1
|
Radulovic T, Rajaram E, Ebbers L, Pagella S, Winklhofer M, Kopp-Scheinpflug C, Nothwang HG, Milenkovic I, Hartmann AM. Serine 937 phosphorylation enhances KCC2 activity and strengthens synaptic inhibition. Sci Rep 2023; 13:21660. [PMID: 38066086 PMCID: PMC10709408 DOI: 10.1038/s41598-023-48884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The potassium chloride cotransporter KCC2 is crucial for Cl- extrusion from mature neurons and thus key to hyperpolarizing inhibition. Auditory brainstem circuits contain well-understood inhibitory projections and provide a potent model to study the regulation of synaptic inhibition. Two peculiarities of the auditory brainstem are (i) posttranslational activation of KCC2 during development and (ii) extremely negative reversal potentials in specific circuits. To investigate the role of the potent phospho-site serine 937 therein, we generated a KCC2 Thr934Ala/Ser937Asp double mutation, in which Ser937 is replaced by aspartate mimicking the phosphorylated state, and the neighbouring Thr934 arrested in the dephosphorylated state. This double mutant showed a twofold increased transport activity in HEK293 cells, raising the hypothesis that auditory brainstem neurons show lower [Cl-]i. and increased glycinergic inhibition. This was tested in a mouse model carrying the same KCC2 Thr934Ala/Ser937Asp mutation by the use of the CRISPR/Cas9 technology. Homozygous KCC2 Thr934Ala/Ser937Asp mice showed an earlier developmental onset of hyperpolarisation in the auditory brainstem. Mature neurons displayed stronger glycinergic inhibition due to hyperpolarized ECl-. These data demonstrate that phospho-regulation of KCC2 Ser937 is a potent way to interfere with the excitation-inhibition balance in neural circuits.
Collapse
Affiliation(s)
- Tamara Radulovic
- Division of Physiology School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Ezhilarasan Rajaram
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Lena Ebbers
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Sara Pagella
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Michael Winklhofer
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Institute for Biology and Environmental Sciences IBU, Carl Von Ossietzky University of Oldenburg, 26111, Oldenburg, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Ivan Milenkovic
- Division of Physiology School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
2
|
Neumann C, Rosenbæk LL, Flygaard RK, Habeck M, Karlsen JL, Wang Y, Lindorff‐Larsen K, Gad HH, Hartmann R, Lyons JA, Fenton RA, Nissen P. Cryo-EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity. EMBO J 2022; 41:e110169. [PMID: 36239040 PMCID: PMC9713717 DOI: 10.15252/embj.2021110169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
The sodium-potassium-chloride transporter NKCC1 of the SLC12 family performs Na+ -dependent Cl- - and K+ -ion uptake across plasma membranes. NKCC1 is important for regulating cell volume, hearing, blood pressure, and regulation of hyperpolarizing GABAergic and glycinergic signaling in the central nervous system. Here, we present a 2.6 Å resolution cryo-electron microscopy structure of human NKCC1 in the substrate-loaded (Na+ , K+ , and 2 Cl- ) and occluded, inward-facing state that has also been observed for the SLC6-type transporters MhsT and LeuT. Cl- binding at the Cl1 site together with the nearby K+ ion provides a crucial bridge between the LeuT-fold scaffold and bundle domains. Cl- -ion binding at the Cl2 site seems to undertake a structural role similar to conserved glutamate of SLC6 transporters and may allow for Cl- -sensitive regulation of transport. Supported by functional studies in mammalian cells and computational simulations, we describe a putative Na+ release pathway along transmembrane helix 5 coupled to the Cl2 site. The results provide insight into the structure-function relationship of NKCC1 with broader implications for other SLC12 family members.
Collapse
Affiliation(s)
- Caroline Neumann
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Rasmus Kock Flygaard
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Michael Habeck
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Yong Wang
- Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark,Shanghai Institute for Advanced Study, Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Kresten Lindorff‐Larsen
- Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Hans Henrik Gad
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Rune Hartmann
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Joseph Anthony Lyons
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark,Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
| | | | - Poul Nissen
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| |
Collapse
|
3
|
Smith TC, Vasilakos G, Shaffer SA, Puglise JM, Chou CH, Barton ER, Luna EJ. Novel γ-sarcoglycan interactors in murine muscle membranes. Skelet Muscle 2022; 12:2. [PMID: 35065666 PMCID: PMC8783446 DOI: 10.1186/s13395-021-00285-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sarcoglycan complex (SC) is part of a network that links the striated muscle cytoskeleton to the basal lamina across the sarcolemma. The SC coordinates changes in phosphorylation and Ca++-flux during mechanical deformation, and these processes are disrupted with loss-of-function mutations in gamma-sarcoglycan (Sgcg) that cause Limb girdle muscular dystrophy 2C/R5. METHODS To gain insight into how the SC mediates mechano-signaling in muscle, we utilized LC-MS/MS proteomics of SC-associated proteins in immunoprecipitates from enriched sarcolemmal fractions. Criteria for inclusion were co-immunoprecipitation with anti-Sgcg from C57BL/6 control muscle and under-representation in parallel experiments with Sgcg-null muscle and with non-specific IgG. Validation of interaction was performed in co-expression experiments in human RH30 rhabdomyosarcoma cells. RESULTS We identified 19 candidates as direct or indirect interactors for Sgcg, including the other 3 SC proteins. Novel potential interactors included protein-phosphatase-1-catalytic-subunit-beta (Ppp1cb, PP1b) and Na+-K+-Cl--co-transporter NKCC1 (SLC12A2). NKCC1 co-localized with Sgcg after co-expression in human RH30 rhabdomyosarcoma cells, and its cytosolic domains depleted Sgcg from cell lysates upon immunoprecipitation and co-localized with Sgcg after detergent permeabilization. NKCC1 localized in proximity to the dystrophin complex at costameres in vivo. Bumetanide inhibition of NKCC1 cotransporter activity in isolated muscles reduced SC-dependent, strain-induced increases in phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). In silico analysis suggests that candidate SC interactors may cross-talk with survival signaling pathways, including p53, estrogen receptor, and TRIM25. CONCLUSIONS Results support that NKCC1 is a new SC-associated signaling protein. Moreover, the identities of other candidate SC interactors suggest ways by which the SC and NKCC1, along with other Sgcg interactors such as the membrane-cytoskeleton linker archvillin, may regulate kinase- and Ca++-mediated survival signaling in skeletal muscle.
Collapse
Affiliation(s)
- Tara C Smith
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgios Vasilakos
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Scott A Shaffer
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Jason M Puglise
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Chih-Hsuan Chou
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Elisabeth R Barton
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA.
| | - Elizabeth J Luna
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Hamze M, Medina I, Delmotte Q, Porcher C. Contribution of Smoothened Receptor Signaling in GABAergic Neurotransmission and Chloride Homeostasis in the Developing Rodent Brain. Front Physiol 2021; 12:798066. [PMID: 34955901 PMCID: PMC8703190 DOI: 10.3389/fphys.2021.798066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
In the early stages of the central nervous system growth and development, γ-aminobutyric acid (GABA) plays an instructive trophic role for key events including neurogenesis, migration, synaptogenesis, and network formation. These actions are associated with increased concentration of chloride ions in immature neurons [(Cl−)i] that determines the depolarizing strength of ion currents mediated by GABAA receptors, a ligand-gated Cl− permeable ion channel. During neuron maturation the (Cl−)i progressively decreases leading to weakening of GABA induced depolarization and enforcing GABA function as principal inhibitory neurotransmitter. A neuron restricted potassium-chloride co-transporter KCC2 is a key molecule governing Cl− extrusion and determining the resting level of (Cl−)i in developing and mature mammalian neurons. Among factors controlling the functioning of KCC2 and the maturation of inhibitory circuits, is Smoothened (Smo), the transducer in the receptor complex of the developmental protein Sonic Hedgehog (Shh). Too much or too little Shh-Smo action will have mirror effects on KCC2 stability at the neuron membrane, the GABA inhibitory strength, and ultimately on the newborn susceptibility to neurodevelopmental disorders. Both canonical and non-canonical Shh-Smo signal transduction pathways contribute to the regulation of KCC2 and GABAergic synaptic activity. In this review, we discuss the recent findings of the action of Shh-Smo signaling pathways on chloride ions homeostasis through the control of KCC2 membrane trafficking, and consequently on inhibitory neurotransmission and network activity during postnatal development.
