1
|
Halperin ST, ’t Hart BA, Luchicchi A, Schenk GJ. The Forgotten Brother: The Innate-like B1 Cell in Multiple Sclerosis. Biomedicines 2022; 10:606. [PMID: 35327408 PMCID: PMC8945227 DOI: 10.3390/biomedicines10030606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS), traditionally considered a chronic autoimmune attack against the insulating myelin sheaths around axons. However, the exact etiology has not been identified and is likely multi-factorial. Recently, evidence has been accumulating that implies that autoimmune processes underlying MS may, in fact, be triggered by pathological processes initiated within the CNS. This review focuses on a relatively unexplored immune cell-the "innate-like" B1 lymphocyte. The B1 cell is a primary-natural-antibody- and anti-inflammatory-cytokine-producing cell present in the healthy brain. It has been recently shown that its frequency and function may differ between MS patients and healthy controls, but its exact involvement in the MS pathogenic process remains obscure. In this review, we propose that this enigmatic cell may play a more prominent role in MS pathology than ever imagined. We aim to shed light on the human B1 cell in health and disease, and how dysregulation in its delicate homeostatic role could impact MS. Furthermore, novel therapeutic avenues to restore B1 cells' beneficial functions will be proposed.
Collapse
Affiliation(s)
| | | | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| |
Collapse
|
2
|
Cawley JL, Jordan LR, Wittenberg NJ. Detection and Characterization of Vesicular Gangliosides Binding to Myelin-Associated Glycoprotein on Supported Lipid Bilayers. Anal Chem 2021; 93:1185-1192. [PMID: 33296186 DOI: 10.1021/acs.analchem.0c04412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the nervous system, a myelin sheath that originates from oligodendrocytes or Schwann cells wraps around axons to facilitate electrical signal transduction. The interface between an axon and myelin is maintained by a number of biomolecular interactions. Among the interactions are those between GD1a and GT1b gangliosides on the axon and myelin-associated glycoprotein (MAG) on myelin. Interestingly, these interactions can also inhibit neuronal outgrowth. Ganglioside-MAG interactions are often studied in cellular or animal models where their relative concentrations are not easily controlled or in assays where the gangliosides and MAG are not presented as part of fluid lipid bilayers. Here, we present an approach to characterize MAG-ganglioside interactions in real time, where MAG, GD1a, and GT1b contents are controlled and they are in their in vivo orientation within fluid lipid bilayers. Using a quartz crystal microbalance with dissipation monitoring (QCM-D) biosensor functionalized with a supported lipid bilayer (SLB) and MAG, we detect vesicular GD1a and GT1b binding and determine the interaction kinetics as a function of vesicular ganglioside content. MAG-bound vesicles are deformed similarly, regardless of the ganglioside or its mole fraction. We further demonstrate how MAG-ganglioside interactions can be disrupted by antiganglioside antibodies that override MAG-based neuron growth inhibition.
