1
|
Šafranek M, Shumbusho A, Johansen W, Šarkanová J, Voško S, Bokor B, Jásik J, Demko V. Membrane-anchored calpains - hidden regulators of growth and development beyond plants? FRONTIERS IN PLANT SCIENCE 2023; 14:1289785. [PMID: 38173928 PMCID: PMC10762896 DOI: 10.3389/fpls.2023.1289785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Calpains are modulatory proteases that modify diverse cellular substrates and play essential roles in eukaryots. The best studied are animal cytosolic calpains. Here, we focus on enigmatic membrane-anchored calpains, their structural and functional features as well as phylogenetic distribution. Based on domain composition, we identified four types of membrane-anchored calpains. Type 1 and 2 show broad phylogenetic distribution among unicellular protists and streptophytes suggesting their ancient evolutionary origin. Type 3 and 4 diversified early and are present in brown algae and oomycetes. The plant DEK1 protein is the only representative of membrane-anchored calpains that has been functionally studied. Here, we present up to date knowledge about its structural features, putative regulation, posttranslational modifications, and biological role. Finally, we discuss potential model organisms and available tools for functional studies of membrane-anchored calpains with yet unknown biological role. Mechanistic understanding of membrane-anchored calpains may provide important insights into fundamental principles of cell polarization, cell fate control, and morphogenesis beyond plants.
Collapse
Affiliation(s)
- Martin Šafranek
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alain Shumbusho
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Wenche Johansen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Júlia Šarkanová
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stanislav Voško
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ján Jásik
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktor Demko
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
2
|
Miyazaki T. Calpain and Cardiometabolic Diseases. Int J Mol Sci 2023; 24:16782. [PMID: 38069105 PMCID: PMC10705917 DOI: 10.3390/ijms242316782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Calpain is defined as a member of the superfamily of cysteine proteases possessing the CysPC motif within the gene. Calpain-1 and -2, which are categorized as conventional isozymes, execute limited proteolysis in a calcium-dependent fashion. Accordingly, the calpain system participates in physiological and pathological phenomena, including cell migration, apoptosis, and synaptic plasticity. Recent investigations have unveiled the contributions of both conventional and unconventional calpains to the pathogenesis of cardiometabolic disorders. In the context of atherosclerosis, overactivation of conventional calpain attenuates the barrier function of vascular endothelial cells and decreases the immunosuppressive effects attributed to lymphatic endothelial cells. In addition, calpain-6 induces aberrant mRNA splicing in macrophages, conferring atheroprone properties. In terms of diabetes, polymorphisms of the calpain-10 gene can modify insulin secretion and glucose disposal. Moreover, conventional calpain reportedly participates in amino acid production from vascular endothelial cells to induce alteration of amino acid composition in the liver microenvironment, thereby facilitating steatohepatitis. Such multifaceted functionality of calpain underscores its potential as a promising candidate for pharmaceutical targets for the treatment of cardiometabolic diseases. Consequently, the present review highlights the pivotal role of calpains in the complications of cardiometabolic diseases and embarks upon a characterization of calpains as molecular targets.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| |
Collapse
|
3
|
Sharma A, Sari E, Lee Y, Patel S, Brenner M, Marambaud P, Wang P. Extracellular CIRP Induces Calpain Activation in Neurons via PLC-IP 3-Dependent Calcium Pathway. Mol Neurobiol 2023; 60:3311-3328. [PMID: 36853429 PMCID: PMC10506840 DOI: 10.1007/s12035-023-03273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Abnormal calcium homeostasis, activation of protease calpain, generation of p25 and hyperactivation of cyclin-dependent kinase 5 (Cdk5) have all been implicated in the pathogenesis of neurogenerative diseases including Alzheimer's disease. We have recently shown that extracellular cold-inducible RNA-binding protein (eCIRP) induces Cdk5 activation via p25. However, the precise molecular mechanism by which eCIRP regulates calcium signaling and calpain remains to be addressed. We hypothesized that eCIRP regulates p25 via Ca2+-dependent calpain activation. eCIRP increased calpain activity and decreased the endogenous calpain inhibitor calpastatin in Neuro 2a (N2a) cells. Calpain inhibition with calpeptin attenuated eCIRP-induced calpain activity and p25. eCIRP specifically upregulated cytosolic calpain 1, and calpain 1 silencing attenuated the eCIRP-induced increase in p25. eCIRP stimulation increased cytosolic free Ca2+, especially in hippocampal neuronal HT22 cells, which was attenuated by the eCIRP inhibitor Compound 23 (C23). Endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor (IP3R) inhibition using 2-aminoethoxy-diphenyl-borate or xestospongin-C (X-C), interleukin-6 receptor alpha (IL-6Rα)-neutralization, and phospholipase C (PLC) inhibition with U73122 attenuated eCIRP-induced Ca2+ increase, while Ca2+ influx across the plasma membrane remained unaffected by eCIRP. Finally, C23, IL-6Rα antibody, U73122 and X-C attenuated eCIRP-induced p25 in HT-22 cells. In conclusion, the current study uncovers eCIRP-triggered Ca2+ release from ER stores in an IL-6Rα/PLC/IP3-dependent manner as a novel molecular mechanism underlying eCIRP's induction of Cdk5 activity and potential involvement in neurodegeneration.