Collapse
Affiliation(s)
- Mira Hamze
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Igor Medina
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Quentin Delmotte
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Christophe Porcher
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
5
|
Virtanen MA, Uvarov P, Mavrovic M, Poncer JC, Kaila K. The Multifaceted Roles of KCC2 in Cortical Development. Trends Neurosci 2021; 44:378-392. [PMID: 33640193 DOI: 10.1016/j.tins.2021.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
KCC2, best known as the neuron-specific chloride-extruder that sets the strength and polarity of GABAergic currents during neuronal maturation, is a multifunctional molecule that can regulate cytoskeletal dynamics via its C-terminal domain (CTD). We describe the molecular and cellular mechanisms involved in the multiple functions of KCC2 and its splice variants, ranging from developmental apoptosis and the control of early network events to the formation and plasticity of cortical dendritic spines. The versatility of KCC2 actions at the cellular and subcellular levels is also evident in mature neurons during plasticity, disease, and aging. Thus, KCC2 has emerged as one of the most important molecules that shape the overall neuronal phenotype.
Collapse
Affiliation(s)
- Mari A Virtanen
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Martina Mavrovic
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland; Department of Molecular Medicine, University of Oslo, 0372 Oslo, Norway
| | - Jean Christophe Poncer
- INSERM, UMRS 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
6
|
Zhang J, Cordshagen A, Medina I, Nothwang HG, Wisniewski JR, Winklhofer M, Hartmann AM. Staurosporine and NEM mainly impair WNK-SPAK/OSR1 mediated phosphorylation of KCC2 and NKCC1. PLoS One 2020; 15:e0232967. [PMID: 32413057 PMCID: PMC7228128 DOI: 10.1371/journal.pone.0232967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
The pivotal role of KCC2 and NKCC1 in development and maintenance of fast inhibitory neurotransmission and their implication in severe human diseases arouse interest in posttranscriptional regulatory mechanisms such as (de)phosphorylation. Staurosporine (broad kinase inhibitor) and N-ethylmalemide (NEM) that modulate kinase and phosphatase activities enhance KCC2 and decrease NKCC1 activity. Here, we investigated the regulatory mechanism for this reciprocal regulation by mass spectrometry and immunoblot analyses using phospho-specific antibodies. Our analyses revealed that application of staurosporine or NEM dephosphorylates Thr1007 of KCC2, and Thr203, Thr207 and Thr212 of NKCC1. Dephosphorylation of Thr1007 of KCC2, and Thr207 and Thr212 of NKCC1 were previously demonstrated to activate KCC2 and to inactivate NKCC1. In addition, application of the two agents resulted in dephosphorylation of the T-loop and S-loop phosphorylation sites Thr233 and Ser373 of SPAK, a critical kinase in the WNK-SPAK/OSR1 signaling module mediating phosphorylation of KCC2 and NKCC1. Taken together, these results suggest that reciprocal regulation of KCC2 and NKCC1 via staurosporine and NEM is based on WNK-SPAK/OSR1 signaling. The key regulatory phospho-site Ser940 of KCC2 is not critically involved in the enhanced activation of KCC2 upon staurosporine and NEM treatment, as both agents have opposite effects on its phosphorylation status. Finally, NEM acts in a tissue-specific manner on Ser940, as shown by comparative analysis in HEK293 cells and immature cultured hippocampal neurons. In summary, our analyses identified phospho-sites that are responsive to staurosporine or NEM application. This provides important information towards a better understanding of the cooperative interactions of different phospho-sites.
Collapse
Affiliation(s)
- Jinwei Zhang
- Hatherly Laboratories, Medical School, College of Medicine and Health, Institute of Biomedical and Clinical Sciences, University of Exeter, Exeter, United Kingdom
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Antje Cordshagen
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Igor Medina
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Aix-Marseille University UMR 1249, Marseille, France
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jacek R. Wisniewski
- Department of Proteomics and Signal Transduction, Biochemical Proteomics Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Michael Winklhofer
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Institute for Biology and Environmental Sciences IBU, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
7
|
Koumangoye R, Omer S, Delpire E. A dileucine motif in the COOH-terminal domain of NKCC1 targets the cotransporter to the plasma membrane. Am J Physiol Cell Physiol 2019; 316:C545-C558. [PMID: 30865516 DOI: 10.1152/ajpcell.00023.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Na+-K+-2Cl- cotransporter-1 (NKCC1) mediates the electroneutral transport of Na+, K+, and Cl- and is normally localized to the basolateral membrane of polarized epithelial cells. We recently reported the first known solute carrier family 12 member 2 ( SLC12A2) mutation (we call NKCC1-DFX) that causes epithelial dysfunction in an undiagnosed disease program case. The heterozygous mutation leads to truncation of the COOH-terminal tail of the cotransporter, resulting in both mutant and wild-type cotransporters being mistrafficked to the apical membrane of polarized epithelial cells. Here we demonstrate by using consecutive truncations and site-directed mutagenesis of the COOH-terminal domain of NKCC1 that truncation of NKCC1 COOH domain uncouples the cotransporter from the lateral membrane. We identify a dileucine motif that, when mutated, leads to cotransporter accumulation in the cytoplasm and mistrafficking to the apical/subapical region of epithelial cells, thereby recapitulating the phenotype observed with the patient mutation. We show that truncation deletion and LL substitution mutants are trafficked out of the endoplasmic reticulum and trans-Golgi network but accumulate in early and late endosomes where they are degraded.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Salma Omer
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| |
Collapse
|
8
|
Côme E, Marques X, Poncer JC, Lévi S. KCC2 membrane diffusion tunes neuronal chloride homeostasis. Neuropharmacology 2019; 169:107571. [PMID: 30871970 DOI: 10.1016/j.neuropharm.2019.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 02/05/2023]
Abstract
Neuronal Cl- homeostasis is regulated by the activity of two cation chloride co-transporters (CCCs), the K+-Cl- cotransporter KCC2 and the Na+-K+-Cl- cotransporter NKCC1, which are primarily extruding and importing chloride in neurons, respectively. Several neurological and psychiatric disorders including epilepsy, neuropathic pain, schizophrenia and autism are associated with altered neuronal chloride (Cl-) homeostasis. A current view is that the accumulation of intracellular Cl- in neurons as a result of KCC2 down-regulation and/or NKCC1 up-regulation may weaken inhibitory GABA signaling and thereby promote the development of pathological activities. CCC activity is determined mainly by their level of expression in the plasma membrane. Furthermore, CCCs undergo "diffusion-trapping" in the membrane, a mechanism that is rapidly adjusted by activity-dependent post-translational modifications i.e. phosphorylation/dephosphorylation of key serine and threonine residues. This represents probably the most rapid cellular mechanism for adapting CCC function to changes in neuronal activity. Therefore, interfering with these mechanisms may help restoring Cl- homeostasis and inhibition under pathological conditions. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Etienne Côme
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Xavier Marques
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
9
|
Côme E, Heubl M, Schwartz EJ, Poncer JC, Lévi S. Reciprocal Regulation of KCC2 Trafficking and Synaptic Activity. Front Cell Neurosci 2019; 13:48. [PMID: 30842727 PMCID: PMC6391895 DOI: 10.3389/fncel.2019.00048] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter receptors in the adult central nervous system (CNS) are type A γ-aminobutyric acid receptors (GABAARs) and glycine receptors (GlyRs). Synaptic responses mediated by GlyR and GABAAR display a hyperpolarizing shift during development. This shift relies mainly on the developmental up-regulation of the K+-Cl- co-transporter KCC2 responsible for the extrusion of Cl-. In mature neurons, altered KCC2 function-mainly through increased endocytosis-leads to the re-emergence of depolarizing GABAergic and glycinergic signaling, which promotes hyperexcitability and pathological activities. Identifying signaling pathways and molecular partners that control KCC2 surface stability thus represents a key step in the development of novel therapeutic strategies. Here, we present our current knowledge on the cellular and molecular mechanisms governing the plasma membrane turnover rate of the transporter under resting conditions and in response to synaptic activity. We also discuss the notion that KCC2 lateral diffusion is one of the first parameters modulating the transporter membrane stability, allowing for rapid adaptation of Cl- transport to changes in neuronal activity.
