt1a is also unique. It preferentially blocks a subset of Ca2+ channels that is apparently not required for neurotransmitter release; decreases threshold for Na+ channel activation; and slows Na+ channel inactivation. As δ/ω-plectoxin-Pt1a enhances synaptic transmission by prolonging presynaptic release of neurotransmitter, its effects on Na+ and Ca2+ channels may act synergistically to sustain the terminal excitability.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail: (YZ); (WDB)
| | - Mingli Zhao
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Gregg B. Fields
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, Florida, United States of America
| | - Chun-Fang Wu
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - W. Dale Branton
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail: (YZ); (WDB)
| |
Collapse
|
17
|
Song I, Volynski K, Brenner T, Ushkaryov Y, Walker M, Semyanov A. Different transporter systems regulate extracellular GABA from vesicular and non-vesicular sources. Front Cell Neurosci 2013; 7:23. [PMID: 23494150 PMCID: PMC3595500 DOI: 10.3389/fncel.2013.00023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/25/2013] [Indexed: 11/25/2022] Open
Abstract
Tonic GABA type A (GABAA) conductance is a key factor regulating neuronal excitability and computation in neuronal networks. The magnitude of the tonic GABAA conductance depends on the concentration of ambient GABA originating from vesicular and non-vesicular sources and is tightly regulated by GABA uptake. Here we show that the transport system regulating ambient GABA responsible for tonic GABAA conductances in hippocampal CA1 interneurons depends on its source. In mice, GABA from vesicular sources is regulated by mouse GABA transporter 1 (mGAT1), while that from non-vesicular sources by mouse GABA transporters 3/4 (mGAT3/4). This finding suggests that the two transporter systems do not just provide backup for each other, but regulate distinct signaling pathways. This allows individual tuning of the two signaling systems and indicates that drugs designed to act at specific transporters will have distinct therapeutic actions.
Collapse
Affiliation(s)
- Inseon Song
- RIKEN Brain Science Institute Wako-shi, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Banks RW, Cahusac PMB, Graca A, Kain N, Shenton F, Singh P, Njå A, Simon A, Watson S, Slater CR, Bewick GS. Glutamatergic modulation of synaptic-like vesicle recycling in mechanosensory lanceolate nerve terminals of mammalian hair follicles. J Physiol 2013; 591:2523-40. [PMID: 23440964 PMCID: PMC3678041 DOI: 10.1113/jphysiol.2012.243659] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Our aim in the present study was to determine whether a glutamatergic modulatory system involving synaptic-like vesicles (SLVs) is present in the lanceolate ending of the mouse and rat hair follicle and, if so, to assess its similarity to that of the rat muscle spindle annulospiral ending we have described previously. Both types of endings are formed by the peripheral sensory terminals of primary mechanosensory dorsal root ganglion cells, so the presence of such a system in the lanceolate ending would provide support for our hypothesis that it is a general property of fundamental importance to the regulation of the responsiveness of the broad class of primary mechanosensory endings. We show not only that an SLV-based system is present in lanceolate endings, but also that there are clear parallels between its operation in the two types of mechanosensory endings. In particular, we demonstrate that, as in the muscle spindle: (i) FM1-43 labels the sensory terminals of the lanceolate ending, rather than the closely associated accessory (glial) cells; (ii) the dye enters and leaves the terminals primarily by SLV recycling; (iii) the dye does not block the electrical response to mechanical stimulation, in contrast to its effect on the hair cell and dorsal root ganglion cells in culture; (iv) SLV recycling is Ca2+ sensitive; and (v) the sensory terminals are enriched in glutamate. Thus, in the lanceolate sensory ending SLV recycling is itself regulated, at least in part, by glutamate acting through a phospholipase D-coupled metabotropic glutamate receptor.