Collapse
Affiliation(s)
- Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Ezgi Sari
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Shivani Patel
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Philippe Marambaud
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
- The Litwin-Zucker Center for Alzheimer's Disease Research, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
4
|
Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer's disease: Mechanisms and possible therapeutic interventions. Life Sci 2022; 308:120986. [PMID: 36152679 DOI: 10.1016/j.lfs.2022.120986] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022]
Abstract
Despite the fact that the small atypical serine/threonine cyclin-dependent kinase 5 (Cdk5) is expressed in a number of tissues, its activity is restricted to the central nervous system due to the neuron-only localization of its activators p35 and p39. Although its importance for the proper development and function of the brain and its role as a switch between neuronal survival and death are unmistakable and unquestionable, Cdk5 is nevertheless increasingly emerging, as supported by a large number of publications on the subject, as a therapeutic target of choice in the fight against Alzheimer's disease. Thus, its aberrant over activation via the calpain-dependent conversion of p35 into p25 is observed during the pathogenesis of the disease where it leads to the hyperphosphorylation of the β-amyloid precursor protein and tau. The present review highlights the pivotal roles of the hyperactive Cdk5-p25 complex activity in contributing to the development of Alzheimer's disease pathogenesis, with a particular emphasis on the linking function between Aβ and tau that this kinase fulfils and on the fact that Cdk5-p25 is part of a deleterious feed forward loop giving rise to a molecular machinery runaway leading to AD pathogenesis. Additionally, we discuss the advances and challenges related to the possible strategies aimed at specifically inhibiting Cdk5-p25 activity and which could lead to promising anti-AD therapeutics.
Collapse
|
5
|
Yang H, Liu C, Wu Y, Yuan M, Huang J, Xia Y, Ling Q, Hoffmann PR, Huang Z, Chen T. Atherosclerotic plaque-targeted nanotherapeutics ameliorates atherogenesis by blocking macrophage-driven inflammation. NANO TODAY 2022; 42:101351. [DOI: 10.1016/j.nantod.2021.101351] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
van Leeuwen LL, Leuvenink HGD, Olinga P, Ruigrok MJR. Shifting Paradigms for Suppressing Fibrosis in Kidney Transplants: Supplementing Perfusion Solutions With Anti-fibrotic Drugs. Front Med (Lausanne) 2022; 8:806774. [PMID: 35083254 PMCID: PMC8784659 DOI: 10.3389/fmed.2021.806774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Great efforts have been made toward addressing the demand for donor kidneys. One of the most promising approaches is to use kidneys from donation after circulatory death donors. These kidneys, however, suffer from more severe ischemia and reperfusion injury than those obtained via donation after brain death and are thus more prone to develop interstitial fibrosis and tubular atrophy. Even though machine perfusion is increasingly used to reduce ischemia and reperfusion injury, there are no effective treatments available to ameliorate interstitial fibrosis and tubular atrophy, forcing patients to resume dialysis, undergo re-transplantation, or suffer from premature death. Safe and effective anti-fibrotic therapies are therefore greatly desired. We propose a new therapeutic approach in which machine perfusion solutions are supplemented with anti-fibrotic compounds. This allows the use of higher concentrations than those used in humans whilst eliminating side effects in other organs. To the authors' knowledge, no one has reviewed whether such an approach could reduce interstitial fibrosis and tubular atrophy; we therefore set out to explore its merit. In this review, we first provide background information on ischemia and reperfusion injury as well as interstitial fibrosis and tubular atrophy, after which we describe currently available approaches for preserving donor kidneys. We then present an evaluation of selected compounds. To identify promising compounds, we analyzed publications describing the effects of anti-fibrotic molecules in precision-cut kidneys slices, which are viable explants that can be cultured ex vivo for up to a few days whilst retaining functional and structural features. LY2109761, galunisertib, imatinib, nintedanib, and butaprost were shown to exert anti-fibrotic effects in slices within a relatively short timeframe (<48 h) and are therefore considered to be excellent candidates for follow-up ex vivo machine perfusion studies.
Collapse
Affiliation(s)
- L. Leonie van Leeuwen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Mitchel J. R. Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Affiliation(s)
- Krishna Kant Gupta
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamilnadu, India
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamilnadu, India
| |
Collapse
|
8
|
Muniappan L, Javidan A, Jiang W, Mohammadmoradi S, Moorleghen JJ, Katz WS, Balakrishnan A, Howatt DA, Subramanian V. Calpain Inhibition Attenuates Adipose Tissue Inflammation and Fibrosis in Diet-induced Obese Mice. Sci Rep 2017; 7:14398. [PMID: 29089532 PMCID: PMC5663911 DOI: 10.1038/s41598-017-14719-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
Adipose tissue macrophages have been proposed as a link between obesity and insulin resistance. However, the mechanisms underlying these processes are not completely defined. Calpains are calcium-dependent neutral cysteine proteases that modulate cellular function and have been implicated in various inflammatory diseases. To define whether activated calpains influence diet-induced obesity and adipose tissue macrophage accumulation, mice that were either wild type (WT) or overexpressing calpastatin (CAST Tg), the endogenous inhibitor of calpains were fed with high (60% kcal) fat diet for 16 weeks. CAST overexpression did not influence high fat diet-induced body weight and fat mass gain throughout the study. Calpain inhibition showed a transient improvement in glucose tolerance at 5 weeks of HFD whereas it lost this effect on glucose and insulin tolerance at 16 weeks HFD in obese mice. However, CAST overexpression significantly reduced adipocyte apoptosis, adipose tissue collagen and macrophage accumulation as detected by TUNEL, Picro Sirius and F4/80 immunostaining, respectively. CAST overexpression significantly attenuated obesity-induced inflammatory responses in adipose tissue. Furthermore, calpain inhibition suppressed macrophage migration to adipose tissue in vitro. The present study demonstrates a pivotal role for calpains in mediating HFD-induced adipose tissue remodeling by influencing multiple functions including apoptosis, fibrosis and inflammation.
Collapse
Affiliation(s)
- Latha Muniappan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Aida Javidan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Weihua Jiang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | | | - Wendy S Katz
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Deborah A Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA.
