1
|
Luo J, Shi L, Liu J, Li G, Tu L, Hu S. SGLT2 inhibition, plasma proteins, and heart failure: a proteome-wide Mendelian Randomization and colocalization study. Front Cardiovasc Med 2024; 11:1371513. [PMID: 38725835 PMCID: PMC11079590 DOI: 10.3389/fcvm.2024.1371513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Objective To investigate the causal contributions of Sodium-glucose cotransporter 2 (SGLT2) inhibition on Heart Failure (HF) and identify the circulating proteins that mediate SGLT2 inhibition's effects on HF. Methods Applying a two-sample, two-step Mendelian Randomization (MR) analysis, we aimed to estimate: (1) the causal impact of SGLT2 inhibition on HF; (2) the causal correlation of SGLT2 inhibition on 4,907 circulating proteins; (3) the causal association of SGLT2 inhibition-driven plasma proteins on HF. Genetic variants linked to SGLT2 inhibition derived from the previous studies. The 4,907 circulating proteins were derived from the deCODE study. Genetic links to HF were obtained through the Heart Failure Molecular Epidemiology for Therapeutic Targets (HERMES) consortium. Results SGLT2 inhibition demonstrated a lower risk of HF (odds ratio [OR] = 0.44, 95% CI [0.26, 0.76], P = 0.003). Among 4,907 circulating proteins, we identified leucine rich repeat transmembrane protein 2 (LRRTM2), which was related to both SGLT2 inhibition and HF. Mediation analysis revealed that the impact of SGLT2 inhibition on HF operates indirectly through LRRTM2 [β = -0.20, 95% CI (-0.39, -0.06), P = 0.02] with a mediation proportion of 24.6%. Colocalization analysis provided support for the connections between LRRTM2 and HF. Conclusion The study indicated a causative link between SGLT2 inhibition and HF, with plasma LRRTM2 potentially serving as a mediator.
Collapse
Affiliation(s)
- Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lili Shi
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jingrui Liu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gen Li
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Shuiqing Hu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ramsey AM, Tang AH, LeGates TA, Gou XZ, Carbone BE, Thompson SM, Biederer T, Blanpied TA. Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. SCIENCE ADVANCES 2021; 7:7/34/eabf3126. [PMID: 34417170 PMCID: PMC8378824 DOI: 10.1126/sciadv.abf3126] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/30/2021] [Indexed: 05/07/2023]
Abstract
Recent evidence suggests that nano-organization of proteins within synapses may control the strength of communication between neurons in the brain. The unique subsynaptic distribution of glutamate receptors, which cluster in nanoalignment with presynaptic sites of glutamate release, supports this hypothesis. However, testing it has been difficult because mechanisms controlling subsynaptic organization remain unknown. Reasoning that transcellular interactions could position AMPA receptors (AMPARs), we targeted a key transsynaptic adhesion molecule implicated in controlling AMPAR number, LRRTM2, using engineered, rapid proteolysis. Severing the LRRTM2 extracellular domain led quickly to nanoscale declustering of AMPARs away from release sites, not prompting their escape from synapses until much later. This rapid remodeling of AMPAR position produced significant deficits in evoked, but not spontaneous, postsynaptic receptor activation. These results dissociate receptor numbers from their nanopositioning in determination of synaptic function and support the novel concept that adhesion molecules acutely position receptors to dynamically control synaptic strength.