Collapse
Affiliation(s)
- Etienne Côme
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Martin Heubl
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Eric J Schwartz
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
10
|
Koumangoye R, Omer S, Delpire E. Mistargeting of a truncated Na-K-2Cl cotransporter in epithelial cells. Am J Physiol Cell Physiol 2018; 315:C258-C276. [PMID: 29719172 DOI: 10.1152/ajpcell.00130.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We recently reported the case of a young patient with multisystem failure carrying a de novo mutation in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1 (NKCC1). Heterologous expression studies in nonepithelial cells failed to demonstrate dominant-negative effects. In this study, we examined expression of the mutant cotransporter in epithelial cells. Using Madin-Darby canine kidney (MDCK) cells grown on glass coverslips, permeabilized support, and Matrigel, we show that the fluorescently tagged mutant cotransporter is expressed in cytoplasm and at the apical membrane and affects epithelium integrity. Expression of the mutant transporter at the apical membrane also results in the mislocalization of some of the wild-type transporter to the apical membrane. This mistargeting is specific to NKCC1 as the Na+-K+-ATPase remains localized on the basolateral membrane. To assess transporter localization in vivo, we created a mouse model using CRISPR/cas9 that reproduces the 11 bp deletion in exon 22 of Slc12a2. Although the mice do not display an overt phenotype, we show that the colon and salivary gland expresses wild-type NKCC1 abundantly at the apical pole, confirming the data obtained in cultured epithelial cells. Enough cotransporter must remain, however, on the basolateral membrane to participate in saliva secretion, as no significant decrease in saliva production was observed in the mutant mice.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Salma Omer
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| |
Collapse
|
11
|
Agez M, Schultz P, Medina I, Baker DJ, Burnham MP, Cardarelli RA, Conway LC, Garnier K, Geschwindner S, Gunnarsson A, McCall EJ, Frechard A, Audebert S, Deeb TZ, Moss SJ, Brandon NJ, Wang Q, Dekker N, Jawhari A. Molecular architecture of potassium chloride co-transporter KCC2. Sci Rep 2017; 7:16452. [PMID: 29184062 PMCID: PMC5705597 DOI: 10.1038/s41598-017-15739-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/27/2017] [Indexed: 01/15/2023] Open
Abstract
KCC2 is a neuron specific K+-Cl− co-transporter that controls neuronal chloride homeostasis, and is critically involved in many neurological diseases including brain trauma, epilepsies, autism and schizophrenia. Despite significant accumulating data on the biology and electrophysiological properties of KCC2, structure-function relationships remain poorly understood. Here we used calixarene detergent to solubilize and purify wild-type non-aggregated and homogenous KCC2. Specific binding of inhibitor compound VU0463271 was demonstrated using surface plasmon resonance (SPR). Mass spectrometry revealed glycosylations and phosphorylations as expected from functional KCC2. We show by electron microscopy (EM) that KCC2 exists as monomers and dimers in solution. Monomers are organized into “head” and “core” domains connected by a flexible “linker”. Dimers are asymmetrical and display a bent “S-shape” architecture made of four distinct domains and a flexible dimerization interface. Chemical crosslinking in reducing conditions shows that disulfide bridges are involved in KCC2 dimerization. Moreover, we show that adding a tag to the C-terminus is detrimental to KCC2 function. We postulate that the conserved KCC2 C-ter may be at the interface of dimerization. Taken together, our findings highlight the flexible multi-domain structure of KCC2 with variable anchoring points at the dimerization interface and an important C-ter extremity providing the first in-depth functional architecture of KCC2.
Collapse
Affiliation(s)
- Morgane Agez
- CALIXAR, 60 avenue Rockefeller, 69008, Lyon, France
| | - Patrick Schultz
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404, Illkirch, France
| | | | - David J Baker
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Matthew P Burnham
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park, UK
| | - Ross A Cardarelli
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts, 02111, USA
| | - Leslie C Conway
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts, 02111, USA
| | | | | | - Anders Gunnarsson
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Eileen J McCall
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Alexandre Frechard
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404, Illkirch, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Tarek Z Deeb
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts, 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.,Department of Neuroscience, Physiology and Pharmacology, University College, London, WC1E, 6BT, UK
| | - Nicholas J Brandon
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts, 02111, USA.,Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Qi Wang
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts, 02111, USA.,Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Niek Dekker
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| | - Anass Jawhari
- CALIXAR, 60 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
12
|
Abstract
K+-Cl- co-transporter 2 (KCC2/SLC12A5) is a neuronal specific cation chloride co-transporter which is active under isotonic conditions, and thus a key regulator of intracellular Cl- levels. It also has an ion transporter-independent structural role in modulating the maturation and regulation of excitatory glutamatergic synapses. KCC2 levels are developmentally regulated, and a postnatal upregulation of KCC2 generates a low intracellular chloride concentration that allows the neurotransmitters γ-aminobutyric acid (GABA) and glycine to exert inhibitory neurotransmission through its Cl- permeating channel. Functional expression of KCC2 at the neuronal cell surface is necessary for its activity, and impairment in KCC2 cell surface transport and/or internalization may underlie a range of neuropathological conditions. Although recent advances have shed light on a range of cellular mechanisms regulating KCC2 activity, little is known about its membrane trafficking itinerary and regulatory proteins. In this review, known membrane trafficking signals, pathways and mechanisms pertaining to KCC2's functional surface expression are discussed.
Collapse
Affiliation(s)
- Bor Luen Tang
- a Department of Biochemistry, Yong Loo Lin School of Medicine , National University Health System , Singapore.,b NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore
| |
Collapse
|
13
|
Markkanen M, Ludwig A, Khirug S, Pryazhnikov E, Soni S, Khiroug L, Delpire E, Rivera C, Airaksinen MS, Uvarov P. Implications of the N-terminal heterogeneity for the neuronal K-Cl cotransporter KCC2 function. Brain Res 2017; 1675:87-101. [PMID: 28888841 DOI: 10.1016/j.brainres.2017.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022]
Abstract
The neuron-specific K-Cl cotransporter KCC2 maintains the low intracellular chloride concentration required for the fast hyperpolarizing responses of the inhibitory neurotransmitters γ-aminobutyric acid (GABA) and glycine. The two KCC2 isoforms, KCC2a and KCC2b differ by their N-termini as a result of alternative promoter usage. Whereas the role of KCC2b in mediating the chloride transport is unequivocal, the physiological role of KCC2a in neurons has remained obscure. We show that KCC2a isoform can decrease the intracellular chloride concentration in cultured neurons and attenuate calcium responses evoked by application of the GABAA receptor agonist muscimol. While the biotinylation assay detected both KCC2 isoforms at the cell surface of cultured neurons, KCC2a was not detected at the plasma membrane in immunostainings, suggesting that the N-terminal KCC2a epitope is masked. Confirming this hypothesis, KCC2a surface expression was detected by the C-terminal KCC2 pan antibody but not by the N-terminal KCC2a antibody in KCC2b-deficient neurons. One possible cause for the epitope masking is the binding site of Ste20-related proline-alanine-rich kinase (SPAK) in the KCC2a N-terminus. SPAK, a known regulator of K-Cl cotransporters, was co-immunoprecipitated in a complex with KCC2a but not KCC2b isoform. Moreover, SPAK overexpression decreased the transport activity of KCC2a but not that of KCC2b, as revealed by rubidium flux assay in HEK293 cells. Thus, our data indicate that both KCC2 isoforms perform as chloride cotransporters in neuronal cells, while their N-terminal heterogeneity could play an important role in fine-tuning of the K-Cl transport activity.