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Calpain-Dependent Degradation of Nucleoporins Contributes to Motor Neuron Death in a Mouse Model of Chronic Excitotoxicity. J Neurosci 2017; 37:8830-8844. [PMID: 28821644 DOI: 10.1523/jneurosci.0730-17.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/02/2017] [Accepted: 08/09/2017] [Indexed: 01/07/2023] Open
Abstract
Glutamate-mediated excitotoxicity induces neuronal death by altering various intracellular signaling pathways and is implicated as a common pathogenic pathway in many neurodegenerative diseases. In the case of motor neuron disease, there is significant evidence to suggest that the overactivation of AMPA receptors due to deficiencies in the expression and function of glial glutamate transporters GLT1 and GLAST plays an important role in the mechanisms of neuronal death. However, a causal role for glial glutamate transporter dysfunction in motor neuron death remains unknown. Here, we developed a new animal model of excitotoxicity by conditionally deleting astroglial glutamate transporters GLT1 and GLAST in the spinal cords of mice (GLAST+/-/GLT1-cKO). GLAST+/-/GLT1-cKO mice (both sexes) exhibited nuclear irregularity and calpain-mediated degradation of nuclear pore complexes (NPCs), which are responsible for nucleocytoplasmic transport. These abnormalities were associated with progressive motor neuron loss, severe paralysis, and shortened lifespan. The nuclear export inhibitor KPT-350 slowed but did not prevent motor neuron death, whereas long-term treatment of the AMPA receptor antagonist perampanel and the calpain inhibitor SNJ-1945 had more persistent beneficial effects. Thus, NPC degradation contributes to AMPA receptor-mediated excitotoxic motor neuronal death, and preventing NPC degradation has robust protective effects. Normalization of NPC function could be a novel therapeutic strategy for neurodegenerative disorders in which AMPA receptor-mediated excitotoxicity is a contributory factor.SIGNIFICANCE STATEMENT Despite glial glutamate transporter dysfunction leading to excitotoxicity has been documented in many neurological diseases, it remains unclear whether its dysfunction is a primary cause or secondary outcome of neuronal death at disease state. Here we show the combined loss of glial glutamate transporters GLT1 and GLAST in spinal cord caused motor neuronal death and hindlimb paralysis. Further, our novel mutant exhibits the nuclear irregularities and calpain-mediated progressive nuclear pore complex degradation. Our study reveals that glial glutamate transporter dysfunction is sufficient to cause motor neuronal death in vivo.
Collapse
|
10
|
Liu W, Li J, Song YS, Li Y, Jia YH, Zhao HD. Cdk5 links with DNA damage response and cancer. Mol Cancer 2017; 16:60. [PMID: 28288624 PMCID: PMC5348798 DOI: 10.1186/s12943-017-0611-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 02/05/2017] [Indexed: 12/17/2022] Open
Abstract
As an atypical member of cyclin dependent kinase family, Cyclin dependent kinase 5 (Cdk5) is considered as a neuron-specific kinase in the past decade due to the abundant existence of its activator p35 in post-mitotic neurons. Recent studies show that Cdk5 participates in a series of biological and pathological processes in non-neuronal cells, and is generally dysregulated in various cancer cells. The inhibition or knockdown of Cdk5 has been proven to play an anti-cancer role through various mechanisms, and can synergize the killing effect of chemotherapeutics. DNA damage response (DDR) is a series of regulatory events including DNA damage, cell-cycle arrest, regulation of DNA replication, and repair or bypass of DNA damage to ensure the maintenance of genomic stability and cell viability. Here we describe the regulatory mechanisms of Cdk5, its controversial roles in apoptosis and focus on its links to DDR and cancer.
Collapse
Affiliation(s)
- Wan Liu
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Jun Li
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Yu-Shu Song
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Yue Li
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Yu-Hong Jia
- Department of Pathophysiology, Dalian Medical University, Lvshun South Road West 9, Dalian, 116044, China.
| | - Hai-Dong Zhao
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China.
| |
Collapse
|
11
|
Toba J, Nikkuni M, Ishizeki M, Yoshii A, Watamura N, Inoue T, Ohshima T. PPARγ agonist pioglitazone improves cerebellar dysfunction at pre-Aβ deposition stage in APPswe/PS1dE9 Alzheimer's disease model mice. Biochem Biophys Res Commun 2016; 473:1039-1044. [PMID: 27059136 DOI: 10.1016/j.bbrc.2016.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is one of the best known neurodegenerative diseases; it causes dementia and its pathological features include accumulation of amyloid β (Aβ) and neurofibrillary tangles (NFTs) in the brain. Elevated Cdk5 activity and CRMP2 phosphorylation have been reported in the brains of AD model mice at the early stage of the disease, but the significance thereof in human AD remains unelucidated. We have recently reported that Aβ accumulation in the cerebellum of AD model APPswe/PS1dE9 (APP/PS1) mice, and cerebellar dysfunctions, such as impairment of motor coordination ability and long-term depression (LTD) induction, at the pre-Aβ accumulation stage. In the present study, we found increased phosphorylation levels of CRMP2 as well as increased p35 protein levels in the cerebellum of APP/PS1 mice. Interestingly, we show that pioglitazone, an agonist of peroxisome proliferator-activated receptor γ, normalized the p35 protein and CRMP2 phosphorylation levels in the cerebellum. Impaired motor coordination ability and LTD in APP/PS1 mice were ameliorated by pioglitazone treatment at the pre-Aβ accumulation stage. These results suggest a correlation between CRMP2 phosphorylation and AD pathophysiology, and indicate the effectiveness of pioglitazone treatment at the pre-Aβ accumulation stage in AD model mice.
Collapse
Affiliation(s)
- Junya Toba
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Miyu Nikkuni
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Masato Ishizeki
- Laboratory for Neurophysiology, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Aya Yoshii
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Naoto Watamura
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Takafumi Inoue
- Laboratory for Neurophysiology, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan.