Collapse
Affiliation(s)
- Austin M Ramsey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ai-Hui Tang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tara A LeGates
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Beatrice E Carbone
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Shen C, Zhou Y, Tang C, He C, Zuo Z. Developmental exposure to mepanipyrim induces locomotor hyperactivity in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2020; 256:127106. [PMID: 32447115 DOI: 10.1016/j.chemosphere.2020.127106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Mepanipyrim is a widely used fungicide, and residues of mepanipyrim are frequently detected in commodities. However, the neurotoxicity and underlying mechanisms of mepanipyrim are still insufficiently understood. In this study, zebrafish embryos at 0.5-1.0 post-fertilization hours (hpf) were exposed to 0.1, 1, 10 and 100 μg/L mepanipyrim for 7 days. Our results showed that mepanipyrim could cause the locomotor hyperactivity and increase the concentration of γ-amino butyric acid (GABA) and the Na+/K+- and Ca2+-ATPase activities in zebrafish larvae. We have conducted the RNA-sequence and RT-qPCR to analyze the gene expressions. The mRNA expression levels of calcium/sodium ion conduction associated genes were observably up-regulated, demonstrating that mepanipyrim could enhance the cell energy metabolism, the synaptic transmission and skeletal muscle contraction, which were consistent with the locomotor hyperactivity. Meanwhile, exposure to mepanipyrim could significantly change the gene expression levels of gad1, bdnf, nlgn1, and type A and B GABA receptors in zebrafish larvae. This is the first study focusing on the underlying mechanisms of the neurotoxic effects that are induced by mepanipyrim.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
4
|
Shams S, Rihel J, Ortiz JG, Gerlai R. The zebrafish as a promising tool for modeling human brain disorders: A review based upon an IBNS Symposium. Neurosci Biobehav Rev 2018; 85:176-190. [DOI: 10.1016/j.neubiorev.2017.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/28/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
|
5
|
Beaubien F, Raja R, Kennedy TE, Fournier AE, Cloutier JF. Slitrk1 is localized to excitatory synapses and promotes their development. Sci Rep 2016; 6:27343. [PMID: 27273464 PMCID: PMC4895136 DOI: 10.1038/srep27343] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/09/2016] [Indexed: 01/07/2023] Open
Abstract
Following the migration of the axonal growth cone to its target area, the initial axo-dendritic contact needs to be transformed into a functional synapse. This multi-step process relies on overlapping but distinct combinations of molecules that confer synaptic identity. Slitrk molecules are transmembrane proteins that are highly expressed in the central nervous system. We found that two members of the Slitrk family, Slitrk1 and Slitrk2, can regulate synapse formation between hippocampal neurons. Slitrk1 is enriched in postsynaptic fractions and is localized to excitatory synapses. Overexpression of Slitrk1 and Slitrk2 in hippocampal neurons increased the number of synaptic contacts on these neurons. Furthermore, decreased expression of Slitrk1 in hippocampal neurons led to a reduction in the number of excitatory, but not inhibitory, synapses formed in hippocampal neuron cultures. In addition, we demonstrate that different leucine rich repeat domains of the extracellular region of Slitrk1 are necessary to mediate interactions with Slitrk binding partners of the LAR receptor protein tyrosine phosphatase family, and to promote dimerization of Slitrk1. Altogether, our results demonstrate that Slitrk family proteins regulate synapse formation.
Collapse
Affiliation(s)
- François Beaubien
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, H3A 2B4, Canada.,Integrated Program in Neuroscience, McGill University, Canada
| | - Reesha Raja
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, H3A 2B4, Canada.,Integrated Program in Neuroscience, McGill University, Canada
| | - Timothy E Kennedy
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Canada
| | - Alyson E Fournier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Canada
| |
Collapse
|
6
|
Choi Y, Nam J, Whitcomb DJ, Song YS, Kim D, Jeon S, Um JW, Lee SG, Woo J, Kwon SK, Li Y, Mah W, Kim HM, Ko J, Cho K, Kim E. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development. Sci Rep 2016; 6:26676. [PMID: 27225731 PMCID: PMC4881023 DOI: 10.1038/srep26676] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/04/2016] [Indexed: 11/08/2022] Open
Abstract
Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPδ, and PTPσ). These interactions are strongly inhibited by the splice insert B in the Ig domain region of LAR-RPTPs, and mediate SALM5-dependent presynaptic differentiation in contacting axons. In addition, SALM5 regulates AMPA receptor-mediated synaptic transmission through mechanisms involving the interaction of postsynaptic SALM5 with presynaptic LAR-RPTPs. These results suggest that postsynaptic SALM5 promotes synapse development by trans-synaptically interacting with presynaptic LAR-RPTPs and is important for the regulation of excitatory synaptic strength.