Collapse
Affiliation(s)
- Robert W Banks
- University of Aberdeen, School of Medical Sciences, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hubbard KS, Gut IM, Lyman ME, Tuznik KM, Mesngon MT, McNutt PM. High yield derivation of enriched glutamatergic neurons from suspension-cultured mouse ESCs for neurotoxicology research. BMC Neurosci 2012; 13:127. [PMID: 23095170 PMCID: PMC3573964 DOI: 10.1186/1471-2202-13-127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 10/10/2012] [Indexed: 12/23/2022] Open
Abstract
Background Recently, there has been a strong emphasis on identifying an in vitro model for neurotoxicity research that combines the biological relevance of primary neurons with the scalability, reproducibility and genetic tractability of continuous cell lines. Derived neurons should be homotypic, exhibit neuron-specific gene expression and morphology, form functioning synapses and consistently respond to neurotoxins in a fashion indistinguishable from primary neurons. However, efficient methods to produce neuronal populations that are suitable alternatives to primary neurons have not been available. Methods With the objective of developing a more facile, robust and efficient method to generate enriched glutamatergic neuronal cultures, we evaluated the neurogenic capacity of three mouse embryonic stem cell (ESC) lines (R1, C57BL/6 and D3) adapted to feeder-independent suspension culture. Neurogenesis and neuronal maturation were characterized as a function of time in culture using immunological, genomic, morphological and functional metrics. The functional responses of ESNs to neurotropic toxins with distinctly different targets and mechanisms of toxicity, such as glutamate, α-latrotoxin (LTX), and botulinum neurotoxin (BoNT), were also evaluated. Results Suspension-adapted ESCs expressed markers of pluripotency through at least 30 passages, and differentiation produced 97×106 neural progenitor cells (NPCs) per 10-cm dish. Greater than 99% of embryonic stem cell-derived neurons (ESNs) expressed neuron-specific markers by 96 h after plating and rapidly developed complex axodendritic arbors and appropriate compartmentalization of neurotypic proteins. Expression profiling demonstrated the presence of transcripts necessary for neuronal function and confirmed that ESN populations were predominantly glutamatergic. Furthermore, ESNs were functionally receptive to all toxins with sensitivities and responses consistent with primary neurons. Conclusions These findings demonstrate a cost-effective, scalable and flexible method to produce a highly enriched glutamatergic neuron population. The functional characterization of pathophysiological responses to neurotropic toxins and the compatibility with multi-well plating formats were used to demonstrate the suitability of ESNs as a discovery platform for molecular mechanisms of action, moderate-throughput analytical approaches and diagnostic screening. Furthermore, for the first time we demonstrate a cell-based model that is sensitive to all seven BoNT serotypes with EC50 values comparable to those reported in primary neuron populations. These data providing compelling evidence that ESNs offer a neuromimetic platform suitable for the evaluation of molecular mechanisms of neurotoxicity.
Collapse
Affiliation(s)
- Kyle S Hubbard
- United States Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Labbe A, Liu A, Atherton J, Gizenko N, Fortier MÈ, Sengupta SM, Ridha J. Refining psychiatric phenotypes for response to treatment: contribution of LPHN3 in ADHD. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:776-85. [PMID: 22851411 DOI: 10.1002/ajmg.b.32083] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/05/2012] [Indexed: 11/10/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a heterogeneous disorder characterized by inappropriate levels of attention, hyperactivity, and impulsivity. Although a strong genetic component to the disorder has been established, the molecular genetic underpinnings of this disorder remain elusive. Recently, several studies have reported an association between polymorphisms within the latrophilin 3 gene (LPHN3) and ADHD. Interestingly, the same single-nucleotide polymorphism conferring susceptibility to ADHD has also been found to predict efficacy of stimulant medication in children. The main objectives of the current article are: (i) To tackle the phenotype heterogeneity issue in ADHD by defining an objective and quantitative measure of response to treatment in a sample of ADHD children based on a hand held automatic device (Actiwatch) and (ii) to use this measure to reproduce for the first time the association between LPHN3 variants and response to methylphenidate (MPH) using a double-blind, placebo-controlled crossover experimental design. The results of our study confirm the hypothesis that LPHN3 is associated with response to MPH in ADHD children. Although this will require further validation, our work suggests that the use of an objective measure of response to treatment, such as the change in the child's motor activity measured by Actiwatch, has the potential to uncover genetic association signals that in some conditions might not be obtained using more subjective measures, such as the clinical consensus rating, for example.
Collapse
Affiliation(s)
- Aurelie Labbe
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
21
|
King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:475-96. [PMID: 23020618 DOI: 10.1146/annurev-ento-120811-153650] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Spider venoms are an incredibly rich source of disulfide-rich insecticidal peptides that have been tuned over millions of years to target a wide range of receptors and ion channels in the insect nervous system. These peptides can act individually, or as part of larger toxin cabals, to rapidly immobilize envenomated prey owing to their debilitating effects on nervous system function. Most of these peptides contain a unique arrangement of disulfide bonds that provides them with extreme resistance to proteases. As a result, these peptides are highly stable in the insect gut and hemolymph and many of them are orally active. Thus, spider-venom peptides can be used as stand-alone bioinsecticides, or transgenes encoding these peptides can be used to engineer insect-resistant crops or enhanced entomopathogens. We critically review the potential of spider-venom peptides to control insect pests and highlight their advantages and disadvantages compared with conventional chemical insecticides.