Collapse
Affiliation(s)
- Marika Markkanen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Shetal Soni
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Leonard Khiroug
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, Helsinki, Finland; INSERM, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France; Aix-Marseille Université, UMR901 Marseille, France
| | - Matti S Airaksinen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Pavel Uvarov
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Hartmann AM, Pisella LI, Medina I, Nothwang HG. Molecular cloning and biochemical characterization of two cation chloride cotransporter subfamily members of Hydra vulgaris. PLoS One 2017; 12:e0179968. [PMID: 28662098 PMCID: PMC5491111 DOI: 10.1371/journal.pone.0179968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/07/2017] [Indexed: 01/21/2023] Open
Abstract
Cation Chloride Cotransporters (CCCs) comprise secondary active membrane proteins mainly mediating the symport of cations (Na+, K+) coupled with chloride (Cl−). They are divided into K+-Cl− outward transporters (KCCs), the Na+-K+-Cl− (NKCCs) and Na+-Cl− (NCCs) inward transporters, the cation chloride cotransporter interacting protein CIP1, and the polyamine transporter CCC9. KCCs and N(K)CCs are established in the genome since eukaryotes and metazoans, respectively. Most of the physiological and functional data were obtained from vertebrate species. To get insights into the basal functional properties of KCCs and N(K)CCs in the metazoan lineage, we cloned and characterized KCC and N(K)CC from the cnidarian Hydra vulgaris. HvKCC is composed of 1,032 amino-acid residues. Functional analyses revealed that hvKCC mediates a Na+-independent, Cl− and K+ (Tl+)-dependent cotransport. The classification of hvKCC as a functional K-Cl cotransporter is furthermore supported by phylogenetic analyses and a similar structural organization. Interestingly, recently obtained physiological analyses indicate a role of cnidarian KCCs in hyposmotic volume regulation of nematocytes. HvN(K)CC is composed of 965 amino-acid residues. Phylogenetic analyses and structural organization suggest that hvN(K)CC is a member of the N(K)CC subfamily. However, no inorganic ion cotransport function could be detected using different buffer conditions. Thus, hvN(K)CC is a N(K)CC subfamily member without a detectable inorganic ion cotransporter function. Taken together, the data identify two non-bilaterian solute carrier 12 (SLC12) gene family members, thereby paving the way for a better understanding of the evolutionary paths of this important cotransporter family.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Neurogenetics Group, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center for Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- * E-mail:
| | | | | | - Hans Gerd Nothwang
- Neurogenetics Group, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center for Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4All, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
15
|
Wright R, Newey SE, Ilie A, Wefelmeyer W, Raimondo JV, Ginham R, Mcllhinney RAJ, Akerman CJ. Neuronal Chloride Regulation via KCC2 Is Modulated through a GABA B Receptor Protein Complex. J Neurosci 2017; 37:5447-5462. [PMID: 28450542 PMCID: PMC5452337 DOI: 10.1523/jneurosci.2164-16.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
GABAB receptors are G-protein-coupled receptors that mediate inhibitory synaptic actions through a series of downstream target proteins. It is increasingly appreciated that the GABAB receptor forms part of larger signaling complexes, which enable the receptor to mediate multiple different effects within neurons. Here we report that GABAB receptors can physically associate with the potassium-chloride cotransporter protein, KCC2, which sets the driving force for the chloride-permeable ionotropic GABAA receptor in mature neurons. Using biochemical, molecular, and functional studies in rodent hippocampus, we show that activation of GABAB receptors results in a decrease in KCC2 function, which is associated with a reduction in the protein at the cell surface. These findings reveal a novel "crosstalk" between the GABA receptor systems, which can be recruited under conditions of high GABA release and which could be important for the regulation of inhibitory synaptic transmission.SIGNIFICANCE STATEMENT Synaptic inhibition in the brain is mediated by ionotropic GABAA receptors (GABAARs) and metabotropic GABAB receptors (GABABRs). To fully appreciate the function and regulation of these neurotransmitter receptors, we must understand their interactions with other proteins. We describe a novel association between the GABABR and the potassium-chloride cotransporter protein, KCC2. This association is significant because KCC2 sets the intracellular chloride concentration found in mature neurons and thereby establishes the driving force for the chloride-permeable GABAAR. We demonstrate that GABABR activation can regulate KCC2 at the cell surface in a manner that alters intracellular chloride and the reversal potential for the GABAAR. Our data therefore support an additional mechanism by which GABABRs are able to modulate fast synaptic inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Rachel Ginham
- Medical Research Council Anatomical Neuropharmacology Unit, University of Oxford, Oxford, OX1 3QT, United Kingdom
| | - R A Jeffrey Mcllhinney
- Medical Research Council Anatomical Neuropharmacology Unit, University of Oxford, Oxford, OX1 3QT, United Kingdom
| | | |
Collapse
|
16
|
Li BO, Meng C, Zhang X, Cong D, Gao X, Gao W, Ju D, Hu S. Effect of photodynamic therapy combined with torasemide on the expression of matrix metalloproteinase 2 and sodium-potassium-chloride cotransporter 1 in rat peritumoral edema and glioma. Oncol Lett 2016; 11:2084-2090. [PMID: 26998126 PMCID: PMC4774439 DOI: 10.3892/ol.2016.4210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Peritumoral edema is a key stage in the infiltration and recurrence of glioma. Photodynamic therapy (PDT) increases the extent of peritumoral edema, which leads to a decrease in the effectiveness of PDT in treating glioma. The present study evaluated the effects of PDT combined with torasemide on the levels of matrix metalloproteinase (MMP) 2 and sodium-potassium-chloride cotransporter (NKCC) 1 in peritumoral edema regions of rat glioma. Adult male Wistar rats were inoculated with rat glioma C6 cells, and the presence of glioma was confirmed using magnetic resonance imaging 7 days subsequent to injection. The rats were randomly assigned to 4 groups (n=15): Control group, the rats received no treatment; PDT group, the rats received PDT at 80 J/cm2 for 10 min; torasemide group, the rats received 5 mg/kg torasemide intraperitoneally; and PDT + torasemide group, the rats received 5 mg/kg torasemide intraperitoneally for 3 days following PDT at 80 J/cm2 for 10 min. A total of 5 rats from each group were sacrificed 21 days following injection and the peritumoral edema tissues were harvested. MMP2 and NKCC1 expression levels were detected in the tissues using immunohistochemistry and western blot analysis. The mRNA expression levels of MMP2 and NKCC1 were observed using reverse transcription-quantitative polymerase chain reaction. Peritumoral edema was measured using a wet-to-dry weight (W/D) ratio, and survival times of the remaining 10 rats in each group were evaluated. Compared with the control group, tumor growth was significantly suppressed in the PDT group and the survival time was prolonged through a reduction in the expression of MMP2 (P<0.05), and an increased W/D ratio resulted in significantly increased expression of NKCC1 (P<0.05). Compared with the PDT group, the expression of NKCC1 and the W/D ratio in the PDT + torasemide group were significantly decreased (P<0.05), while no significant difference was observed in the expression levels of MMP2. In conclusion, PDT combined with torasemide prolonged the survival time of rats by inhibiting the growth of glioma through a reduction in the expression of MMP2, and by reducing peritumoral edema through a reduction in the expression levels of NKCC1.