Collapse
Affiliation(s)
- Yeonsoo Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jungyong Nam
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Daniel J. Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, 463–707, Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Sangmin Jeon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ji Won Um
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seong-Gyu Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jooyeon Woo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Seok-Kyu Kwon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Won Mah
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Jaewon Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
- Centre for Synaptic Plasticity, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| |
Collapse
|
7
|
Choi SY, Han K, Cutforth T, Chung W, Park H, Lee D, Kim R, Kim MH, Choi Y, Shen K, Kim E. Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference. Front Cell Neurosci 2015; 9:283. [PMID: 26283919 PMCID: PMC4517382 DOI: 10.3389/fncel.2015.00283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/10/2015] [Indexed: 11/13/2022] Open
Abstract
Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2(-/-) mice) display moderate hyperactivity in a familiar, but not novel, environment and defective novel object recognition with normal performances in Morris water maze spatial learning and memory, contextual fear conditioning and extinction, and pattern separation tests. These mice also show normal levels of anxiety-like behaviors, social interaction, and repetitive behaviors. At the synapse level, Neph2(-/-) dentate gyrus granule cells exhibit unaltered dendritic spine density and spontaneous excitatory synaptic transmission. These results suggest that Neph2 is important for normal locomotor activity and object recognition memory.
Collapse
Affiliation(s)
- Su-Yeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Kihoon Han
- Department of Neuroscience and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University Seoul, South Korea
| | - Tyler Cutforth
- Department of Neurology, Columbia University Medical Center New York, NY, USA
| | - Woosuk Chung
- Department of Biomedical Sciences, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Haram Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Dongsoo Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science Daejeon, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Myeong-Heui Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Yeeun Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Kang Shen
- Department of Biology, Stanford University Stanford, CA, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, South Korea ; Center for Synaptic Brain Dysfunctions, Institute for Basic Science Daejeon, South Korea
| |
Collapse
|
8
|
Washbourne P. Synapse assembly and neurodevelopmental disorders. Neuropsychopharmacology 2015; 40:4-15. [PMID: 24990427 PMCID: PMC4262893 DOI: 10.1038/npp.2014.163] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 12/31/2022]
Abstract
In this review we examine the current understanding of how genetic deficits associated with neurodevelopmental disorders may impact synapse assembly. We then go on to discuss how the critical periods for these genetic deficits will shape the nature of future clinical interventions.
Collapse
Affiliation(s)
- Philip Washbourne
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA,Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA, Tel: +1 541 346 4138, Fax: +1 541 346 4548, E-mail:
| |
Collapse
|
9
|
Towards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach. Transl Psychiatry 2014; 4:e394. [PMID: 24893065 PMCID: PMC4080319 DOI: 10.1038/tp.2014.38] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022] Open
Abstract
The hypothetical 'AXAS' gene network model that profiles functional patterns of heterogeneous DNA variants overrepresented in autism spectrum disorder (ASD), X-linked intellectual disability, attention deficit and hyperactivity disorder and schizophrenia was used in this current study to analyze whole exome sequencing data from an Australian ASD cohort. An optimized DNA variant filtering pipeline was used to identify loss-of-function DNA variations. Inherited variants from parents with a broader autism phenotype and de novo variants were found to be significantly associated with ASD. Gene ontology analysis revealed that putative rare causal variants cluster in key neurobiological processes and are overrepresented in functions involving neuronal development, signal transduction and synapse development including the neurexin trans-synaptic complex. We also show how a complex gene network model can be used to fine map combinations of inherited and de novo variations in families with ASD that converge in the L1CAM pathway. Our results provide an important step forward in the molecular characterization of ASD with potential for developing a tool to analyze the pathogenesis of individual affected families.