Collapse
Affiliation(s)
- Jennie L Cawley
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Luke R Jordan
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Zhong W, Huang Q, Zeng L, Hu Z, Tang X. Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke. Int J Med Sci 2019; 16:1492-1503. [PMID: 31673241 PMCID: PMC6818210 DOI: 10.7150/ijms.35158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Thrombolytic therapy, the only established treatment to reduce the neurological deficits caused by ischemic stroke, is limited by time window and potential complications. Therefore, it is necessary to develop new therapeutic strategies to improve neuronal growth and neurological function following ischemic stroke. Membrane lipid rafts (MLRs) are crucial structures for neuron survival and growth signaling pathways. Caveolin-1 (Cav-1), the main scaffold protein present in MLRs, targets many neural growth proteins and promotes growth of neurons and dendrites. Targeting Cav-1 may be a promising therapeutic strategy to enhance neuroplasticity after cerebral ischemia. This review addresses the role of Cav-1 and MLRs in neuronal growth after ischemic stroke, with an emphasis on the mechanisms by which Cav-1/MLRs modulate neuroplasticity via related receptors, signaling pathways, and gene expression. We further discuss how Cav-1/MLRs may be exploited as a potential therapeutic target to restore neuroplasticity after ischemic stroke. Finally, several representative pharmacological agents known to enhance neuroplasticity are discussed in this review.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
4
|
Fereidan-Esfahani M, Nayfeh T, Warrington A, Howe CL, Rodriguez M. IgM Natural Autoantibodies in Physiology and the Treatment of Disease. Methods Mol Biol 2019; 1904:53-81. [PMID: 30539466 DOI: 10.1007/978-1-4939-8958-4_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies are vital components of the adaptive immune system for the recognition and response to foreign antigens. However, some antibodies recognize self-antigens in healthy individuals. These autoreactive antibodies may modulate innate immune functions. IgM natural autoantibodies (IgM-NAAs) are a class of primarily polyreactive immunoglobulins encoded by germline V-gene segments which exhibit low affinity but broad specificity to both foreign and self-antigens. Historically, these autoantibodies were closely associated with autoimmune disease. Nevertheless, not all human autoantibodies are pathogenic and compelling evidence indicates that IgM-NAAs may exert a spectrum of effects from injurious to protective depending upon cellular and molecular context. In this chapter, we review the current state of knowledge regarding the potential physiological and therapeutic roles of IgM-NAAs in different disease conditions such as atherosclerosis, cancer, and autoimmune disease. We also describe the discovery of two reparative IgM-NAAs by our laboratory and delineate their proposed mechanisms of action in central nervous system (CNS) disease.
Collapse
Affiliation(s)
| | - Tarek Nayfeh
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | | |
Collapse
|
5
|
Kunbaz A, Warrington AE, Perwein MK, Fereidan-Esfahani M, Rodriguez M. A natural human monoclonal antibody protects from axonal injury in different CNS degenerative disease models. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2017-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Axon regeneration after CNS injury is incomplete. This is partially due to the presence of multiple growth inhibitory molecules within myelin that prevent axonal extension. These inhibitors include myelin-associated glycoprotein, Nogo and oligodendrocyte myelin glycoprotein. A natural human recombinant antibody, rHIgM12, was identified by its ability to promote neurite outgrowth in vitro. rHIgM12 overrides the neurite outgrowth inhibition of myelin by binding with high affinity to neuronal PSA-NCAM and gangliosides. This neurite outgrowth is accompanied by increased α-tubulin tyrosination and decreased acetylation which occurs after treatment with rHIgM12. rHIgM12 is efficacious in murine models of human multiple sclerosis and amyotrophic lateral sclerosis, improving axon survival and neurologic function. rHIgM12 has great promise as a therapeutic molecule in a number of CNS disorders characterized by neuronal loss and axonal transection including multiple sclerosis. This review will focus on rHIgM12 discovery, effects in preclinical models and potential applications as a therapeutic reagent for CNS disease.
Collapse
Affiliation(s)
- Ahmad Kunbaz
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Maria K Perwein
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Watzlawik JO, Kahoud RJ, Wootla B, Painter MM, Warrington AE, Carey WA, Rodriguez M. Antibody Binding Specificity for Kappa (Vκ) Light Chain-containing Human (IgM) Antibodies: Polysialic Acid (PSA) Attached to NCAM as a Case Study. J Vis Exp 2016. [PMID: 27404858 PMCID: PMC4993309 DOI: 10.3791/54139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antibodies of the IgM isotype are often neglected as potential therapeutics in human trials, animal models of human diseases as well as detecting agents in standard laboratory techniques. In contrast, several human IgMs demonstrated proof of efficacy in cancer models and models of CNS disorders including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Reasons for their lack of consideration include difficulties to express, purify and stabilize IgM antibodies, challenge to identify (non-protein) antigens, low affinity binding and fundamental knowledge gaps in carbohydrate and lipid research. This manuscript uses HIgM12 as an example to provide a detailed protocol to detect antigens by Western blotting, immunoprecipitations and immunocytochemistry. HIgM12 targets polysialic acid (PSA) attached to the neural cell adhesion molecule (NCAM). Early postnatal mouse brain tissue from wild type (WT) and NCAM knockout (KO) mice lacking the three major central nervous system (CNS) splice variants NCAM180, 140 and 120 was used to evaluate the importance of NCAM for binding to HIgM12. Further enzymatic digestion of CNS tissue and cultured CNS cells using endoneuraminidases led us to identify PSA as the specific binding epitope for HIgM12.