| |
Collapse
|
12
|
Howatt DA, Balakrishnan A, Moorleghen JJ, Muniappan L, Rateri DL, Uchida HA, Takano J, Saido TC, Chishti AH, Baud L, Subramanian V. Leukocyte Calpain Deficiency Reduces Angiotensin II-Induced Inflammation and Atherosclerosis But Not Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol 2016; 36:835-45. [PMID: 26966280 DOI: 10.1161/atvbaha.116.307285] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 02/27/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiotensin II (AngII) infusion profoundly increases activity of calpains, calcium-dependent neutral cysteine proteases, in mice. Pharmacological inhibition of calpains attenuates AngII-induced aortic medial macrophage accumulation, atherosclerosis, and abdominal aortic aneurysm in mice. However, the precise functional contribution of leukocyte-derived calpains in AngII-induced vascular pathologies has not been determined. The purpose of this study was to determine whether calpains expressed in bone marrow (BM)-derived cells contribute to AngII-induced atherosclerosis and aortic aneurysms in hypercholesterolemic mice. APPROACH AND RESULTS To study whether leukocyte calpains contributed to AngII-induced aortic pathologies, irradiated male low-density lipoprotein receptor(-/-) mice were repopulated with BM-derived cells that were either wild-type or overexpressed calpastatin, the endogenous inhibitor of calpains. Mice were fed a fat-enriched diet and infused with AngII (1000 ng/kg per minute) for 4 weeks. Overexpression of calpastatin in BM-derived cells significantly attenuated AngII-induced atherosclerotic lesion formation in aortic arches, but had no effect on aneurysm formation. Using either BM-derived cells from calpain-1-deficient mice or mice with leukocyte-specific calpain-2 deficiency generated using cre-loxP recombination technology, further studies demonstrated that independent deficiency of either calpain-1 or -2 in leukocytes modestly attenuated AngII-induced atherosclerosis. Calpastatin overexpression significantly attenuated AngII-induced inflammatory responses in macrophages and spleen. Furthermore, calpain inhibition suppressed migration and adhesion of macrophages to endothelial cells in vitro. Calpain inhibition also significantly decreased hypercholesterolemia-induced atherosclerosis in the absence of AngII. CONCLUSIONS The present study demonstrates a pivotal role for BM-derived calpains in mediating AngII-induced atherosclerosis by influencing macrophage function.
Collapse
Affiliation(s)
- Deborah A Howatt
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Anju Balakrishnan
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Jessica J Moorleghen
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Latha Muniappan
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Debra L Rateri
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Haruhito A Uchida
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Jiro Takano
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Takaomi C Saido
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Athar H Chishti
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Laurent Baud
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Venkateswaran Subramanian
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.).
| |
Collapse
|
13
|
Takasugi T, Minegishi S, Asada A, Saito T, Kawahara H, Hisanaga SI. Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination. J Biol Chem 2015; 291:4649-57. [PMID: 26631721 DOI: 10.1074/jbc.m115.692871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 12/24/2022] Open
Abstract
Cdk5 is a versatile protein kinase that is involved in various neuronal activities, such as the migration of newborn neurons, neurite outgrowth, synaptic regulation, and neurodegenerative diseases. Cdk5 requires the p35 regulatory subunit for activation. Because Cdk5 is more abundantly expressed in neurons compared with p35, the p35 protein levels determine the kinase activity of Cdk5. p35 is a protein with a short half-life that is degraded by proteasomes. Although ubiquitination of p35 has been previously reported, the degradation mechanism of p35 is not yet known. Here, we intended to identify the ubiquitination site(s) in p35. Because p35 is myristoylated at the N-terminal glycine, the possible ubiquitination sites are the lysine residues in p35. We mutated all 23 Lys residues to Arg (p35 23R), but p35 23R was still rapidly degraded by proteasomes at a rate similar to wild-type p35. The degradation of p35 23R in primary neurons and the Cdk5 activation ability of p35 23R suggested the occurrence of ubiquitin-independent degradation of p35 in physiological conditions. We found that p35 has the amino acid sequence similar to the ubiquitin-independent degron in the NKX3.1 homeodomain transcription factor. An Ala mutation at Pro-247 in the degron-like sequence made p35 stable. These results suggest that p35 can be degraded by two degradation pathways: ubiquitin-dependent and ubiquitin-independent. The rapid degradation of p35 by two different methods would be a mechanism to suppress the production of p25, which overactivates Cdk5 to induce neuronal cell death.
Collapse
Affiliation(s)
| | | | - Akiko Asada
- From the Laboratory of Molecular Neuroscience and
| | - Taro Saito
- From the Laboratory of Molecular Neuroscience and
| | - Hiroyuki Kawahara
- Laboratory of Cellular Biochemistry, Department of Biological Sciences, and Graduate School of Sciences, Tokyo Metropolitan University, Mianami-osawa, Hachioji,Tokyo 192-0397, Japan
| | | |
Collapse
|
14
|
Jantzie LL, Winer JL, Corbett CJ, Robinson S. Erythropoietin Modulates Cerebral and Serum Degradation Products from Excess Calpain Activation following Prenatal Hypoxia-Ischemia. Dev Neurosci 2015; 38:15-26. [PMID: 26551007 DOI: 10.1159/000441024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/10/2015] [Indexed: 01/20/2023] Open
Abstract
Preterm infants suffer central nervous system (CNS) injury from hypoxia-ischemia and inflammation - termed encephalopathy of prematurity. Mature CNS injury activates caspase and calpain proteases. Erythropoietin (EPO) limits apoptosis mediated by activated caspases, but its role in modulating calpain activation has not yet been investigated extensively following injury to the developing CNS. We hypothesized that excess calpain activation degrades developmentally regulated molecules essential for CNS circuit formation, myelination and axon integrity, including neuronal potassium-chloride co-transporter (KCC2), myelin basic protein (MBP) and phosphorylated neurofilament (pNF), respectively. Further, we predicted that post-injury EPO treatment could mitigate CNS calpain-mediated degradation. Using prenatal transient systemic hypoxia-ischemia (TSHI) in rats to mimic CNS injury from extreme preterm birth, and postnatal EPO treatment with a clinically relevant dosing regimen, we found sustained postnatal excess cortical calpain activation following prenatal TSHI, as shown by the cleavage of alpha II-spectrin (αII-spectrin) into 145-kDa αII-spectrin degradation products (αII-SDPs) and p35 into p25. Postnatal expression of the endogenous calpain inhibitor calpastatin was also reduced following prenatal TSHI. Calpain substrate expression following TSHI, including cortical KCC2, MBP and NF, was modulated by postnatal EPO treatment. Calpain activation was reflected in serum levels of αII-SDPs and KCC2 fragments, and notably, EPO treatment also modulated KCC2 fragment levels. Together, these data indicate that excess calpain activity contributes to the pathogenesis of encephalopathy of prematurity. Serum biomarkers of calpain activation may detect ongoing cerebral injury and responsiveness to EPO or similar neuroprotective strategies.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, Mass., USA