Collapse
Affiliation(s)
- Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | | |
Collapse
|
22
|
Choudhry Z, Sengupta SM, Grizenko N, Fortier ME, Thakur GA, Bellingham J, Joober R. LPHN3 and attention-deficit/hyperactivity disorder: interaction with maternal stress during pregnancy. J Child Psychol Psychiatry 2012; 53:892-902. [PMID: 22486528 DOI: 10.1111/j.1469-7610.2012.02551.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous behavioral disorder, complex both in etiology and clinical expression. Both genetic and environmental factors have been implicated, and it has been suggested that gene-environment interactions may play a pivotal role in the disorder. Recently, a significant association was reported between ADHD and LPHN3 (which codes for latrophilin 3), and replicated in independent samples. METHODS We have examined the association between tag single nucleotide polymorphisms (SNPs) in LPHN3 within the region previously implicated in ADHD. Family based association tests (FBAT) were conducted (n = 380 families) with the categorical diagnosis of ADHD, behavioral and cognitive phenotypes related to ADHD, and response to treatment (given a fixed dose of methylphenidate, 0.5 mg/day). Stratified FBAT analyses, based on maternal smoking and stress during pregnancy, was conducted. RESULTS Whereas limited association was observed in the total sample, highly significant interaction between four LPHN3 tag SNPs (rs6551665, rs1947274, rs6858066, rs2345039) and maternal stress during pregnancy was noted. Analysis conducted in the sub-group of mothers exposed to minimal stress during pregnancy showed significant associations with ADHD, behavioral and cognitive dimensions related to ADHD, as well as treatment response. Although extensive association was observed with the candidate SNPs, the findings are partially inconsistent with previously published results with the opposite alleles over-transmitted in these studies. CONCLUSIONS These results provide evidence for the interaction between a genetic and environmental factor independently shown to be associated with ADHD. If confirmed in independent large studies, they may present a step forward in unraveling the complex etiology of ADHD.
Collapse
Affiliation(s)
- Zia Choudhry
- Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Näreoja K, Näsman J. Selective targeting of G-protein-coupled receptor subtypes with venom peptides. Acta Physiol (Oxf) 2012; 204:186-201. [PMID: 21481193 DOI: 10.1111/j.1748-1716.2011.02305.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The G-protein-coupled receptor (GPCR) family is one of the largest gene superfamilies with approx. 370 members responding to endogenous ligands in humans and a roughly equal amount of receptors sensitive to external stimuli from the surrounding. A number of receptors from this superfamily are well recognized targets for medical treatment of various disease conditions, whereas for many others the potential medical benefit of interference is still obscure. A general problem associated with GPCR research and therapeutics is the insufficient specificity of available ligands to differentiate between closely homologous receptor subtypes. In this context, venom peptides could make a significant contribution to the development of more specific drugs. Venoms from certain animals specialized in biochemical hunting contain a mixture of molecules that are directed towards a variety of membrane proteins. Peptide toxins isolated from these mixtures usually exhibit high specificity for their targets. Muscarinic toxins found from mamba snakes attracted much attention during the 1990s. These are 65-66 amino acid long peptides with a structural three-finger folding similar to the α-neurotoxins and they target the muscarinic acetylcholine receptors in a subtype-selective manner. Recently, several members of the three-finger toxins from mamba snakes as well as conotoxins from marine cone snails have been shown to selectively interact with subtypes of adrenergic receptors. In this review, we will discuss the GPCR-directed peptide toxins found from different venoms and how some of these can be useful in exploring specific roles of receptor subtypes.
Collapse
Affiliation(s)
- K Näreoja
- Department of Biosciences, Biochemistry, Åbo Akademi University, Turku, Finland
| | | |
Collapse
|
24
|
Wolstenholme AJ. Ion channels and receptor as targets for the control of parasitic nematodes. Int J Parasitol Drugs Drug Resist 2011; 1:2-13. [PMID: 24533259 PMCID: PMC3898135 DOI: 10.1016/j.ijpddr.2011.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/14/2011] [Accepted: 09/21/2011] [Indexed: 01/19/2023]
Abstract
Many of the anthelmintic drugs in use today act on the nematode nervous system. Ion channel targets have some obvious advantages. They tend to act quickly, which means that they will clear many infections rapidly. They produce very obvious effects on the worms, typically paralyzing them, and these effects are suitable for use in rapid and high-throughput assays. Many of the ion channels and enzymes targeted can also be incorporated into such assays. The macrocyclic lactones bind to an allosteric site on glutamate-gated chloride channels, either directly activating the channel or enhancing the effect of the normal agonist, glutamate. Many old and new anthelmintics, including tribendimidine and the amino-acetonitrile derivatives, act as agonists at nicotinic acetylcholine receptors; derquantel is an antagonist at these receptors. Nematodes express many different types of nicotinic receptor and this diversity means that they are likely to remain important targets for the foreseeable future. Emodepside may have multiple effects, affecting both a potassium channel and a pre-synaptic G protein-coupled receptor; although few other current drugs act at such targets, this example indicates that they may be more important in the future. The nematode nervous system contains many other ion channels and receptors that have not so far been exploited in worm control but which should be explored in the development of effective new compounds.