Collapse
Affiliation(s)
- Jens O Watzlawik
- Department of Neurology, Mayo Clinic; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic;
| | - Robert J Kahoud
- Department of Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic; Department of Pediatric and Adolescent Medicine, Mayo Clinic
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic
| | - Meghan M Painter
- Department of Neurology, Mayo Clinic; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic
| | - Arthur E Warrington
- Department of Neurology, Mayo Clinic; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic
| | - William A Carey
- Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic; Division of Neonatal Medicine, Mayo Clinic
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic;
| |
Collapse
|
7
|
Dasari H, Wootla B, Warrington AE, Rodriguez M. Concomitant Use of Neuroprotective Drugs in Neuro Rehabilitation of Multiple Sclerosis. ACTA ACUST UNITED AC 2016; 4. [PMID: 27595123 PMCID: PMC5006625 DOI: 10.4172/2329-9096.1000348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We provide an overview of rehabilitation in neurological diseases. A large amount of literature available on neurorehabilitation is based from the rehabilitative work on stroke and spinal cord injuries. After a brief description of rehabilitation, the potential application of neurorehabilitation in neurodegenerative diseases specifically multiple sclerosis (MS) is summarized. Since MS causes a wide variety of symptoms, the rehabilitation in MS patients may benefit from an interdisciplinary approach that encloses physiotherapy, cognitive rehabilitation, psychological therapy, occupational therapy, and other methods to improve fatigue. Neurorehabilitation helps patients to reach and maintain their optimal physical, psychological and intellectual, levels but it does not reverse long-term disabilities that arise from neurological disorders. This calls for the need of better neuroregenerative and neuroprotective treatment strategies in addition to neurorehabilitation. We discuss neuroprotective drugs aimed at preventing axonal, neuronal, myelin and oligodendrocyte damage and cell death that are approved and others that are currently in clinical trials, with an emphasis on human derived natural antibodies with remyleination potential. Our investigative group developed recombinant natural human IgM antibodies against oligodendrocytes and neurons with a potential for CNS repair and remyleination. One such recombinant antibody, rHIgM22 completed a phase 1 clinical trial with no toxicity and with an objective of promoting remyleination in multiple sclerosis. Inclusion of these drugs as a multifaceted approach may further enhance the efficacy of neurorehabilitation in neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Harika Dasari
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Arthur E Warrington
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Wootla B, Denic A, Warrington AE, Rodriguez M. A monoclonal natural human IgM protects axons in the absence of remyelination. J Neuroinflammation 2016; 13:94. [PMID: 27126523 PMCID: PMC4850699 DOI: 10.1186/s12974-016-0561-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/24/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Whereas demyelination underlies early neurological symptoms in multiple sclerosis (MS), axonal damage is considered critical for permanent chronic deficits. Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic induced demyelinating disease (TMEV-IDD) with progressive axonal loss and neurologic dysfunction similar to progressive forms of MS. We previously reported that treatment of chronic TMEV-IDD mice with a neurite outgrowth-promoting natural human antibody, HIgM12, improved brainstem NAA concentrations and preserved functional motor activity. In order to translate this antibody toward clinical trial, we generated a fully human recombinant form of HIgM12, rHIgM12, determined the optimal in vivo dose for functional improvement in TMEV-IDD, and evaluated the functional preservation of descending spinal cord axons by retrograde labeling. FINDINGS SJL/J mice at 45 to 90 days post infection (dpi) were studied. A single intraperitoneal dose of 0.25 mg/kg of rHIgM12 per mouse is sufficient to preserve motor function in TMEV-IDD. The optimal dose was 10 mg/kg. rHIgM12 treatment protected the functional transport in spinal cord axons and led to 40 % more Fluoro-Gold-labeled brainstem neurons in retrograde transport studies. This suggests that axons are not only present but also functionally competent. rHIgM12-treated mice also contained more mid-thoracic (T6) spinal cord axons than controls. CONCLUSIONS This study confirms that a fully human recombinant neurite outgrowth-promoting monoclonal IgM is therapeutic in a model of progressive MS using multiple reparative readouts. The minimum effective dose is similar to that of a remyelination-promoting monoclonal human IgM discovered by our group that is presently in clinical trials for MS.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aleksandar Denic
