1
|
Sun X, Meng H, Lu T, Yue W, Zhang D, Wang L, Li J. Mechanisms of glutamate receptors hypofunction dependent synaptic transmission impairment in the hippocampus of schizophrenia susceptibility gene Opcml-deficient mouse model. Mol Brain 2024; 17:75. [PMID: 39420375 PMCID: PMC11488275 DOI: 10.1186/s13041-024-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Schizophrenia is a severe psychiatric disorder with high heritability, characterized by positive and negative symptoms as well as cognitive abnormalities. Dysfunction in glutamate synapse is strongly implicated in the pathophysiology of schizophrenia. However, the precise role of the perturbed glutamatergic system in contributing to the cognitive abnormalities of schizophrenia at the synaptic level remains largely unknown. Although our previous work found that Opcml promotes spine maturation and Opcml-deficient mice exhibit schizophrenia-related cognitive impairments, the synaptic mechanism remains unclear. By using whole-cell patch clamp recording, we found that decreased neuronal excitability and alterations in intrinsic membrane properties of CA1 PNs in Opcml-deficient mice. Furthermore, Opcml deficiency leads to impaired glutamatergic transmission in hippocampus, which is closely related to postsynaptic AMPA/NMDA receptors dysfunction, resulting in the disturbances of E/I balance. Additionally, we found that the aripiprazole which we used to ameliorate abnormal cognitive behaviors also rescued the impaired glutamatergic transmission in Opcml-deficient mice. These findings will help to understand the synaptic mechanism in schizophrenia pathogenesis, providing insights into schizophrenia therapeutics with glutamatergic disruption.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| | - Hu Meng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100191, China
- Changping Laboratory, Beijing, 102206, China
| | - Lifang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| | - Jun Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| |
Collapse
|
2
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
3
|
Kim K, Kim S, Myung W, Shim I, Lee H, Kim B, Cho SK, Yoon J, Kim DK, Won HH. Shared Genetic Background between Parkinson's Disease and Schizophrenia: A Two-Sample Mendelian Randomization Study. Brain Sci 2021; 11:1042. [PMID: 34439661 PMCID: PMC8393703 DOI: 10.3390/brainsci11081042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
Background and objectives: Parkinson's disease (PD) and schizophrenia often share symptomatology. Psychotic symptoms are prevalent in patients with PD, and similar motor symptoms with extrapyramidal signs are frequently observed in antipsychotic-naïve patients with schizophrenia as well as premorbid families. However, few studies have examined the relationship between PD and schizophrenia. We performed this study to evaluate whether genetic variants which increase PD risk influence the risk of developing schizophrenia, and vice versa. Materials and Methods: Two-sample Mendelian randomization (TSMR) with summary statistics from large-scale genome-wide association studies (GWAS) was applied. Summary statistics were extracted for these instruments from GWAS of PD and schizophrenia; Results: We found an increase in the risk of schizophrenia per one-standard deviation (SD) increase in the genetically-predicted PD risk (inverse-variance weighted method, odds ratio = 1.10; 95% confidence interval, 1.05-1.15; p = 3.49 × 10-5). The association was consistent in sensitivity analyses, including multiple TSMR methods, analysis after removing outlier variants with potential pleiotropic effects, and analysis after applying multiple GWAS subthresholds. No relationships were evident between PD and smoking or other psychiatric disorders, including attention deficit hyperactivity disorder, autism spectrum disorder, bipolar affective disorder, major depressive disorder, Alzheimer's disease, or alcohol dependence. However, we did not find a reverse relationship; genetic variants increasing schizophrenia risk did not alter the risk of PD; Conclusions: Overall, our findings suggest that increased genetic risk of PD can be associated with increased risk of schizophrenia. This association supports the intrinsic nature of the psychotic symptom in PD rather than medication or environmental effects. Future studies for possible comorbidities and shared genetic structure between the two diseases are warranted.
Collapse
Affiliation(s)
- Kiwon Kim
- Department of Psychiatry, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Sungan-ro, Kangdong-gu, Seoul 05355, Korea;
| | - Soyeon Kim
- Samsung Medical Center, Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea; (S.K.); (I.S.); (B.K.)