Collapse
|
10
|
Wong RY, Cummings ME. Expression Patterns of Neuroligin-3 and Tyrosine Hydroxylase across the Brain in Mate Choice Contexts in Female Swordtails. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:231-43. [DOI: 10.1159/000360071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/24/2014] [Indexed: 11/19/2022]
|
11
|
Stewart AM, Nguyen M, Wong K, Poudel MK, Kalueff AV. Developing zebrafish models of autism spectrum disorder (ASD). Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:27-36. [PMID: 24315837 DOI: 10.1016/j.pnpbp.2013.11.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/22/2013] [Accepted: 11/28/2013] [Indexed: 01/07/2023]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder with complex symptoms and unclear, multi-factorial pathogenesis. Animal (rodent) models of ASD-like behavior are extensively used to study genetics, circuitry and molecular mechanisms of ASD. The evolutionarily conserved nature of social behavior and its molecular pathways suggests that alternative experimental models can be developed to complement and enhance the existing rodent ASD paradigms. The zebrafish (Danio rerio) is rapidly becoming a popular model organism in neuroscience and biological psychiatry to study brain function, model human brain disorders and explore their genetic or pharmacological modulation. Representing highly social animals, zebrafish emerge as a strong potential model organism to study normal and pathological social phenotypes, as well as several other ASD-like symptoms. Here, we discuss the developing utility of zebrafish in modeling ASD as a new emerging field in translational neuroscience and drug discovery.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Michael Nguyen
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Keith Wong
- University of California San Diego (UCSD) School of Medicine, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Manoj K Poudel
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Allan V Kalueff
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
12
|
Clarke RA, Eapen V. Balance within the Neurexin Trans-Synaptic Connexus Stabilizes Behavioral Control. Front Hum Neurosci 2014; 8:52. [PMID: 24578685 PMCID: PMC3936185 DOI: 10.3389/fnhum.2014.00052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 01/23/2014] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by a broad spectrum of behavioral deficits of unknown etiology. ASD associated mutations implicate numerous neurological pathways including a common association with the neurexin trans-synaptic connexus (NTSC) which regulates neuronal cell-adhesion, neuronal circuitry, and neurotransmission. Comparable DNA lesions affecting the NTSC, however, associate with a diversity of behavioral deficits within and without the autism spectrum including a very strong association with Tourette syndrome. The NTSC is comprised of numerous post-synaptic ligands competing for trans-synaptic connection with one of the many different neurexin receptors yet no apparent association exists between specific NTSC molecules/complexes and specific behavioral deficits. Together these findings indicate a fundamental role for NTSC-balance in stabilizing pre-behavioral control. Further molecular and clinical characterization and stratification of ASD and TS on the basis of NTSC status will help elucidate the molecular basis of behavior – and define how the NTSC functions in combination with other molecular determinates to strengthen behavioral control and specify behavioral deficits.