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Arthur E Warrington
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Wootla B, Watzlawik JO, Stavropoulos N, Wittenberg NJ, Dasari H, Abdelrahim MA, Henley JR, Oh SH, Warrington AE, Rodriguez M. Recent Advances in Monoclonal Antibody Therapies for Multiple Sclerosis. Expert Opin Biol Ther 2016; 16:827-839. [PMID: 26914737 DOI: 10.1517/14712598.2016.1158809] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the CNS and results in neurological disability. Existing immunomodulatory and immunosuppressive approaches lower the number of relapses but do not cure or reverse existing deficits nor improve long-term disability in MS patients. AREAS COVERED Monogenic antibodies were described as treatment options for MS, however the immunogenicity of mouse antibodies hampered the efficacy of potential therapeutics in humans. Availability of improved antibody production technologies resulted in a paradigm shift in MS treatment strategies. In this review, an overview of immunotherapies for MS that use conventional monoclonal antibodies reactive to immune system and their properties and mechanisms of action will be discussed, including recent advances in MS therapeutics and highlight natural autoantibodies (NAbs) that directly target CNS cells. EXPERT OPINION Recent challenges for MS therapy are the identification of relevant molecular and cellular targets, time frame of treatment, and antibody toxicity profiles to identify safe treatment options for MS patients. The application of monoclonal antibody therapies with better biological efficacy associated with minimum side effects possesses huge clinical potential. Advances in monoclonal antibody technologies that directly target cells of nervous system may promote the CNS regeneration field from bench to bedside.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Nikolaos Stavropoulos
- Department of General Medicine, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Simkova 870, Hradec Kralove 1, 500 38, Czech Republic
| | - Nathan J Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA.,Department of Biomedical Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA
| | - Harika Dasari
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Murtada A Abdelrahim
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - John R Henley
- Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA.,Department of Biomedical Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA
| | - Arthur E Warrington
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Xu X, Denic A, Jordan LR, Wittenberg NJ, Warrington AE, Wootla B, Papke LM, Zoecklein LJ, Yoo D, Shaver J, Oh SH, Pease LR, Rodriguez M. A natural human IgM that binds to gangliosides is therapeutic in murine models of amyotrophic lateral sclerosis. Dis Model Mech 2015; 8:831-42. [PMID: 26035393 PMCID: PMC4527295 DOI: 10.1242/dmm.020727] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, fatal neurological disease that primarily affects spinal cord anterior horn cells and their axons for which there is no treatment. Here we report the use of a recombinant natural human IgM that binds to the surface of neurons and supports neurite extension, rHIgM12, as a therapeutic strategy in murine models of human ALS. A single 200 µg intraperitoneal dose of rHIgM12 increases survival in two independent genetic-based mutant SOD1 mouse strains (SOD1G86R and SOD1G93A) by 8 and 10 days, delays the onset of neurological deficits by 16 days, delays the onset of weight loss by 5 days, and preserves spinal cord axons and anterior horn neurons. Immuno-overlay of thin layer chromatography and surface plasmon resonance show that rHIgM12 binds with high affinity to the complex gangliosides GD1a and GT1b. Addition of rHIgM12 to neurons in culture increases α-tubulin tyrosination levels, suggesting an alteration of microtubule dynamics. We previously reported that a single peripheral dose of rHIgM12 preserved neurological function in a murine model of demyelination with axon loss. Because rHIgM12 improves three different models of neurological disease, we propose that the IgM might act late in the cascade of neuronal stress and/or death by a broad mechanism. Summary: A single peripheral dose of a recombinant natural human IgM increases lifespan and delays neurological deficits in mouse models of human ALS.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Luke R Jordan
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nathan J Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Bharath Wootla
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Louisa M Papke
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Daehan Yoo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonah Shaver