Collapse
Affiliation(s)
- Adrian J. Wolstenholme
- Dept. of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
25
|
Mesngon M, McNutt P. Alpha-latrotoxin rescues SNAP-25 from BoNT/A-mediated proteolysis in embryonic stem cell-derived neurons. Toxins (Basel) 2011; 3:489-503. [PMID: 22069721 PMCID: PMC3202834 DOI: 10.3390/toxins3050489] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 11/17/2022] Open
Abstract
The botulinum neurotoxins (BoNTs) exhibit zinc-dependent proteolytic activity against members of the core synaptic membrane fusion complex, preventing neurotransmitter release and resulting in neuromuscular paralysis. No pharmacologic therapies have been identified that clinically relieve botulinum poisoning. The black widow spider venom α-latrotoxin (LTX) has the potential to attenuate the severity or duration of BoNT-induced paralysis in neurons via the induction of synaptic degeneration and remodeling. The potential for LTX to antagonize botulinum poisoning was evaluated in embryonic stem cell-derived neurons (ESNs), using a novel screening assay designed around the kinetics of BoNT/A activation. Exposure of ESNs to 400 pM LTX for 6.5 or 13 min resulted in the nearly complete restoration of uncleaved SNAP-25 within 48 h, whereas treatment with 60 mM K+ had no effect. Time-lapse imaging demonstrated that LTX treatment caused a profound increase in Ca2+ influx and evidence of excitotoxicity, though ESNs remained viable 48 h after LTX treatment. This is the first instance of a cell-based treatment that has shown the ability to eliminate BoNT activity. These data suggest that LTX treatment may provide the basis for a new class of therapeutic approach to BoNT intoxication and may contribute to an improved understanding of long-term mechanisms of BoNT intoxication and recovery. They further demonstrate that ESNs are a novel, responsive and biologically relevant model for LTX research and BoNT therapeutic drug discovery.
Collapse
Affiliation(s)
- Mariano Mesngon
- United States Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Gunpowder, MD 21010, USA.
| | | |
Collapse
|
26
|
Martinez AF, Muenke M, Arcos-Burgos M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:1-10. [PMID: 21184579 PMCID: PMC4101183 DOI: 10.1002/ajmg.b.31137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/28/2010] [Indexed: 12/24/2022]
Abstract
The findings of a recent study associate LPHN3, a member of the latrophilin family, with an increased risk of developing attention deficit/hyperactivity disorder (ADHD), the most common psychiatric disorder in childhood and adolescence. Latrophilins comprise a new family of G protein-coupled receptors of unknown native physiological function that mediate the neurotoxic effects of α-latrotoxin, a potent toxin found in black widow spider venom. This receptor-toxin interaction has helped to elucidate the mechanistic aspects of neurotransmitter and hormone release in vertebrates. Such unprecedented discovery points to a new direction in the assessment of ADHD and suggest that further study of this receptor family may provide novel insights into the etiology and treatment of ADHD and other related psychiatric conditions.
Collapse
Affiliation(s)
| | | | - Mauricio Arcos-Burgos
- Correspondence to: Dr. Mauricio Arcos-Burgos, M.D., Ph.D., National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, MSC 3717, Building 35, Room 1B209, Bethesda, MD 20892.
| |
Collapse
|
27
|
Silva JP, Ushkaryov YA. The latrophilins, "split-personality" receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 706:59-75. [PMID: 21618826 DOI: 10.1007/978-1-4419-7913-1_5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Latrophilin, a neuronal "adhesion-G protein-coupled receptor", is the major brain receptor for alpha-latrotoxin, a black widow spidertoxin which stimulates strong neuronal exocytosis in vertebrates. Latrophilin has an unusual structure consisting of two fragments that are produced by the proteolytic cleavage of the parental molecule and that behave independently in the plasma membrane. On binding an agonist, the fragments reassociate and send an intracellular signal. This signal, transduced by a heterotrimeric G protein, causes release of calcium from intracellular stores and massive release of neurotransmitters. Latrophilin represents a phylogenetically conserved family of receptors, with orthologues found in all animals and up to three homologues present in most chordate species. From mammalian homologues, latrophilins 1 and 3 are expressed in neurons, while latrophilin 2 is ubiquitous. Latrophilin 1 may control synapse maturation and exocytosis, whereas latrophilin 2 may be involved in breast cancer. Latrophilins may play different roles during development and in adult animals: thus, LAT-1 determines cell fate in early embryogenesis in Caenorhabditis elegans and controls neurotransmitter release in adult nematodes. This diversity suggests that the functions of latrophilins may be determined by their interactions with respective ligands. The finding of the ligand of latrophilin 1, the large postsynaptic protein lasso, is the first step in the quest for the physiological functions of latrophilins.
Collapse
|