Collapse
Affiliation(s)
- B O Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chao Meng
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xufeng Zhang
- Department of Internal Medicine-Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Damin Cong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xin Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wanlong Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Donghui Ju
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
17
|
Mahadevan V, Dargaei Z, Ivakine EA, Hartmann AM, Ng D, Chevrier J, Ormond J, Nothwang HG, McInnes RR, Woodin MA. Neto2-null mice have impaired GABAergic inhibition and are susceptible to seizures. Front Cell Neurosci 2015; 9:368. [PMID: 26441539 PMCID: PMC4585209 DOI: 10.3389/fncel.2015.00368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022] Open
Abstract
Neto2 is a transmembrane protein that interacts with the neuron-specific K+-Cl− cotransporter (KCC2) in the central nervous system (CNS). Efficient KCC2 transport is essential for setting the neuronal Cl− gradient, which is required for fast GABAergic inhibition. Neto2 is required to maintain the normal abundance of KCC2 in neurons, and increases KCC2 function by binding to the active oligomeric form of this cotransporter. In the present study, we characterized GABAergic inhibition and KCC2-mediated neuronal chloride homeostasis in pyramidal neurons from adult hippocampal slices. Using gramicidin perforated patch clamp recordings we found that the reversal potential for GABA (EGABA) was significantly depolarized. We also observed that surface levels of KCC2 and phosphorylation of KCC2 serine 940 (Ser940) were reduced in Neto2−/− neurons compared to wild-type controls. To examine GABAergic inhibition we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) and found that Neto2−/− neurons had significant reductions in both their amplitude and frequency. Based on the critical role of Neto2 in regulating GABAergic inhibition we rationalized that Neto2-null mice would be prone to seizure activity. We found that Neto2-null mice demonstrated a decrease in the latency to pentylenetetrazole (PTZ)-induced seizures and an increase in seizure severity.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Zahra Dargaei
- Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Evgueni A Ivakine
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute Toronto, ON, Canada
| | - Anna-Maria Hartmann
- Department of Systematic and Evolutionary Biology, Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg Oldenburg, Germany
| | - David Ng
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute Toronto, ON, Canada ; Departments of Neuroscience, Biochemistry and Molecular Biophysics, Columbia University New York City, NY, USA
| | - Jonah Chevrier
- Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Jake Ormond
- Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada ; RIKEN Brain Sciences Institute Tokyo, Japan
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg Oldenburg, Germany
| | - Roderick R McInnes
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute Toronto, ON, Canada ; Departments of Human Genetics and Biochemistry, McGill University and Lady Davis Institute, Jewish General Hospital Montreal, QC, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| |
Collapse
|
18
|
Hartmann AM, Nothwang HG. Molecular and evolutionary insights into the structural organization of cation chloride cotransporters. Front Cell Neurosci 2015; 8:470. [PMID: 25653592 PMCID: PMC4301019 DOI: 10.3389/fncel.2014.00470] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/30/2014] [Indexed: 01/26/2023] Open
Abstract
Cation chloride cotransporters (CCC) play an essential role for neuronal chloride homeostasis. K(+)-Cl(-) cotransporter (KCC2), is the principal Cl(-)-extruder, whereas Na(+)-K(+)-Cl(-) cotransporter (NKCC1), is the major Cl(-)-uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of CCC. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids (aa). A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Systematics and Evolutionary Biology Group, Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg Oldenburg, Germany ; Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg Oldenburg, Germany
| |
Collapse
|
19
|
Weber M, Hartmann AM, Beyer T, Ripperger A, Nothwang HG. A novel regulatory locus of phosphorylation in the C terminus of the potassium chloride cotransporter KCC2 that interferes with N-ethylmaleimide or staurosporine-mediated activation. J Biol Chem 2014; 289:18668-79. [PMID: 24849604 PMCID: PMC4081912 DOI: 10.1074/jbc.m114.567834] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/15/2014] [Indexed: 11/06/2022] Open
Abstract
The neuron-specific cation chloride cotransporter KCC2 plays a crucial role in hyperpolarizing synaptic inhibition. Transporter dysfunction is associated with various neurological disorders, raising interest in regulatory mechanisms. Phosphorylation has been identified as a key regulatory process. Here, we retrieved experimentally observed phosphorylation sites of KCC2 from public databases and report on the systematic analysis of six phosphorylated serines, Ser(25), Ser(26), Ser(937), Ser(1022), Ser(1025), and Ser(1026). Alanine or aspartate substitutions of these residues were analyzed in HEK-293 cells. All mutants were expressed in a pattern similar to wild-type KCC2 (KCC2(WT)). Tl(+) flux measurements demonstrated unchanged transport activity for Ser(25), Ser(26), Ser(1022), Ser(1025), and Ser(1026) mutants. In contrast, KCC2(S937D), mimicking phosphorylation, resulted in a significant up-regulation of transport activity. Aspartate substitution of Thr(934), a neighboring putative phosphorylation site, resulted in a comparable increase in KCC2 transport activity. Both KCC2(T934D) and KCC2(S937D) mutants were inhibited by the kinase inhibitor staurosporine and by N-ethylmaleimide, whereas KCC2(WT), KCC2(T934A), and KCC2(S937A) were activated. The inverse staurosporine effect on aspartate versus alanine substitutions reveals a cross-talk between different phosphorylation sites of KCC2. Immunoblot and cell surface labeling experiments detected no alterations in total abundance or surface expression of KCC2(T934D) and KCC2(S937D) compared with KCC2(WT). These data reveal kinetic regulation of transport activity by these residues. In summary, our data identify a novel key regulatory phosphorylation site of KCC2 and a functional interaction between different conformation-changing post-translational modifications. The action of pharmacological agents aimed to modulate KCC2 activity for therapeutic benefit might therefore be highly context-specific.
Collapse
Affiliation(s)
- Maren Weber
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences
| | - Anna-Maria Hartmann
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Systematics and Evolutionary Biology Group, Institute for Biology and Environmental Sciences, and
| | - Timo Beyer
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences
| | - Anne Ripperger
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences
| | - Hans Gerd Nothwang
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, the Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
20
|
Medina I, Friedel P, Rivera C, Kahle KT, Kourdougli N, Uvarov P, Pellegrino C. Current view on the functional regulation of the neuronal K(+)-Cl(-) cotransporter KCC2. Front Cell Neurosci 2014; 8:27. [PMID: 24567703 PMCID: PMC3915100 DOI: 10.3389/fncel.2014.00027] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/18/2014] [Indexed: 12/22/2022] Open
Abstract
In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl(-))-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl(-) concentration ([Cl(-)]i). Lowering [Cl(-)]i enhances inhibition, whereas raising [Cl(-)]i facilitates neuronal activity. A neuron's basal level of [Cl(-)]i, as well as its Cl(-) extrusion capacity, is critically dependent on the activity of the electroneutral K(+)-Cl(-) cotransporter KCC2, a member of the SLC12 cation-Cl(-) cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl(-) extrusion capacity of KCC2 that result in increases of [Cl(-)]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl(-) homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Igor Medina
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Perrine Friedel
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Claudio Rivera
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Kristopher T. Kahle
- Department of Cardiology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's HospitalBoston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA, USA
| | - Nazim Kourdougli
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Pavel Uvarov
- Institute of Biomedicine, Anatomy, University of HelsinkiHelsinki, Finland
| | - Christophe Pellegrino
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| |
Collapse
|
21
|
Abstract
Urea and urea transporters (UT) are critical to the production of concentrated urine and hence in maintaining body fluid balance. The UT-A1 urea transporter is the major and most important UT isoform in the kidney. Native UT-A1, expressed in the terminal inner medullary collecting duct (IMCD) epithelial cells, is a glycosylated protein with two glycoforms of 117 and 97 kDa. Vasopressin is the major hormone in vivo that rapidly increases urea permeability in the IMCD through increases in phosphorylation and apical plasma-membrane accumulation of UT-A1. The cell signaling pathway for vasopressin-mediated UT-A1 phosphorylation and activity involves two cAMP-dependent signaling pathways: protein kinase A (PKA) and exchange protein activated by cAMP (Epac). In this chapter, we will discuss UT-A1 regulation by phosphorylation, ubiquitination, and glycosylation.
Collapse
Affiliation(s)
- Guangping Chen
- Department of Physiology, and Renal Division Department of Medicine, Emory University School of Medicine, Whitehead Research Building Room 605N, 615 Michael Street, Atlanta, GA, 30322, USA,
| |
Collapse
|
22
|
Klein AS, Tannert A, Schaefer M. Cholesterol sensitises the transient receptor potential channel TRPV3 to lower temperatures and activator concentrations. Cell Calcium 2013; 55:59-68. [PMID: 24406294 DOI: 10.1016/j.ceca.2013.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 11/16/2022]
Abstract
TRPV3, a thermosensitive cation channel, is predominantly expressed in keratinocytes. It contributes to physiological processes such as thermosensation, nociception, and skin development. TRPV3 is polymodally regulated by chemical agonists, innocuous heat, intracellular acidification or by membrane depolarization. By manipulating the content of plasma membrane cholesterol, a key modulator of the physicochemical properties of biological membranes, we here addressed the question, how the lipid environment influences TRPV3. Cholesterol supplementation robustly potentiated TRPV3 channel activity by sensitising it to lower concentrations of chemical activators. In addition, the thermal activation of TRPV3 is significantly shifted to lower temperatures in cholesterol-enriched cells. The sensitising effect of cholesterol was not caused by an increased plasma membrane targeting of the channel. In HaCaT keratinocytes, which natively express TRPV3, a cholesterol-mediated sensitisation of TRPV3-like responses was reproduced. The cholesterol-dependent modulation of TRPV3 activity may provide a molecular mechanism to interpret its involvement in keratinocyte differentiation.