| | | | | | | |
Collapse
|
15
|
Bhootada Y, Choudhury S, Gully C, Gorbatyuk M. Targeting Caspase-12 to Preserve Vision in Mice With Inherited Retinal Degeneration. Invest Ophthalmol Vis Sci 2015. [PMID: 26207309 DOI: 10.1167/iovs.15-16924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The unfolded protein response is known to contribute to the inherited retinal pathology observed in T17M rhodopsin (T17M) mice. Recently it has been demonstrated that the endoplasmic reticulum stress-associated caspase-12 is activated during progression of retinal degeneration in different animal models. Therefore, we wanted to explore the role of caspase-12 in the mechanism of retinopathy in T17M mice and determine if inhibiting apoptosis in this way is a viable approach for halting retinal degeneration. METHODS One, two-, and three-month-old C57BL6/J, caspase-12-/-, T17M, and T17M caspase-12-/- mice were analyzed by scotopic ERG, spectral-domain optical coherence tomography (SD-OCT), histology, quantitative (q)RT-PCR, and Western blot of retinal RNA and protein extracts. Calpain and caspase-3/7 activity assays were measured in postnatal (P) day 30 retinal extracts. RESULTS Caspase-12 ablation significantly prevented a decline in the a- and b-wave ERG amplitudes in T17M mice during three months, increasing the amplitudes from 232% to 212% and from 160% to 138%, respectively, as compared to T17M retinas. The SD-OCT results and photoreceptor row counts demonstrated preservation of retinal structural integrity and postponed photoreceptor cell death. The delay in photoreceptor cell death was due to significant decreases in the activity of caspase-3/7 and calpain, which correlated with an increase in calpastatin expression. CONCLUSIONS We validated caspase-12 as a therapeutic target, ablation of which significantly protects T17M photoreceptors from deterioration. Although the inhibition of apoptotic activity alone was not sufficient to rescue T17M photoreceptors, in combination with other nonapoptotic targets, caspase-12 could be used to treat inherited retinopathy.
Collapse
Affiliation(s)
- Yogesh Bhootada
- Department of Vision Sciences University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Shreyasi Choudhury
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Clark Gully
- Department of Vision Sciences University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Marina Gorbatyuk
- Department of Vision Sciences University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
16
|
Abstract
Cyclin dependent kinase-5 (Cdk5), a family member of the cyclin-dependent kinases, plays a pivotal role in the central nervous system. During embryogenesis, Cdk5 is indispensable for brain development and, in the adult brain, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation. However, Cdk5 activity becomes deregulated in several neurological disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, which leads to neurotoxicity. Therefore, precise control over Cdk5 activity is essential for its physiological functions. This Commentary covers the various mechanisms of Cdk5 regulation, including several recently identified protein activators and inhibitors of Cdk5 that control its activity in normal and diseased brains. We also discuss the autoregulatory activity of Cdk5 and its regulation at the transcriptional, post-transcriptional and post-translational levels. We finally highlight physiological and pathological roles of Cdk5 in the brain. Specific modulation of these protein regulators is expected to provide alternative strategies for the development of effective therapeutic interventions that are triggered by deregulation of Cdk5.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Institute of Psychiatric Research, Neuroscience Research Building, 320 W. 15th St., Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice. J Neurosci 2014; 34:9222-34. [PMID: 25009256 DOI: 10.1523/jneurosci.1132-14.2014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tau pathogenicity in Alzheimer's disease and other tauopathies is thought to involve the generation of hyperphosphorylated, truncated, and oligomeric tau species with enhanced neurotoxicity, although the generative mechanisms and the implications for disease therapy are not well understood. Here, we report a striking rescue from mutant tau toxicity in the JNPL3 mouse model of tauopathy. We show that pathological activation of calpains gives rise to a range of potentially toxic forms of tau, directly, and by activating cdk5. Calpain overactivation in brains of these mice is accelerated as a result of the marked depletion of the endogenous calpain inhibitor, calpastatin. When levels of this inhibitor are restored in neurons of JNPL3 mice by overexpressing calpastatin, tauopathy is prevented, including calpain-mediated breakdown of cytoskeletal proteins, cdk5 activation, tau hyperphosphorylation, formation of potentially neurotoxic tau fragments by either calpain or caspase-3, and tau oligomerization. Calpastatin overexpression also prevents loss of motor axons, delays disease onset, and extends survival of JNPL3 mice by 3 months to within the range of normal lifespan. Our findings support the therapeutic promise of highly specific calpain inhibition in the treatment of tauopathies and other neurodegenerative states.
Collapse
|
18
|
Diepenbroek M, Casadei N, Esmer H, Saido TC, Takano J, Kahle PJ, Nixon RA, Rao MV, Melki R, Pieri L, Helling S, Marcus K, Krueger R, Masliah E, Riess O, Nuber S. Overexpression of the calpain-specific inhibitor calpastatin reduces human alpha-Synuclein processing, aggregation and synaptic impairment in [A30P]αSyn transgenic mice. Hum Mol Genet 2014; 23:3975-89. [PMID: 24619358 DOI: 10.1093/hmg/ddu112] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lewy bodies, a pathological hallmark of Parkinson's disease (PD), contain aggregated alpha-synuclein (αSyn), which is found in several modified forms and can be discovered phosphorylated, ubiquitinated and truncated. Aggregation-prone truncated species of αSyn caused by aberrant cleavage of this fibrillogenic protein are hypothesized to participate in its sequestration into inclusions subsequently leading to synaptic dysfunction and neuronal death. Here, we investigated the role of calpain cleavage of αSyn in vivo by generating two opposing mouse models. We crossed into human [A30P]αSyn transgenic (i) mice deficient for calpastatin, a calpain-specific inhibitor, thus enhancing calpain activity (SynCAST(-)) and (ii) mice overexpressing human calpastatin leading to reduced calpain activity (SynCAST(+)). As anticipated, a reduced calpain activity led to a decreased number of αSyn-positive aggregates, whereas loss of calpastatin led to increased truncation of αSyn in SynCAST(-). Furthermore, overexpression of calpastatin decreased astrogliosis and the calpain-dependent degradation of synaptic proteins, potentially ameliorating the observed neuropathology in [A30P]αSyn and SynCAST(+) mice. Overall, our data further support a crucial role of calpains, particularly of calpain 1, in the pathogenesis of PD and in disease-associated aggregation of αSyn, indicating a therapeutic potential of calpain inhibition in PD.