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Watzlawik JO, Kahoud RJ, Ng S, Painter MM, Papke LM, Zoecklein L, Wootla B, Warrington AE, Carey WA, Rodriguez M. Polysialic acid as an antigen for monoclonal antibody HIgM12 to treat multiple sclerosis and other neurodegenerative disorders. J Neurochem 2015; 134:865-78. [PMID: 25866077 DOI: 10.1111/jnc.13121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 01/15/2023]
Abstract
CNS regeneration is a desirable goal for diseases of brain and spinal cord. Current therapeutic strategies for the treatment of multiple sclerosis (MS) aim to eliminate detrimental effects of the immune system, so far without reversing disability or affecting long-term prognosis in patients. Approachable molecular targets that stimulate CNS repair are not part of the clinical praxis or have not been identified yet. The purpose of this study was to identify the molecular target of the human monoclonal antibody HIgM12. HIgM12 reverses motor deficits in chronically demyelinated mice, a model of MS. Here, we identified polysialic acid (PSA) attached to the neural cell adhesion molecule (NCAM) as the antigen for HIgM12 by using different NCAM knockout strains and through PSA removal from the NCAM protein core. Antibody binding to CNS tissue and primary cells, antibody-mediated cell adhesion, and neurite outgrowth on HIgM12-coated nitrocellulose was detected only in the presence of PSA as assessed by western blotting, immunoprecipitation, immunocytochemistry, and histochemistry. We conclude that HIgM12 mediates its in vivo and in vitro effects through binding to PSA and has the potential to be an effective therapy for MS and neurodegenerative diseases. The human antibody HIgM12 stimulates neurite outgrowth in vitro and promotes function in chronically demyelinated mice, a model of multiple sclerosis. The cellular antigen for HIgM12 was undetermined. Here, we identified polysialic acid attached to NCAM (neural cell adhesion molecule) as the cellular target for HIgM12. This includes glial fibrillary acidic protein (GFAP)-positive mouse astrocytes (GFAP, red; HIgM12, green; DAPI, blue) among other cell types of the central nervous system. These findings indicate a new strategy for the treatment of neuro-motor disorders including multiple sclerosis.
Collapse
Affiliation(s)
- Jens O Watzlawik
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Robert J Kahoud
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Shermayne Ng
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Meghan M Painter
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Louisa M Papke
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Laurie Zoecklein
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Arthur E Warrington
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - William A Carey
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Xu X, Ng SM, Hassouna E, Warrington A, Oh SH, Rodriguez M. Human-derived natural antibodies: biomarkers and potential therapeutics. FUTURE NEUROLOGY 2015; 10:25-39. [PMID: 25678860 DOI: 10.2217/fnl.14.62] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The immune system generates antibodies and antigen-specific T-cells as basic elements of the immune networks that differentiate self from non-self in a finely tuned manner. The antigen-specific nature of immune responses ensures that normal immune activation contains non-self when tolerating self. Here we review the B-1 subset of lymphocytes which produce self-reactive antibodies. By analyzing the IgM class of natural antibodies that recognize antigens from the nervous system, we emphasize that natural antibodies are biomarkers of how the immune system monitors the host. The immune response activated against self can be detrimental when triggered in an autoimmune genetic background. In contrast, tuning immune activity with natural antibodies is a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sher May Ng
- School of Clinical Medicine, University Of Cambridge, Hills Rd, Cambridge CB2 0SP, UK
| | - Eamonn Hassouna
- Department of General Medicine, Charles University Hradec Kralove Faculty, Prague, Czech Republic
| | - Arthur Warrington
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sang-Hyun Oh
- Laboratory of Nanostructures & Biosensing, Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA ; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA ; Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Podestá MF, Yam P, Codagnone MG, Uccelli NA, Colman D, Reinés A. Distinctive PSA-NCAM and NCAM hallmarks in glutamate-induced dendritic atrophy and synaptic disassembly. PLoS One 2014; 9:e108921. [PMID: 25279838 PMCID: PMC4184824 DOI: 10.1371/journal.pone.0108921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/05/2014] [Indexed: 12/13/2022] Open
Abstract
Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss.