Collapse
Affiliation(s)
- Anke S Klein
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Astrid Tannert
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
23
|
Kahle KT, Deeb TZ, Puskarjov M, Silayeva L, Liang B, Kaila K, Moss SJ. Modulation of neuronal activity by phosphorylation of the K-Cl cotransporter KCC2. Trends Neurosci 2013; 36:726-737. [PMID: 24139641 PMCID: PMC4381966 DOI: 10.1016/j.tins.2013.08.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022]
Abstract
The K-Cl cotransporter KCC2 establishes the low intraneuronal Cl- levels required for the hyperpolarizing inhibitory postsynaptic potentials mediated by ionotropic γ-aminobutyric acid receptors (GABAARs) and glycine receptors (GlyRs). Decreased KCC2-mediated Cl- extrusion and impaired hyperpolarizing GABAAR- and/or GlyR-mediated currents have been implicated in epilepsy, neuropathic pain, and spasticity. Recent evidence suggests that the intrinsic ion transport rate, cell surface stability, and plasmalemmal trafficking of KCC2 are rapidly and reversibly modulated by the (de)phosphorylation of critical serine, threonine, and tyrosine residues in the C terminus of this protein. Alterations in KCC2 phosphorylation have been associated with impaired KCC2 function in several neurological diseases. Targeting KCC2 phosphorylation directly or indirectly via upstream regulatory kinases might be a novel strategy to modulate GABA- and/or glycinergic signaling for therapeutic benefit.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Howard Hughes Medical Institute, Department of Cardiology, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Liliya Silayeva
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Bo Liang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Neuroscience, Physiology and Pharmacology, University College, London, WC1E 6BT, UK
| |
Collapse
|
24
|
Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons. J Neurosci 2013; 33:15488-503. [PMID: 24068817 DOI: 10.1523/jneurosci.5889-12.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuronal K/Cl transporter KCC2 exports chloride ions and thereby influences the efficacy and polarity of GABA signaling in the brain. KCC2 is also critical for dendritic spine morphogenesis and the maintenance of glutamatergic transmission in cortical neurons. Because KCC2 plays a pivotal role in the function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. Here, we studied the impact of membrane diffusion and clustering on KCC2 function. KCC2 forms clusters in the vicinity of both excitatory and inhibitory synapses. Using quantum-dot-based single-particle tracking on rat primary hippocampal neurons, we show that KCC2 is slowed down and confined at excitatory and inhibitory synapses compared with extrasynaptic regions. However, KCC2 escapes inhibitory synapses faster than excitatory synapses, reflecting stronger molecular constraints at the latter. Interfering with KCC2-actin interactions or inhibiting F-actin polymerization releases diffusion constraints on KCC2 at excitatory but not inhibitory synapses. Thus, F-actin constrains KCC2 diffusion at excitatory synapses, whereas KCC2 is confined at inhibitory synapses by a distinct mechanism. Finally, increased neuronal activity rapidly increases the diffusion coefficient and decreases the dwell time of KCC2 at excitatory synapses. This effect involves NMDAR activation, Ca(2+) influx, KCC2 S940 dephosphorylation and calpain protease cleavage of KCC2 and is accompanied by reduced KCC2 clustering and ion transport function. Thus, activity-dependent regulation of KCC2 lateral diffusion and clustering allows for a rapid regulation of chloride homeostasis in neurons.
Collapse
|
25
|
De Almeida ACG, dos Santos HL, Rodrigues AM, Cysneiros RM, Cavalheiro EA, Arida RM, Scorza FA. Non-synaptic mechanisms that could be responsible for potential antiepileptic effects of omega-3 fatty acids. Epilepsy Behav 2012; 25:138-40. [PMID: 22832612 DOI: 10.1016/j.yebeh.2012.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/10/2012] [Indexed: 01/17/2023]
|
26
|
Pristerà A, Baker MD, Okuse K. Association between tetrodotoxin resistant channels and lipid rafts regulates sensory neuron excitability. PLoS One 2012; 7:e40079. [PMID: 22870192 PMCID: PMC3411591 DOI: 10.1371/journal.pone.0040079] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/05/2012] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) play a key role in the initiation and propagation of action potentials in neurons. NaV1.8 is a tetrodotoxin (TTX) resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. NaV1.8 underlies the vast majority of sodium currents during action potentials. Many studies have highlighted a key role for NaV1.8 in inflammatory and chronic pain models. Lipid rafts are microdomains of the plasma membrane highly enriched in cholesterol and sphingolipids. Lipid rafts tune the spatial and temporal organisation of proteins and lipids on the plasma membrane. They are thought to act as platforms on the membrane where proteins and lipids can be trafficked, compartmentalised and functionally clustered. In the present study we investigated NaV1.8 sub-cellular localisation and explored the idea that it is associated with lipid rafts in nociceptors. We found that NaV1.8 is distributed in clusters along the axons of DRG neurons in vitro and ex vivo. We also demonstrated, by biochemical and imaging studies, that NaV1.8 is associated with lipid rafts along the sciatic nerve ex vivo and in DRG neurons in vitro. Moreover, treatments with methyl-β-cyclodextrin (MβCD) and 7-ketocholesterol (7KC) led to the dissociation between rafts and NaV1.8. By calcium imaging we demonstrated that the lack of association between rafts and NaV1.8 correlated with impaired neuronal excitability, highlighted by a reduction in the number of neurons able to conduct mechanically- and chemically-evoked depolarisations. These findings reveal the sub-cellular localisation of NaV1.8 in nociceptors and highlight the importance of the association between NaV1.8 and lipid rafts in the control of nociceptor excitability.
Collapse
Affiliation(s)
- Alessandro Pristerà
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Mark D. Baker
- Neuroscience and Trauma Centre, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Kenji Okuse
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Döding A, Hartmann AM, Beyer T, Nothwang HG. KCC2 transport activity requires the highly conserved L₆₇₅ in the C-terminal β1 strand. Biochem Biophys Res Commun 2012; 420:492-7. [PMID: 22414695 DOI: 10.1016/j.bbrc.2012.02.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
The activity of the neuron-specific K(+), Cl(-) co-transporter 2 (KCC2) is required for hyperpolarizing action of GABA and glycine. KCC2-mediated transport therefore plays a pivotal role in neuronal inhibition. Few analyses have addressed the amino acid requirements for transport-competent conformation. KCC2 consists of 12 transmembrane domains flanked by two intracellular termini. Structural analyses of a related archaeal protein have identified an evolutionary extremely conserved β1 strand, which links the transmembrane domain to a C-terminal dimerization interface. Here, we focused on the sequence requirement of this linker. We mutated four highly conserved amino acids of the β1 strand ((673)QLLV(676)) to alanine and analyzed the functional consequences in mammalian cells. Flux measurements demonstrated that L(675A) significantly reduced KCC2 transport activity by 41%, whereas the other three mutants displayed normal activity. Immunocytochemistry and cell surface labeling revealed normal trafficking of all four mutants. Altogether, our results identify L(675) as a critical residue for KCC2 transport activity. Furthermore, in view of its evolutionary conservation, the data suggest a remarkable tolerance of the KCC2 transport activity to amino acid substitutions in the β1 strand.
Collapse
Affiliation(s)
- Annika Döding
- Abteilung Neurogenetik, Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, Oldenburg, Deutschland
| | | | | | | |
Collapse
|
28
|
Hartmann AM, Nothwang HG. Opposite temperature effect on transport activity of KCC2/KCC4 and N(K)CCs in HEK-293 cells. BMC Res Notes 2011; 4:526. [PMID: 22152068 PMCID: PMC3251547 DOI: 10.1186/1756-0500-4-526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/09/2011] [Indexed: 02/05/2023] Open
Abstract
Background Cation chloride cotransporters play essential roles in many physiological processes such as volume regulation, transepithelial salt transport and setting the intracellular chloride concentration in neurons. They consist mainly of the inward transporters NCC, NKCC1, and NKCC2, and the outward transporters KCC1 to KCC4. To gain insight into regulatory and structure-function relationships, precise determination of their activity is required. Frequently, these analyses are performed in HEK-293 cells. Recently the activity of the inward transporters NKCC1 and NCC was shown to increase with temperature in these cells. However, the temperature effect on KCCs remains largely unknown. Findings Here, we determined the temperature effect on KCC2 and KCC4 transport activity in HEK-293 cells. Both transporters demonstrated significantly higher transport activity (2.5 fold for KCC2 and 3.3 fold for KCC4) after pre-incubation at room temperature compared to 37°C. Conclusions These data identify a reciprocal temperature dependence of cation chloride inward and outward cotransporters in HEK-293 cells. Thus, lower temperature should be used for functional characterization of KCC2 and KCC4 and higher temperatures for N(K)CCs in heterologous mammalian expression systems. Furthermore, if this reciprocal effect also applies to neurons, the action of inhibitory neurotransmitters might be more affected by changes in temperature than previously thought.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Department of Neurogenetics, Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany.