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Injeong Shim
- Samsung Medical Center, Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea; (S.K.); (I.S.); (B.K.)
| | - Hyewon Lee
- Department of Health Administration and Management, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
- Department of Software Convergence, Graduate School, Soonchunhyang University, Asan 31538, Korea
| | - Beomsu Kim
- Samsung Medical Center, Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea; (S.K.); (I.S.); (B.K.)
| | - Sung Kweon Cho
- Department of Pharmacology, School of Medicine, Ajou University, Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea;
| | - Joohyun Yoon
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Doh Kwan Kim
- Samsung Medical Center, Department of Psychiatry, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
| | - Hong-Hee Won
- Samsung Medical Center, Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea; (S.K.); (I.S.); (B.K.)
| |
Collapse
|
4
|
Lee J, Avramets D, Jeon B, Choo H. Modulation of Serotonin Receptors in Neurodevelopmental Disorders: Focus on 5-HT7 Receptor. Molecules 2021; 26:molecules26113348. [PMID: 34199418 PMCID: PMC8199608 DOI: 10.3390/molecules26113348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Since neurodevelopmental disorders (NDDs) influence more than 3% of children worldwide, there has been intense investigation to understand the etiology of disorders and develop treatments. Although there are drugs such as aripiprazole, risperidone, and lurasidone, these medications are not cures for the disorders and can only help people feel better or alleviate their symptoms. Thus, it is required to discover therapeutic targets in order to find the ultimate treatments of neurodevelopmental disorders. It is suggested that abnormal neuronal morphology in the neurodevelopment process is a main cause of NDDs, in which the serotonergic system is emerging as playing a crucial role. From this point of view, we noticed the correlation between serotonin receptor subtype 7 (5-HT7R) and NDDs including autism spectrum disorder (ASD), fragile X syndrome (FXS), and Rett syndrome (RTT). 5-HT7R modulators improved altered behaviors in animal models and also affected neuronal morphology via the 5-HT7R/G12 signaling pathway. Through the investigation of recent studies, it is suggested that 5-HT7R could be a potential therapeutic target for the treatment of NDDs.
Collapse
Affiliation(s)
- Jieon Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Korea; (J.L.); (D.A.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Diana Avramets
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Korea; (J.L.); (D.A.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Byungsun Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Korea; (J.L.); (D.A.)
- Correspondence: (B.J.); (H.C.); Tel.: +82-2-958-5191 (B.J.); +82-2-958-5157 (H.C.)
| | - Hyunah Choo
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Korea; (J.L.); (D.A.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (B.J.); (H.C.); Tel.: +82-2-958-5191 (B.J.); +82-2-958-5157 (H.C.)
| |
Collapse
|
5
|
Venkataramaiah C, Payani S, Priya BL, Pradeepkiran JA. Therapeutic potentiality of a new flavonoid against ketamine induced glutamatergic dysregulation in schizophrenia: In vivo and in silico approach. Biomed Pharmacother 2021; 138:111453. [PMID: 34187143 DOI: 10.1016/j.biopha.2021.111453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
Glutamate and dopamine hypotheses are leading theories of the pathophysiology of schizophrenia. Multiple lines of evidence suggest that dopaminergic and glutamatergic dysfunction is an underlying mechanism in schizophrenia. Since currently available antipsychotic drugs have significant untoward side effects, identification of new neuroprotective compounds from the medicinal plants may prove beneficial in neurodegenerative disorders. In our previous investigation we have isolated, characterized and reported a novel bioactive compound viz. 3-(3, 4-dimethoxy phenyl)-1-(4-methoxy phenyl) prop-2-en-1-one from the Celastrus paniculatus (CP) is used for the current clinical intervention of schizophrenia disease. The present study is mainly aimed to evaluate the neuroprotective potential of the above bioactive compound against ketamine-induced schizophrenia with particular reference to glutamate metabolism using in vivo and in silico methods. The decrease in glutamine content and the activity levels of glutamate dehydrogenase, glutamine synthetase, and glutaminase in different regions of the rat brain suggests lowered oxidative deamination and lowered mobilization of glutamate towards glutamine formation during ketamine-induced schizophrenia. Pre-treatment with the plant compound reversed the alterations in glutamate metabolism and restored the normal glutamatergic neurotransmission akin to the reference drug, clozapine. In addition, the compound has shown strong interaction and exhibited the highest binding energies against selected NMDA receptors with the lowest inhibition constant than the reference drug. Recoveries of these parameters during anti-schizophrenic treatment suggest that administration of plant compound might offer neuroprotection by interrupting the pathological cascade of glutamatergic neurotransmission that occurs during schizophrenia.