Collapse
Affiliation(s)
- María Fernanda Podestá
- Instituto de Investigaciones Farmacológicas (ININFA, CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN, CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia Yam
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Martín Gabriel Codagnone
- Instituto de Investigaciones Farmacológicas (ININFA, CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN, CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Nonthué Alejandra Uccelli
- Instituto de Investigaciones Farmacológicas (ININFA, CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN, CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - David Colman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Analía Reinés
- Instituto de Investigaciones Farmacológicas (ININFA, CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN, CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
14
|
Schwab JM, Zhang Y, Kopp MA, Brommer B, Popovich PG. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp Neurol 2014; 258:121-129. [PMID: 25017893 PMCID: PMC4099970 DOI: 10.1016/j.expneurol.2014.04.023] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023]
Abstract
During the transition from acute to chronic stages of recovery after spinal cord injury (SCI), there is an evolving state of immunologic dysfunction that exacerbates the problems associated with the more clinically obvious neurologic deficits. Since injury directly affects cells embedded within the "immune privileged/specialized" milieu of the spinal cord, maladaptive or inefficient responses are likely to occur. Collectively, these responses qualify as part of the continuum of "SCI disease" and are important therapeutic targets to improve neural repair and neurological outcome. Generic immune suppressive therapies have been largely unsuccessful, mostly because inflammation and immunity exert both beneficial (plasticity enhancing) and detrimental (e.g. glia- and neurodegenerative; secondary damage) effects and these functions change over time. Moreover, "compartimentalized" investigations, limited to only intraspinal inflammation and associated cellular or molecular changes in the spinal cord, neglect the reality that the structure and function of the CNS are influenced by systemic immune challenges and that the immune system is 'hardwired' into the nervous system. Here, we consider this interplay during the progression from acute to chronic SCI. Specifically, we survey impaired/non-resolving intraspinal inflammation and the paradox of systemic inflammatory responses in the context of ongoing chronic immune suppression and autoimmunity. The concepts of systemic inflammatory response syndrome (SIRS), compensatory anti-inflammatory response syndrome (CARS) and "neurogenic" spinal cord injury-induced immune depression syndrome (SCI-IDS) are discussed as determinants of impaired "host-defense" and trauma-induced autoimmunity.
Collapse
Affiliation(s)
- Jan M. Schwab
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
- Spinal Cord Injury Center, Trauma Hospital Berlin, D-12683 Berlin, Germany
| | - Yi Zhang
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Marcel A. Kopp
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
| | - Benedikt Brommer
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
| | - Phillip G. Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Wittenberg NJ, Wootla B, Jordan LR, Denic A, Warrington AE, Oh SH, Rodriguez M. Applications of SPR for the characterization of molecules important in the pathogenesis and treatment of neurodegenerative diseases. Expert Rev Neurother 2014; 14:449-63. [PMID: 24625008 PMCID: PMC3989105 DOI: 10.1586/14737175.2014.896199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Characterization of binding kinetics and affinity between a potential drug and its receptor are key steps in the development of new drugs. Among the techniques available to determine binding affinities, surface plasmon resonance has emerged as the gold standard because it can measure binding and dissociation rates in real-time in a label-free fashion. Surface plasmon resonance is now finding applications in the characterization of molecules for treatment of neurodegenerative diseases, characterization of molecules associated with pathogenesis of neurodegenerative diseases and detection of neurodegenerative disease biomarkers. In addition it has been used in the characterization of a new class of natural autoantibodies that have therapeutic potential in a number of neurologic diseases. In this review we will introduce surface plasmon resonance and describe some applications of the technique that pertain to neurodegenerative disorders and their treatment.