| | | |
Collapse
|
29
|
Chen G, Howe AG, Xu G, Fröhlich O, Klein JD, Sands JM. Mature N-linked glycans facilitate UT-A1 urea transporter lipid raft compartmentalization. FASEB J 2011; 25:4531-9. [PMID: 21965602 PMCID: PMC3236619 DOI: 10.1096/fj.11-185991] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 09/15/2011] [Indexed: 11/11/2022]
Abstract
The UT-A1 urea transporter is a glycoprotein with two different glycosylated forms of 97 and 117 kDa. In this study, we found the 117-kDa UT-A1 preferentially resides in lipid rafts, suggesting that the glycosylation status may interfere with UT-A1 lipid raft trafficking. This was confirmed by a site-directed mutagenesis study in MDCK cells. The nonglycosylated UT-A1 showed reduced localization in lipid rafts. By using sugar-specific binding lectins, we further found that the UT-A1 in nonlipid rafts contained a high amount of mannose, as detected by concanavalin A, while the UT-A1 in lipid rafts was the mature N-acetylglucosamine-containing form, as detected by wheat germ agglutinin. In the inner medulla (IM) of diabetic rats, the more abundant 117-kDa UT-A1 in lipid rafts was the mature glycosylation form, with high amounts of N-acetylglucosamine and sialic acid. In contrast, in the IM of normal rats, the predominant 97-kDa UT-A1 was the form enriched in mannose. Functionally, inhibition of glycosylation by tunicamycin or elimination of the glycosylation sites by mutation significantly reduced UT-A1 activity in oocytes. Taken together, our study reveals a new role of N-linked glycosylation in regulating UT-A1 activity by promoting UT-A1 trafficking into membrane lipid raft subdomains.
Collapse
Affiliation(s)
- Guangping Chen
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Friauf E, Rust MB, Schulenborg T, Hirtz JJ. Chloride cotransporters, chloride homeostasis, and synaptic inhibition in the developing auditory system. Hear Res 2011; 279:96-110. [PMID: 21683130 DOI: 10.1016/j.heares.2011.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/11/2011] [Indexed: 01/24/2023]
Abstract
The role of glycine and GABA as inhibitory neurotransmitters in the adult vertebrate nervous system has been well characterized in a variety of model systems, including the auditory, which is particularly well suited for analyzing inhibitory neurotransmission. However, a full understanding of glycinergic and GABAergic transmission requires profound knowledge of how the precise organization of such synapses emerges. Likewise, the role of glycinergic and GABAergic signaling during development, including the dynamic changes in regulation of cytosolic chloride via chloride cotransporters, needs to be thoroughly understood. Recent literature has elucidated the developmental expression of many of the molecular components that comprise the inhibitory synaptic phenotype. An equally important focus of research has revealed the critical role of glycinergic and GABAergic signaling in sculpting different developmental aspects in the auditory system. This review examines the current literature detailing the expression patterns and function (chapter 1), as well as the regulation and pharmacology of chloride cotransporters (chapter 2). Of particular importance is the ontogeny of glycinergic and GABAergic transmission (chapter 3). The review also surveys the recent work on the signaling role of these two major inhibitory neurotransmitters in the developing auditory system (chapter 4) and concludes with an overview of areas for further research (chapter 5).
Collapse
Affiliation(s)
- Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, POB 3049, D-67653 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
31
|
Colón-Sáez JO, Yakel JL. The α7 nicotinic acetylcholine receptor function in hippocampal neurons is regulated by the lipid composition of the plasma membrane. J Physiol 2011; 589:3163-74. [PMID: 21540349 DOI: 10.1113/jphysiol.2011.209494] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The α7 nicotinic acetylcholine receptors (nAChRs) play an important role in cellular events such as neurotransmitter release, second messenger cascades, cell survival and apoptosis. In addition, they are a therapeutic target for the treatment of neurological disorders such as Alzheimer's disease and schizophrenia, and drugs that potentiate α7 nAChRs through the regulation of desensitization are currently being developed. Recently, these channels were found to be localized into lipid rafts. Here we show that the disruption of lipid rafts in rat primary hippocampal neurons, through cholesterol-scavenging drugs (methyl-β-cyclodextrin) and the enzymatic breakdown of sphingomyelin (sphingomyelinase), results in significant changes in the desensitization kinetics of native and expressed α7 nAChRs. These effects can be prevented by cotreatment with cholesterol and sphingomyelin, and can be mimicked by treatment with cholesterol and sphingomyelin synthesis inhibitors (mevastatin and myriocin, respectively), suggesting that the effects on desensitization kinetics are indeed due to changes in the levels of cholesterol and sphingomyelin in the plasma membrane. These data provide new insights into themechanism of desensitization of α7 nAChRs by providing evidence that the lipid composition of the plasma membrane can modulate the activity of the α7 nAChRs.
Collapse
Affiliation(s)
- José O Colón-Sáez
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
32
|
Abstract
Multiple plasma membrane proteins such as ion transporters and ion channels are involved in electrogenesis by setting resting membrane potentials and triggering/propagating action potentials. Recent findings strongly suggest that some of these membrane proteins are selectively transported into membrane microdomains termed lipid rafts. There appear to be multiple mechanisms for the specific protein translocation to lipid rafts, and many of these proteins exhibit distinct properties when inserted into the raft microdomains. Here the authors review the plasma membrane ion channels specifically localized at membrane lipid rafts in neurons. The mechanisms to selectively translocate these molecules to the lipid rafts and the consequences of the trafficking are also discussed.
Collapse
Affiliation(s)
- Alessandro Pristerá
- Division of Cell & Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Kenji Okuse
- Division of Cell & Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
33
|
Huang H, Feng X, Zhuang J, Fröhlich O, Klein JD, Cai H, Sands JM, Chen G. Internalization of UT-A1 urea transporter is dynamin dependent and mediated by both caveolae- and clathrin-coated pit pathways. Am J Physiol Renal Physiol 2010; 299:F1389-95. [PMID: 20861071 PMCID: PMC3006306 DOI: 10.1152/ajprenal.00718.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 09/20/2010] [Indexed: 11/22/2022] Open
Abstract
Dynamin is a large GTPase involved in several distinct modes of cell endocytosis. In this study, we examined the possible role of dynamin in UT-A1 internalization. The direct relationship of UT-A1 and dynamin was identified by coimmunoprecipitation. UT-A1 has cytosolic NH(2) and COOH termini and a large intracellular loop. Dynamin specifically binds to the intracellular loop of UT-A1, but not the NH(2) and COOH termini. In cell surface biotinylation experiments, coexpression of dynamin and UT-A1 in HEK293 cells resulted in a decrease of UT-A1 cell surface expression. Conversely, cells expressing dynamin mutant K44A, which is deficient in GTP binding, showed an increased accumulation of UT-A1 protein on the cell surface. Cell plasma membrane lipid raft fractionation experiments revealed that blocking endocytosis with dynamin K44A causes UT-A1 protein accumulation in both the lipid raft and nonlipid raft pools, suggesting that both caveolae- and clathrin-mediated mechanisms may be involved in the internalization of UT-A1. This was further supported by 1) small interfering RNA to knock down either caveolin-1 or μ2 reduced UT-A1 internalization in HEK293 cells and 2) inhibition of either the caveolae pathway by methyl-β-cyclodextrin or the clathrin pathway by concanavalin A caused UT-A1 cell membrane accumulation. Functionally, overexpression of dynamin, caveolin, or μ2 decreased UT-A1 urea transport activity and decreased UT-A1 cell surface expression. We conclude that UT-A1 endocytosis is dynamin-dependent and mediated by both caveolae- and clathrin-coated pit pathways.