Collapse
Affiliation(s)
- Chintha Venkataramaiah
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India; Department of Zoology, Faculty of Humanities and Sciences, Sri Venkateswara Vedic University, Tirupati, Andhra Pradesh, India
| | - Sholapuri Payani
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Bandila Lakshmi Priya
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Jangampalli Adi Pradeepkiran
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India; Deapartment of Internal Medicine, Texas Tech University of Health Science Centre, Lubbock, TX, USA.
| |
Collapse
|
6
|
Sivasangari K, Rajan KE. Standardized Bacopa monnieri Extract Ameliorates Learning and Memory Impairments through Synaptic Protein, Neurogranin, Pro-and Mature BDNF Signaling, and HPA Axis in Prenatally Stressed Rat Offspring. Antioxidants (Basel) 2020; 9:antiox9121229. [PMID: 33291595 PMCID: PMC7761874 DOI: 10.3390/antiox9121229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/10/2023] Open
Abstract
Prenatal stress (PNS) influences offspring neurodevelopment, inducing anxiety-like behavior and memory deficits. We investigated whether pretreatment of Bacopa monnieri extract (CDRI-08/BME) ameliorates PNS-induced changes in signaling molecules, and changes in the behavior of Wistar rat offspring. Pregnant rats were randomly assigned into control (CON)/prenatal stress (PNS)/PNS and exposed to BME treatment (PNS + BME). Dams were exposed to stress by placing them in a social defeat cage, where they observed social defeat from gestational day (GD)-16–18. Pregnant rats in the PNS + BME group were given BME treatment from GD-10 to their offspring’s postnatal day (PND)-23, and to their offspring from PND-15 to -30. PNS led to anxiety-like behavior; impaired memory; increased the level of corticosterone (CORT), adrenocorticotropic hormone, glucocorticoid receptor, pro-apoptotic Casepase-3, and 5-HT2C receptor; decreased anti-apoptotic Bcl-2, synaptic proteins (synaptophysin, synaptotagmin-1), 5-HT1A, receptor, phosphorylation of calmodulin-dependent protein kinase II/neurogranin, N-methyl-D-aspartate receptors (2A,2B), postsynaptic density protein 95; and conversion of pro and mature brain derived neurotropic factor in their offspring. The antioxidant property of BME possibly inhibiting the PNS-induced changes in observed molecules, anxiety-like behavior, and memory deficits. The observed results suggest that pretreatment of BME could be an effective coping strategy to prevent PNS-induced behavioral impairments in their offspring.
Collapse
|
7
|
Sullivan DR, Morrison FG, Wolf EJ, Logue MW, Fortier CB, Salat DH, Fonda JR, Stone A, Schichman S, Milberg W, McGlinchey R, Miller MW. The PPM1F gene moderates the association between PTSD and cortical thickness. J Affect Disord 2019; 259:201-209. [PMID: 31446381 PMCID: PMC6791735 DOI: 10.1016/j.jad.2019.08.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/21/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Evidence suggests that single nucleotide polymorphisms (SNPs) in genes involved in serotonergic signaling and stress response pathways moderate associations between PTSD and cortical thickness. This study examined a genetic regulator of these pathways, the PPM1F gene, which has also been implicated in mechanisms of stress responding and is differentially expressed in individuals with comorbid PTSD and depression compared to controls. METHODS Drawing from a sample of 240 white non-Hispanic trauma-exposed veterans, we tested 18 SNPs spanning the PPM1F gene for association with PTSD and cortical thickness. RESULTS Analyses revealed six PPM1F SNPs that moderated associations between PTSD symptom severity and cortical thickness of bilateral superior frontal and orbitofrontal regions as well as the right pars triangularis (all corrected p's < 0.05) such that greater PTSD severity was related to reduced cortical thickness as a function of genotype. A whole-cortex vertex-wise analysis using the most associated SNP (rs9610608) revealed this effect to be localized to a cluster in the right superior frontal gyrus (cluster-corrected p < 0.02). LIMITATIONS Limitations of this study include the small sample size and that the sample was all-white, non-Hispanic predominately male veterans. CONCLUSIONS These results extend prior work linking PPM1F to PTSD and suggest that variants in this gene may have bearing on the neural integrity of the prefrontal cortex (PFC).