Collapse
Affiliation(s)
- Nathan J. Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Luke R. Jordan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| | - Aleksandar Denic
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN USA
| | | | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| | - Moses Rodriguez
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN USA
| |
Collapse
|
16
|
Role of galactosylceramide and sulfatide in oligodendrocytes and CNS myelin: formation of a glycosynapse. ADVANCES IN NEUROBIOLOGY 2014; 9:263-91. [PMID: 25151383 DOI: 10.1007/978-1-4939-1154-7_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two major glycosphingolipids of myelin, galactosylceramide (GalC) and sulfatide (SGC), interact with each other by trans carbohydrate-carbohydrate interactions in vitro. They face each other in the apposed extracellular surfaces of the multilayered myelin sheath produced by oligodendrocytes and could also contact each other between apposed oligodendrocyte processes. Multivalent galactose and sulfated galactose, in the form of GalC/SGC-containing liposomes or silica nanoparticles conjugated to galactose and galactose-3-sulfate, interact with GalC and SGC in the membrane sheets of oligodendrocytes in culture. This interaction causes transmembrane signaling, loss of the cytoskeleton and clustering of membrane domains, similar to the effects of cross-linking by anti-GalC and anti-SGC antibodies. These effects suggest that GalC and SGC could participate in glycosynapses, similar to neural synapses or the immunological synapse, between GSL-enriched membrane domains in apposed oligodendrocyte membranes or extracellular surfaces of mature myelin. Formation of such glycosynapses in vivo would be important for myelination and/or oligodendrocyte/myelin function.
Collapse
|
17
|
Abstract
Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.
Collapse
Affiliation(s)
- Bharath Wootla
- Departments of Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
18
|
Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:532-45. [PMID: 23899502 DOI: 10.1016/j.bbamem.2013.07.018] [Citation(s) in RCA: 382] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022]
Abstract
The plasma membrane in eukaryotic cells contains microdomains that are enriched in certain glycosphingolipids, gangliosides, and sterols (such as cholesterol) to form membrane/lipid rafts (MLR). These regions exist as caveolae, morphologically observable flask-like invaginations, or as a less easily detectable planar form. MLR are scaffolds for many molecular entities, including signaling receptors and ion channels that communicate extracellular stimuli to the intracellular milieu. Much evidence indicates that this organization and/or the clustering of MLR into more active signaling platforms depends upon interactions with and dynamic rearrangement of the cytoskeleton. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to MLR and help regulate lateral diffusion of membrane proteins and lipids in response to extracellular events (e.g., receptor activation, shear stress, electrical conductance, and nutrient demand). MLR regulate cellular polarity, adherence to the extracellular matrix, signaling events (including ones that affect growth and migration), and are sites of cellular entry of certain pathogens, toxins and nanoparticles. The dynamic interaction between MLR and the underlying cytoskeleton thus regulates many facets of the function of eukaryotic cells and their adaptation to changing environments. Here, we review general features of MLR and caveolae and their role in several aspects of cellular function, including polarity of endothelial and epithelial cells, cell migration, mechanotransduction, lymphocyte activation, neuronal growth and signaling, and a variety of disease settings. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
19
|
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct 2013; 8:8. [PMID: 23557484 PMCID: PMC3663805 DOI: 10.1186/1745-6150-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants – two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA. Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
20
|
Xu X, Wittenberg NJ, Jordan LR, Kumar S, Watzlawik JO, Warrington AE, Oh SH, Rodriguez M. A patterned recombinant human IgM guides neurite outgrowth of CNS neurons. Sci Rep 2013; 3:2267. [PMID: 23881231 PMCID: PMC3721078 DOI: 10.1038/srep02267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/26/2013] [Indexed: 11/13/2022] Open