Collapse
Affiliation(s)
- Raymond A Clarke
- Ingham Institute, School of Medicine, University of Western Sydney , Sydney, NSW , Australia
| | - Valsamma Eapen
- School of Psychiatry, University of New South Wales & Academic Unit of Child Psychiatry, South West Sydney (AUCS), Liverpool Hospital , Sydney, NSW , Australia
| |
Collapse
|
13
|
Winther M, Walmod PS. Neural cell adhesion molecules belonging to the family of leucine-rich repeat proteins. ADVANCES IN NEUROBIOLOGY 2014; 8:315-95. [PMID: 25300143 DOI: 10.1007/978-1-4614-8090-7_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeats (LRRs) are motifs that form protein-ligand interaction domains. There are approximately 140 human genes encoding proteins with extracellular LRRs. These encode cell adhesion molecules (CAMs), proteoglycans, G-protein-coupled receptors, and other types of receptors. Here we give a brief description of 36 proteins with extracellular LRRs that all can be characterized as CAMs or putative CAMs expressed in the nervous system. The proteins are involved in multiple biological processes in the nervous system including the proliferation and survival of cells, neuritogenesis, axon guidance, fasciculation, myelination, and the formation and maintenance of synapses. Moreover, the proteins are functionally implicated in multiple diseases including cancer, hearing impairment, glaucoma, Alzheimer's disease, multiple sclerosis, Parkinson's disease, autism spectrum disorders, schizophrenia, and obsessive-compulsive disorders. Thus, LRR-containing CAMs constitute a large group of proteins of pivotal importance for the development, maintenance, and regeneration of the nervous system.
Collapse
|
14
|
Baier H. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu Rev Cell Dev Biol 2013; 29:385-416. [PMID: 24099086 DOI: 10.1146/annurev-cellbio-101011-155748] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptic connections between neurons form the basis for perception and behavior. Synapses are often clustered in space, forming stereotyped layers. In the retina and optic tectum, multiple such synaptic laminae are stacked on top of each other, giving rise to stratified neuropil regions in which each layer combines synapses responsive to a particular sensory feature. Recently, several cellular and molecular mechanisms that underlie the development of multilaminar arrays of synapses have been discovered. These mechanisms include neurite guidance and cell-cell recognition. Molecules of the Slit, Semaphorin, Netrin, and Hedgehog families, binding to their matching receptors, bring axons and dendrites into spatial register. These guidance cues may diffuse over short distances or bind to sheets of extracellular matrix, thus conditioning the local extracellular milieu, or are presented on the surface of cells bordering the future neuropil. In addition, mutual recognition of axons and dendrites through adhesion molecules with immunoglobulin domains ensures cell type-specific connections within a given layer. Thus, an elaborate genetic program assembles the parallel processing channels that underlie visual perception.
Collapse
Affiliation(s)
- Herwig Baier
- Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried near Munich, Germany;
| |
Collapse
|
15
|
Voineagu I, Eapen V. Converging Pathways in Autism Spectrum Disorders: Interplay between Synaptic Dysfunction and Immune Responses. Front Hum Neurosci 2013; 7:738. [PMID: 24223544 PMCID: PMC3819618 DOI: 10.3389/fnhum.2013.00738] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, yet genetically heterogeneous neurodevelopmental conditions. Recent genome-wide association and gene expression studies have provided evidence supporting the notion that the large number of genetic variants associated with ASD converge toward a core set of dysregulated biological processes. Here we review recent data demonstrating the involvement of synaptic dysfunction and abnormal immune responses in ASD, and discuss the functional interplay between the two phenomena.
Collapse
Affiliation(s)
- Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, NSW , Australia
| | | |
Collapse
|
16
|
Pathogenetic model for Tourette syndrome delineates overlap with related neurodevelopmental disorders including Autism. Transl Psychiatry 2012; 2:e158. [PMID: 22948383 PMCID: PMC3565204 DOI: 10.1038/tp.2012.75] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Tourette syndrome (TS) is a highly heritable neuropsychiatric disorder characterised by motor and vocal tics. Despite decades of research, the aetiology of TS has remained elusive. Recent successes in gene discovery backed by rapidly advancing genomic technologies have given us new insights into the genetic basis of the disorder, but the growing collection of rare and disparate findings have added confusion and complexity to the attempts to translate these findings into neurobiological mechanisms resulting in symptom genesis. In this review, we explore a previously unrecognised genetic link between TS and a competing series of trans-synaptic complexes (neurexins (NRXNs), neuroligins (NLGNs), leucine-rich repeat transmembrane proteins (LRRTMs), leucine rich repeat neuronals (LRRNs) and cerebellin precursor 2 (CBLN2)) that links it with autism spectrum disorder through neurodevelopmental pathways. The emergent neuropathogenetic model integrates all five genes so far found to be uniquely disrupted in TS into a single pathogenetic chain of events described in context with clinical and research implications.