Collapse
Affiliation(s)
- Danielle R. Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Filomene G. Morrison
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Erika J. Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Mark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA,Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David H. Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA,Anthinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Jennifer R. Fonda
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA,Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Annjanette Stone
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AK, USA
| | - Steven Schichman
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AK, USA
| | - William Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Regina McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Mark W. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
Albert PR, Vahid-Ansari F. The 5-HT1A receptor: Signaling to behavior. Biochimie 2019; 161:34-45. [DOI: 10.1016/j.biochi.2018.10.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
|
9
|
Dantsuji M, Nakamura S, Nakayama K, Mochizuki A, Park SK, Bae YC, Ozeki M, Inoue T. 5-HT 2A receptor activation enhances NMDA receptor-mediated glutamate responses through Src kinase in the dendrites of rat jaw-closing motoneurons. J Physiol 2019; 597:2565-2589. [PMID: 30919966 DOI: 10.1113/jp275440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS 5-HT increases the excitability of brainstem and spinal motoneurons, including the jaw-closing motoneurons, by depolarizing the membrane potential and decreasing the medium-duration afterhyperpolarization. In this study, we focused on how 5-HT enhances postsynaptic glutamatergic responses in the dendrites of the jaw-closing motoneurons. We demonstrate that 5-HT augments glutamatergic signalling by enhancing the function of the GluN2A-containing NMDA receptor (NMDAR) through the activation of 5-HT2A receptors (5-HT2A Rs) and Src kinase. To enhance glutamatergic responses, activation of the 5-HT2A Rs must occur within ∼60 μm of the location of the glutamate responses. 5-HT inputs to the jaw-closing motoneurons can significantly vary their input-output relationship, which may contribute to wide-range regulation of contractile forces of the jaw-closing muscles. ABSTRACT Various motor behaviours are modulated by 5-HT. Although the masseter (jaw-closing) motoneurons receive both glutamatergic and serotonergic inputs, it remains unclear how 5-HT affects the glutamatergic inputs to the motoneuronal dendrites. We examined the effects of 5-HT on postsynaptic responses evoked by single- or two-photon uncaging of caged glutamate (glutamate responses) to the dendrites of masseter motoneurons in postnatal day 2-5 rats of either sex. Application of 5-HT induced membrane depolarization and enhanced the glutamate-response amplitude. This enhancement was mimicked by the 5-HT2A receptor (5-HT2A R) agonist and was blocked by the 5-HT2A/2C R antagonist. However, neither the 5-HT2B R nor the 5-HT2C R agonists altered glutamate responses. Blockade of the NMDA receptors (NMDARs), but not AMPA receptors, abolished the 5-HT-induced enhancement. Furthermore, the selective antagonist for the GluN2A subunit abolished the 5-HT-induced enhancement. 5-HT increased GluN2A phosphorylation, while the Src kinase inhibitor reduced the 5-HT-induced enhancement and GluN2A phosphorylation. When exposure to the 5-HT2A R agonist was targeted to the dendrites, the enhancement of glutamate responses was restricted to the loci of the dendrites near the puff loci. Electron microscopic immunohistochemistry revealed that both the NMDARs and the 5-HT2A Rs were close to each other in the same dendrite. These results suggest that activation of dendritic 5-HT2A Rs enhances the function of local GluN2A-containing NMDARs through Src kinase. Such enhancement of the glutamate responses by 5-HT may contribute to wide-range regulation of contractile forces of the jaw-closing muscles.