Collapse
Affiliation(s)
- Haidong Huang
- Department of Medicine, Renal Division, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hartmann AM, Wenz M, Mercado A, Störger C, Mount DB, Friauf E, Nothwang HG. Differences in the large extracellular loop between the K(+)-Cl(-) cotransporters KCC2 and KCC4. J Biol Chem 2010; 285:23994-4002. [PMID: 20516068 PMCID: PMC2911324 DOI: 10.1074/jbc.m110.144063] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Indexed: 11/06/2022] Open
Abstract
K(+)Cl(-) cotransporters (KCCs) play fundamental physiological roles in processes such as inhibitory neurotransmission and cell volume regulation. Mammalian genomes encode four distinct KCC paralogs, which share basic transport characteristics but differ significantly in ion affinity, pharmacology, and relative sensitivity to cell volume. Studies to identify divergence in functional characteristics have thus far focused on the cytoplasmic termini. Here, we investigated sequence requirements of the large extracellular loop (LEL) for function in KCC2 and KCC4. Mutation of all four evolutionarily conserved cysteines abolished KCC2 transport activity. This behavior differs from that of its closest relative, KCC4, which is insensitive to this mutation. Chimeras supported the differences in the LEL of the two cotransporters, because swapping wild-type LEL resulted in functional KCC2 but rendered KCC4 inactive. Insertion of the quadruple cysteine substitution mutant of the KCC4 loop, which was functional in the parental isoform, abolished transport activity in KCC2. Dose-response curves of wild-type and chimeric KCCs revealed that the LEL contributes to the different sensitivity to loop diuretics; a KCC2 chimera containing the KCC4 LEL displayed an IC(50) of 396.5 mum for furosemide, which was closer to KCC4 (548.8 mum) than to KCC2 (184.4 mum). Cell surface labeling and immunocytochemistry indicated that mutations do not affect trafficking to the plasma membrane. Taken together, our results show a dramatic and unexpected difference in the sequence requirements of the LEL between the closely related KCC2 and KCC4. Furthermore, they demonstrate that evolutionarily highly conserved amino acids can have different functions within KCC members.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- From the Department of Neurogenetics, Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany
| | - Meike Wenz
- the Animal Physiology Group, Department of Biology, University of Kaiserlautern, Erwin-Schrödinger Strasse 13, 67663 Kaiserslautern, Germany
| | - Adriana Mercado
- the Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Christof Störger
- the Animal Physiology Group, Department of Biology, University of Kaiserlautern, Erwin-Schrödinger Strasse 13, 67663 Kaiserslautern, Germany
| | - David B. Mount
- the Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
- the Renal Division, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts 02132
| | - Eckhard Friauf
- the Animal Physiology Group, Department of Biology, University of Kaiserlautern, Erwin-Schrödinger Strasse 13, 67663 Kaiserslautern, Germany
| | - Hans Gerd Nothwang
- From the Department of Neurogenetics, Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany
- the Animal Physiology Group, Department of Biology, University of Kaiserlautern, Erwin-Schrödinger Strasse 13, 67663 Kaiserslautern, Germany
| |
Collapse
|
35
|
Robinson S, Mikolaenko I, Thompson I, Cohen ML, Goyal M. Loss of cation-chloride cotransporter expression in preterm infants with white matter lesions: implications for the pathogenesis of epilepsy. J Neuropathol Exp Neurol 2010; 69:565-72. [PMID: 20467335 PMCID: PMC3165026 DOI: 10.1097/nen.0b013e3181dd25bc] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epilepsy associated with preterm birth is often refractory to anticonvulsants. Children who are born preterm are also prone to cognitive delay and behavioral problems. Brains from these children often show diffuse abnormalities in cerebral circuitry that is likely caused by disrupted development during critical stages of cortical formation. To test the hypothesis that prenatal injury impairs the developmental switch of gamma-amino butyric acid (GABA)ergic synapses from excitatory to inhibitory, thereby disrupting cortical circuit formation and predisposing to epilepsy, we used immunohistochemistry to compare the expression of cation-chloride transporters that developmentally regulate postsynaptic GABAergic discharges in postmortem cerebral samples from infants born preterm with known white matter injury (n = 11) with that of controls with minimal white matter gliosis (n = 7). Controls showed the expected developmental expression of cation-chloride transporters NKCC1 and KCC2 and ofcalretinin, a marker of a GABAergic neuronal subpopulation. Samples from infants with white matter damage showed a significant loss of expression of both NKCC1 and KCC2 in subplate and white matter. By contrast, there were no significant differences in total cell number or glutamate transporter VGLUT1 expression. Together, these novel findings suggest a molecular mechanism involved in the disruption of a critical stage of cerebral circuit development after brain injury from preterm birth that may predispose to epilepsy.
Collapse
Affiliation(s)
- Shenandoah Robinson
- Divisions of Pediatric Neurosurgery, Neurology, Rainbow Babies & Children's Hospital, 11100 Euclid Ave, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
36
|
Horn Z, Ringstedt T, Blaesse P, Kaila K, Herlenius E. Premature expression of KCC2 in embryonic mice perturbs neural development by an ion transport-independent mechanism. Eur J Neurosci 2010; 31:2142-55. [PMID: 20529123 DOI: 10.1111/j.1460-9568.2010.07258.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During neuronal maturation, the neuron-specific K-Cl co-transporter KCC2 lowers the intracellular chloride and thereby renders GABAergic transmission hyperpolarizing. Independently of its role as a co-transporter, KCC2 plays a crucial role in the maturation of dendritic spines, most probably via an interaction with the cytoskeleton-associated protein 4.1N. In this study, we show that neural-specific overexpression of KCC2 impairs the development of the neural tube- and neural crest-related structures in mouse embryos. At early stages (E9.5-11.5), the transgenic embryos had a thinner neural tube and abnormal body curvature. They displayed a reduced neuronal differentiation and altered neural crest cell pattern. At later stages (E11.5-15.5), the transgenic embryos had smaller brain structures and a distinctive cleft palate. Similar results were obtained using overexpression of a transport-inactive N-terminal-deleted variant of KCC2, implying that the effects were not dependent on KCC2's role as a K-Cl co-transporter. Interestingly, the neural tube of transgenic embryos had an aberrant cytoplasmic distribution of 4.1N and actin. This was corroborated in a neural stem cell line with ectopic expression of KCC2. Embryo phenotype and cell morphology were unaffected by a mutated variant of KCC2 which is unable to bind 4.1N. These results point to a role of KCC2 in neuronal differentiation and migration during early development mediated by its direct structural interactions with the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Zachi Horn
- Neonatal Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
37
|
Mateos MV, Salvador GA, Giusto NM. Selective localization of phosphatidylcholine-derived signaling in detergent-resistant membranes from synaptic endings. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:624-36. [PMID: 20026046 DOI: 10.1016/j.bbamem.2009.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/19/2009] [Accepted: 12/14/2009] [Indexed: 01/21/2023]
Abstract
Detergent-resistant membranes (DRMs) are a class of specialized microdomains that compartmentalize several signal transduction processes. In this work, DRMs were isolated from cerebral cortex synaptic endings (Syn) on the basis of their relative insolubility in cold Triton X-100 (1%). The lipid composition and marker protein content were analyzed in DRMs obtained from adult and aged animals. Both DRM preparations were enriched in Caveolin, Flotillin-1 and c-Src and also presented significantly higher sphingomyelin (SM) and cholesterol content than purified Syn. Total phospholipid-fatty acid composition presented an increase in 16:0 (35%), and a decrease in 20:4n-6 (67%) and 22:6n-3 (68%) content in DRM from adults when compared to entire synaptic endings. A more dramatic decrease was observed in the 20:4n-6 and 22:6n-3 content in DRMs from aged animals (80%) with respect to the results found in adults. The coexistence of phosphatidylcholine-specific-phospholipase C (PC-PLC) and phospholipase D (PLD) in Syn was previously reported. The presence of these signaling pathways was also investigated in DRMs isolated from adult and aged rats. Both PC-PLC and PLD pathways generate the lipid messenger diacylglycerol (DAG) by catalyzing PC hydrolysis. PC-PLC and PLD1 localization were increased in the DRM fraction. The increase in DAG generation (60%) in the presence of ethanol, confirmed that PC-PLC was also activated when compartmentalized in DRMs. Conversely, PLD2 was excluded from the DRM fraction. Our results show an age-related differential fatty acid composition and a selective localization of PC-derived signaling in synaptic DRMs obtained from adult and aged rats.
Collapse
Affiliation(s)
- M V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 857, B8000FWB Bahía Blanca, Argentina
| | | | | |
Collapse
|