Collapse
Affiliation(s)
- Meike Diepenbroek
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
| | - Hakan Esmer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
| | - Takaomi C Saido
- RIKEN Brain Science Institute, Laboratory for Proteolytic Neuroscience, Saitama 351-0198, Japan
| | - Jiro Takano
- RIKEN Brain Science Institute, Laboratory for Proteolytic Neuroscience, Saitama 351-0198, Japan
| | - Philipp J Kahle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, 72076 Tuebingen, Germany
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Mala V Rao
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Ronald Melki
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | - Laura Pieri
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | - Stefan Helling
- Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, 44780 Bochum, Germany and
| | - Katrin Marcus
- Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, 44780 Bochum, Germany and
| | - Rejko Krueger
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, 72076 Tuebingen, Germany
| | - Eliezer Masliah
- Department of Pathology and Department of Neurosciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92003-0624, USA
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany,
| | - Silke Nuber
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany, Department of Neurosciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92003-0624, USA
| |
Collapse
|
19
|
Seo J, Jo SA, Hwang S, Byun CJ, Lee HJ, Cho DH, Kim D, Koh YH, Jo I. Trichostatin A epigenetically increases calpastatin expression and inhibits calpain activity and calcium-induced SH-SY5Y neuronal cell toxicity. FEBS J 2013; 280:6691-701. [DOI: 10.1111/febs.12572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Jungwon Seo
- Department of Molecular Medicine; Ewha Womans University Medical School; Seoul South Korea
- Institute of Pharmaceutical Research and Development; College of Pharmacy; Wonkwang University; Iksan South Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science; BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan South Korea
- Department of Pharmacology; College of Pharmacy; Dankook University; Cheonan South Korea
| | - Soojin Hwang
- Department of Molecular Medicine; Ewha Womans University Medical School; Seoul South Korea
| | | | - Hyeon-Ju Lee
- Department of Nanobiomedical Science; BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan South Korea
- Department of Pharmacology; College of Pharmacy; Dankook University; Cheonan South Korea
| | - Du-Hyong Cho
- Department of Neuroscience; Konkuk University Medical School; Seoul South Korea
| | - Dueon Kim
- Institute of Pharmaceutical Research and Development; College of Pharmacy; Wonkwang University; Iksan South Korea
| | - Young Ho Koh
- Division of Brain Disease; Center for Biomedical Sciences; National Institute of Health; Osong South Korea
| | - Inho Jo
- Department of Molecular Medicine; Ewha Womans University Medical School; Seoul South Korea
| |
Collapse
|
20
|
Yang R, Xi C, Sita DR, Sakai S, Tsuchiya K, Hara H, Shen Y, Qu H, Fang R, Mitsuyama M, Kawamura I. The RD1 locus in the Mycobacterium tuberculosis genome contributes to the maturation and secretion of IL-1α from infected macrophages through the elevation of cytoplasmic calcium levels and calpain activation. Pathog Dis 2013; 70:51-60. [PMID: 23913588 DOI: 10.1111/2049-632x.12075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/30/2013] [Accepted: 07/23/2013] [Indexed: 11/30/2022] Open
Abstract
Region of difference 1 (RD1) is a genomic locus in the Mycobacterium tuberculosis genome that has been shown to participate in the virulence of the bacterium, induction of cell death, and cytokine secretion in infected macrophages. In this study, we investigated the role of RD1 in interleukin-1α (IL-1α) secretion. M. tuberculosis H37Rv strain, but not a mutant strain deficient for RD1 (∆RD1), significantly induced IL-1α secretion from infected macrophages. Although IL-1α secretion was only observed in H37Rv-infected macrophages, there was no difference in the level of IL-1α transcription and pro-IL1α synthesis after infection with H37Rv and ∆RD1. Interestingly, ∆RD1 infection did not increase intracellular Ca(2+) levels, and Ca(2+) chelators markedly inhibited IL-1α secretion in response to H37Rv infection. Moreover, the inability of ∆RD1 to induce IL-1α secretion was restored by treatment with the calcium ionophore A23187. A significant increase in calpain activity was detected in macrophages infected with H37Rv, but not with ∆RD1, and calpain inhibitors abrogated IL-1α secretion. Taken together, these results suggest that in M. tuberculosis-infected macrophages, RD1 contributed to maturation and secretion of IL-1α by enhancing the influx of Ca(2+) followed by calpain activation.