Collapse
|
17
|
Barba-Escobedo PA, Gould GG. Visual social preferences of lone zebrafish in a novel environment: strain and anxiolytic effects. GENES BRAIN AND BEHAVIOR 2012; 11:366-73. [PMID: 22288820 DOI: 10.1111/j.1601-183x.2012.00770.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zebrafish (Danio rerio) have an innate tendency to join shoals. Based on this, we refined visual choice tests to focus on social interaction and novelty preference. Our design follows mouse three-chamber sociability protocols, except testing is conducted under 940 Lux fluorescent lighting. Initially, we compared performance among zebrafish strains: inbred (AB) or wild-crossbred (WIK) from Zebrafish International Resource Center, to golden and short-fin from Petco stores. AB fish exhibited a preference for shoaling; they dwelled longest near transparent boxes containing zebrafish, while short fin favored blue boxes without fish. AB and golden exhibited a strong preference for social novelty, not evident in short-fin or WIK fish. Serotonin and cannabinoids shape mammalian social behavior, and equivalents of both receptor types are expressed in the zebrafish brain. We examined the effects of the cannabinoid receptor agonist WIN 55,212-2 (1 mg/l), or serotonin 5-HT(1A) receptor agonist buspirone (10 mg/l) on Petco short-fin social choice. Fish were bath exposed to test compounds for 10 min, under these conditions [(3) H]CP55,940 (4 nm) bound to brain with a concentration of 1.9-6.4 fmol/mg 5-30 min afterward. Social approach was measured 20 min after acclimation to the test arena. WIN 55,212-2 and buspirone increased dwelling near boxed zebrafish. In zebrafish whole-brain homogenates, buspirone displaced [(3) H] 8-hydroxy-N,N-dipropylaminotetralin (dissociation constant, K(D) = 16 ± 1.2 nm) with an inhibition constant (K(i) ) of 1.8 ± 1.0 nm lower than that of WAY 100,635 (K(i) ∼1000 nm). These fish social choice tests may enhance social behavior research, and are useful for studying the effects of genetic manipulations, pharmaceuticals or environmental toxins.
Collapse
|
18
|
Sassoè-Pognetto M, Frola E, Pregno G, Briatore F, Patrizi A. Understanding the molecular diversity of GABAergic synapses. Front Cell Neurosci 2011; 5:4. [PMID: 21713106 PMCID: PMC3112311 DOI: 10.3389/fncel.2011.00004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/23/2011] [Indexed: 01/17/2023] Open
Abstract
GABAergic synapses exhibit a high degree of subcellular and molecular specialization, which contrasts with their apparent simplicity in ultrastructural appearance. Indeed, when observed in the electron microscope, GABAergic synapses fit in the symmetric, or Gray’s type II category, being characterized by a relatively simple postsynaptic specialization. The inhibitory postsynaptic density cannot be readily isolated, and progress in understanding its molecular composition has lagged behind that of excitatory synapses. However, recent studies have brought significant progress in the identification of new synaptic proteins, revealing an unexpected complexity in the molecular machinery that regulates GABAergic synaptogenesis. In this article, we provide an overview of the molecular diversity of GABAergic synapses, and we consider how synapse specificity may be encoded by selective trans-synaptic interactions between pre- and postsynaptic adhesion molecules and secreted factors that reside in the synaptic cleft. We also discuss the importance of developing cataloguing tools that could be used to decipher the molecular diversity of synapses and to predict alterations of inhibitory transmission in the course of neurological diseases.
Collapse
Affiliation(s)
- Marco Sassoè-Pognetto
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin Torino, Italy
| | | | | | | | | |
Collapse
|