Abstract
Matrix molecules convey biochemical and physical guiding signals to neurons in the central nervous system (CNS) and shape the trajectory of neuronal fibers that constitute neural networks. We have developed recombinant human IgMs that bind to epitopes on neural cells, with the aim of treating neurological diseases. Here we test the hypothesis that recombinant human IgMs (rHIgM) can guide neurite outgrowth of CNS neurons. Microcontact printing was employed to pattern rHIgM12 and rHIgM22, antibodies that were bioengineered to have variable regions capable of binding to neurons or oligodendrocytes, respectively. rHIgM12 promoted neuronal attachment and guided outgrowth of neurites from hippocampal neurons. Processes from spinal neurons followed grid patterns of rHIgM12 and formed a physical network. Comparison between rHIgM12 and rHIgM22 suggested the biochemistry that facilitates anchoring the neuronal surfaces is a prerequisite for the function of IgM, and spatial properties cooperate in guiding the assembly of neuronal networks.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- These authors contributed equally to this work
| | - Nathan J. Wittenberg
- Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
- These authors contributed equally to this work
| | - Luke R. Jordan
- Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Shailabh Kumar
- Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Jens O. Watzlawik
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Arthur E. Warrington
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Sang-Hyun Oh
- Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| |
Collapse
|
21
|
Therapeutics to promote CNS repair: a natural human neuron-binding IgM regulates membrane-raft dynamics and improves motility in a mouse model of multiple sclerosis. J Clin Immunol 2012; 33 Suppl 1:S50-6. [PMID: 22990667 DOI: 10.1007/s10875-012-9795-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
We have discovered a role for natural autoantibodies in central nervous system repair, remyelination and axon protection. These natural human antibodies are of the immunoglobulin M (IgM) isotype, and they bind to the surface of neural cells. The epitope of the antibody includes sialic acid because treatment with sialidase disrupts the binding. A fully human recombinant form of one of these IgMs, rHIgM12, has the same properties as the serum-derived IgM. rHIgM12 enhanced polarized axonal outgrowth from primary neurons when presented as a substrate in vitro and improved motor functions in chronically Theiler's virus-infected SJL mice, a model of MS. rHIgM12 bound to neuronal surfaces and induced cholesterol and ganglioside (GM1) clustering, indicating that rHIgM12 functions through a mechanism of axonal membrane stabilization. Our work demonstrates that a natural human neuron-binding IgM can regulate membrane domain dynamics. This antibody has the potential to improve neurologic disease.
Collapse
|
22
|
Wootla B, Denic A, Warrington AE, Rodriguez M. Need for a paradigm shift in therapeutic approaches to CNS injury. Expert Rev Neurother 2012; 12:409-20. [PMID: 22449213 DOI: 10.1586/ern.12.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Irreversible damage to the nervous system can result from many causes including trauma, disruption of blood supply, pathogen infection or neurodegenerative disease. Common features following CNS injury include a disruption of axons, neuron death and injury, local B-cell and microglial activation, and the synthesis of pathogenic autoantibodies. CNS injury results in a pervasive inhibitory microenvironment that hinders regeneration. Current approaches to eliminate the inhibitory environment have met with limited success. These results argue for a paradigm shift in therapeutic approaches to CNS injury. Targeting CNS cells (neurons, oligodendrocytes and astrocytes) themselves may drive CNS repair. For example, our group and others have demonstrated that autoreactive antibodies can participate in aspects of CNS regeneration, including remyelination. We have developed recombinant autoreactive natural human IgM antibodies with the therapeutic potential for CNS repair in several neurologic diseases.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|