Collapse
Affiliation(s)
- Ruili Yang
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China; Department of Microbiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Subramanian V, Moorleghen JJ, Balakrishnan A, Howatt DA, Chishti AH, Uchida HA. Calpain-2 compensation promotes angiotensin II-induced ascending and abdominal aortic aneurysms in calpain-1 deficient mice. PLoS One 2013; 8:e72214. [PMID: 23977256 PMCID: PMC3747148 DOI: 10.1371/journal.pone.0072214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/09/2013] [Indexed: 02/01/2023] Open
Abstract
Background and Objective Recently, we demonstrated that angiotensin II (AngII)-infusion profoundly increased both aortic protein and activity of calpains, calcium-activated cysteine proteases, in mice. In addition, pharmacological inhibition of calpain attenuated AngII-induced abdominal aortic aneurysm (AA) in mice. Recent studies have shown that AngII infusion into mice leads to aneurysmal formation localized to the ascending aorta. However, the precise functional contribution of calpain isoforms (-1 or -2) in AngII-induced abdominal AA formation is not known. Similarly, a functional role of calpain in AngII-induced ascending AA remains to be defined. Using BDA-410, an inhibitor of calpains, and calpain-1 genetic deficient mice, we examined the relative contribution of calpain isoforms in AngII-induced ascending and abdominal AA development. Methodology/Results To investigate the relative contribution of calpain-1 and -2 in development of AngII-induced AAs, male LDLr −/− mice that were either calpain-1 +/+ or −/− were fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min) for 4 weeks. Calpain-1 deficiency had no significant effect on body weight or blood pressure during AngII infusion. Moreover, calpain-1 deficiency showed no discernible effects on AngII-induced ascending and abdominal AAs. Interestingly, AngII infusion induced increased expression of calpain-2 protein, thus compensating for total calpain activity in aortas of calpain-1 deficient mice. Oral administration of BDA-410, a calpain inhibitor, along with AngII-infusion significantly attenuated AngII-induced ascending and abdominal AA formation in both calpain-1 +/+ and −/− mice as compared to vehicle administered mice. Furthermore, BDA-410 administration attenuated AngII-induced aortic medial hypertrophy and macrophage accumulation. Western blot and immunostaining analyses revealed BDA-410 administration attenuated AngII-induced C-terminal fragmentation of filamin A, an actin binding cytoskeletal protein in aorta. Conclusion Calpain-2 compensates for loss of calpain-1, and both calpain isoforms are involved in AngII-induced aortic aneurysm formation in mice.
Collapse
Affiliation(s)
- Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America.
| | | | | | | | | | | |
Collapse
|
22
|
Wang CY, Xie JW, Wang T, Xu Y, Cai JH, Wang X, Zhao BL, An L, Wang ZY. Hypoxia-triggered m-calpain activation evokes endoplasmic reticulum stress and neuropathogenesis in a transgenic mouse model of Alzheimer's disease. CNS Neurosci Ther 2013; 19:820-33. [PMID: 23889979 DOI: 10.1111/cns.12151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/25/2013] [Accepted: 06/16/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress-triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death. AIMS In this study, we tested the hypothesis that hypoxia-induced m-calpain activation is involved in ER stress-mediated AD pathogenesis. METHOD We employed a hypoxic exposure in APP/PS1 transgenic mice and SH-SY5Y cells overexpressing human Swedish mutation APP (APPswe). RESULTS We observed that hypoxia impaired spatial learning and memory in the APP/PS1 mouse. In the transgenic mouse brain, hypoxia increased the UPR, upregulated apoptotic signaling, enhanced the activation of calpain and glycogen synthase kinase-3β (GSK3β), and increased tau hyperphosphorylation and β-amyloid deposition. In APPswe cells, m-calpain silencing reduced hypoxia-induced cellular dysfunction and resulted in suppression of GSK3β activation, ER stress and tau hyperphosphorylation reduction as well as caspase pathway suppression. CONCLUSION These findings demonstrate that hypoxia-induced abnormal calpain activation may increase ER stress-induced apoptosis in AD pathogenesis. In contrast, a reduction in the expression of the m-calpain isoform reduces ER stress-linked apoptosis that is triggered by hypoxia. These findings suggest that hypoxia-triggered m-calpain activation is involved in ER stress-mediated AD pathogenesis. m-calpain is a potential target for AD therapeutics.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Department of Pathophysiology, Key Laboratory of Medical Cell Biology of Ministry of Education of China, China Medical University, Shenyang, China; Medical Research Laboratory, Jilin Medical College, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schoch KM, von Reyn CR, Bian J, Telling GC, Meaney DF, Saatman KE. Brain injury-induced proteolysis is reduced in a novel calpastatin-overexpressing transgenic mouse. J Neurochem 2013; 125:909-20. [PMID: 23305291 PMCID: PMC3676438 DOI: 10.1111/jnc.12144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/27/2012] [Accepted: 12/23/2012] [Indexed: 11/29/2022]
Abstract
The calpain family of calcium-dependent proteases has been implicated in a variety of diseases and neurodegenerative pathologies. Prolonged activation of calpains results in proteolysis of numerous cellular substrates including cytoskeletal components and membrane receptors, contributing to cell demise despite coincident expression of calpastatin, the specific inhibitor of calpains. Pharmacological and gene-knockout strategies have targeted calpains to determine their contribution to neurodegenerative pathology; however, limitations associated with treatment paradigms, drug specificity, and genetic disruptions have produced inconsistent results and complicated interpretation. Specific, targeted calpain inhibition achieved by enhancing endogenous calpastatin levels offers unique advantages in studying pathological calpain activation. We have characterized a novel calpastatin-overexpressing transgenic mouse model, demonstrating a substantial increase in calpastatin expression within nervous system and peripheral tissues and associated reduction in protease activity. Experimental activation of calpains via traumatic brain injury resulted in cleavage of α-spectrin, collapsin response mediator protein-2, and voltage-gated sodium channel, critical proteins for the maintenance of neuronal structure and function. Calpastatin overexpression significantly attenuated calpain-mediated proteolysis of these selected substrates acutely following severe controlled cortical impact injury, but with no effect on acute hippocampal neurodegeneration. Augmenting calpastatin levels may be an effective method for calpain inhibition in traumatic brain injury and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kathleen M. Schoch
- Spinal Cord and Brain Injury Research Center and Department of
Physiology, University of Kentucky College of Medicine, Lexington, KY 40536
| | | | - Jifeng Bian
- Prion Research Center (PRC), Department of Microbiology, Immunology,
and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Glenn C. Telling
- Prion Research Center (PRC), Department of Microbiology, Immunology,
and Pathology, Colorado State University, Fort Collins, CO 80523
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania,
Philadelphia, PA 19104
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center and Department of
Physiology, University of Kentucky College of Medicine, Lexington, KY 40536
- Address correspondence to: Kathryn E.
Saatman, Ph.D., Spinal Cord and Brain Injury Research Center (SCoBIRC)
University of Kentucky B473 Biomedical and Biological Sciences Research Building
(BBSRB) 741 South Limestone Street Lexington, KY 40536-0509 (859) 323-5145 (859)
257-5737 (fax)
| |
Collapse
|
24
|
Yamashita T, Hideyama T, Hachiga K, Teramoto S, Takano J, Iwata N, Saido TC, Kwak S. A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nat Commun 2012; 3:1307. [DOI: 10.1038/ncomms2303] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/15/2012] [Indexed: 12/13/2022] Open
|
25
|
Hasan KMM, Rahman MS, Arif KMT, Sobhani ME. Psychological stress and aging: role of glucocorticoids (GCs). AGE (DORDRECHT, NETHERLANDS) 2012; 34:1421-1433. [PMID: 21971999 PMCID: PMC3528378 DOI: 10.1007/s11357-011-9319-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Abstract
Psychological stress has extreme adverse consequences on health. However, the molecular mechanisms that mediate and accelerate the process of aging due to stress hormone are not well defined. This review has focused on diverse molecular paths that come out in response to chronic psychological stress via releasing of excessive glucocorticoids (GCs), involved in the aging process. GCs suppress transcription of nuclear cell adhesion molecules which impair synaptic plasticity, memory formation, and cognitive ability. Again, GCs promote muscle atrophy by means of motivating ubiquitin proteasome system and can repress muscle protein synthesis by inhibition of PI3-kinase/Akt pathway. GCs also inhibit interleukin-2 synthesis through suppressing T cell receptor signal that leads to loss of T cell activation, proliferation, and B-cell activation. Moreover, GCs increase the expression of collagenase-3, RANK ligand, and colony stimulating factor-1 that induce bone resorption. In general, stress-induced GCs can play causal role for aging and age-related disorders.
Collapse
Affiliation(s)
- K. M. Mehedi Hasan
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208 Bangladesh
| | - Md. Shaifur Rahman
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208 Bangladesh
| | - K. M. T. Arif
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208 Bangladesh
| | - Mahbub E. Sobhani
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208 Bangladesh
| |
Collapse
|
26
|
Calpain inhibition attenuates angiotensin II-induced abdominal aortic aneurysms and atherosclerosis in low-density lipoprotein receptor-deficient mice. J Cardiovasc Pharmacol 2012; 59:66-76. [PMID: 21964156 DOI: 10.1097/fjc.0b013e318235d5ea] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic infusion of angiotensin II (AngII) augments atherosclerosis and abdominal aortic aneurysm (AAA) formation in hypercholesterolemic mice. AngII-induced AAAs are associated with medial macrophage accumulation and matrix metalloproteinase (MMP) activation. Inhibition of calpain, a calcium-activated neutral cysteine protease, by overexpression of its endogenous inhibitor, calpastatin, attenuates AngII-induced leukocyte infiltration, perivascular inflammation, and MMP activation in mice. The purpose of this study was to define whether pharmacological inhibition of calpain influences AngII-induced AAAs in hypercholesterolemic mice. Male low-density lipoprotein receptor-/- mice were fed a fat-enriched diet and administered with either vehicle or a calpain-specific inhibitor, BDA-410 (30 mg/kg per day) for 5 weeks. After 1 week of feeding, mice were infused with AngII (1000 ng/kg per minute) for 4 weeks. AngII-infusion profoundly increased aortic calpain protein and activity. BDA-410 administration had no effect on plasma cholesterol concentrations or AngII-increased systolic blood pressure. Calpain inhibition significantly attenuated AngII-induced AAA formation and atherosclerosis development. BDA-410 administration attenuated activation of MMP12, proinflammatory cytokines (IL-6, monocyte chemoattractant protein-1), and macrophage infiltration into the aorta. BDA-410 administration significantly attenuated thioglycolate-elicited macrophage accumulation in the peritoneal cavity. We conclude that calpain inhibition using BDA-410 attenuated AngII-induced AAA formation and atherosclerosis development in low-density lipoprotein receptor-/- mice.
Collapse
|
27
|
High Molecular Weight Calmodulin-Binding Protein: 20 Years Onwards—A Potential Therapeutic Calpain Inhibitor. Cardiovasc Drugs Ther 2012; 26:321-30. [DOI: 10.1007/s10557-012-6399-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Elkind E, Vaisid T, Kornspan JD, Barnoy S, Rottem S, Kosower NS. Calpastatin upregulation in Mycoplasma hyorhinis-infected cells is promoted by the mycoplasma lipoproteins via the NF-κB pathway. Cell Microbiol 2012; 14:840-51. [PMID: 22288381 DOI: 10.1111/j.1462-5822.2012.01760.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mycoplasma hyorhinis frequently contaminates cultured cells, with effects on synthetic and metabolic pathways. We demonstrated for the first time that contamination of cells by a strain of M. hyorhinis (NDMh) results in increased levels of calpastatin (the endogenous inhibitor of the ubiquitous Ca(2+) -dependent protease calpain). We now show that the calpastatin upregulation by NDMh in neuroblastoma SH-SY5Y cells resides in the NDMh lipoprotein fraction (LPP), via the NF-κB transcription pathway. NF-κB activation requires dissociation of the cytoplasmic NF-κB/IκB complex followed by NF-κB translocation to the nucleus. NDMh-LPP induced translocation of the NF-κB RelA subunit to the nucleus and upregulated calpastatin. RelA translocation and calpastatin elevation were prevented when dissociation of the NF-κB/IκB complex was inhibited either by transfection with the non-phosphorylatable IκB mutant ΔNIκBα, or by using PS1145, an inhibitor of the IκB kinase (IKK complex). Increased calpastatin levels attenuate calpain-related amyloid-β-peptide and Ca(2+) -toxicity (these are central to the pathogenesis of Alzheimer's Disease). LPP-induced elevation of calpastatin provides an example of effects on non-inflammatory intracellular proteins, the outcome being significant alterations in host cell functions. Since calpastatin level is important in the control of calpain activity, mycoplasmal LPP may be of interest in treating some pathological processes involving excessive calpain activation.
Collapse
Affiliation(s)
- Esther Elkind
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|