Collapse
Affiliation(s)
- Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, 142-8555, Japan.,Department of Implant Dentistry, Showa University School of Dentistry, Oota-ku, Tokyo, 145-8515, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Sook Kyung Park
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Republic of Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Republic of Korea
| | - Masahiko Ozeki
- Department of Implant Dentistry, Showa University School of Dentistry, Oota-ku, Tokyo, 145-8515, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
10
|
Ogundele OM, Lee CC. CaMKIIα expression in a mouse model of NMDAR hypofunction schizophrenia: Putative roles for IGF-1R and TLR4. Brain Res Bull 2018; 137:53-70. [PMID: 29137928 PMCID: PMC5835406 DOI: 10.1016/j.brainresbull.2017.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Schizophrenia (SCZ) is a neuropsychiatric disorder that is linked to social behavioral deficits and other negative symptoms associated with hippocampal synaptic dysfunction. Synaptic mechanism of schizophrenia is characterized by loss of hippocampal N-Methyl-d-Aspartate Receptor (NMDAR) activity (NMDAR hypofunction) and dendritic spines. Previous studies show that genetic deletion of hippocampal synaptic regulatory calcium-calmodulin dependent kinase II alpha (CaMKIIα) cause synaptic and behavioral defects associated with schizophrenia in mice. Although CaMKIIα is involved in modulation of NMDAR activity, it is equally linked to inflammatory and neurotropin signaling in neurons. Based on these propositions, we speculate that non-neurotransmitter upstream receptors associated with neurotropic and inflammatory signaling activities of CaMKIIα may alter its synaptic function. Besides, how these receptors (i.e. inflammatory and neurotropic receptors) alter CaMKIIα function (phosphorylation) relative to hippocampal NMDAR activity in schizophrenia is poorly understood. Here, we examined the relationship between toll-like receptor (TLR4; inflammatory), insulin-like growth factor receptor 1 (IGF-1R; neurotropic) and CaMKIIα expression in the hippocampus of behaviorally deficient schizophrenic mice after we induced schizophrenia through NMDAR inhibition. Schizophrenia was induced in WT (C57BL/6) mice through intraperitoneal administration of 30mg/Kg ketamine (NMDAR antagonist) for 5days (WT/SCZ). Five days after the last ketamine treatment, wild type schizophrenic mice show deficiencies in sociability and social novelty behavior. Furthermore, there was a significant decrease in hippocampal CaMKIIα (p<0.001) and IGF-1R (p<0.001) expression when assessed through immunoblotting and confocal immunofluorescence microscopy. Additionally, WT schizophrenic mice show an increased percentage of phosphorylated CaMKIIα in addition to upregulated TLR4 signaling (TLR4, NF-κB, and MAPK/ErK) in the hippocampus. To ascertain the functional link between TLR4, IGF-1R and CaMKIIα relative to NMDAR hypofunction in schizophrenia, we created hippocampal-specific TLR4 knockdown mouse using AAV-driven Cre-lox technique (TLR4 KD). Subsequently, we inhibited NMDAR function in TLR4 KD mice in an attempt to induce schizophrenia (TLR4 KD SCZ). Interestingly, IGF-1R and CaMKIIα expressions were preserved in the TLR4 KD hippocampus after attenuation of NMDAR function. Furthermore, TLR4 KD SCZ mice showed no prominent defects in sociability and social novelty behavior when compared with the control (WT). Our results show that a sustained IGF-1R expression may preserve the synaptic activity of CaMKIIα while TLR4 signaling ablates hippocampal CaMKIIα expression in NMDAR hypofunction schizophrenia. Together, we infer that IGF-1R depletion and increased TLR4 signaling are non-neurotransmitter pro-schizophrenic cues that can reduce synaptic CaMKIIα activity in a pharmacologic mouse model of schizophrenia.
Collapse
Affiliation(s)
- O M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States.
| | - C C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States.
| |
Collapse
|
11
|
Szlachta M, Kuśmider M, Pabian P, Solich J, Kolasa M, Żurawek D, Dziedzicka-Wasylewska M, Faron-Górecka A. Repeated Clozapine Increases the Level of Serotonin 5-HT 1AR Heterodimerization with 5-HT 2A or Dopamine D 2 Receptors in the Mouse Cortex. Front Mol Neurosci 2018; 11:40. [PMID: 29497362 PMCID: PMC5818438 DOI: 10.3389/fnmol.2018.00040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
G-protein–coupled receptor (GPCR) heterodimers are new targets for the treatment of schizophrenia. Dopamine D2 receptors and serotonin 5-HT1A and 5-HT2A receptors play an important role in neurotransmission and have been implicated in many human psychiatric disorders, including schizophrenia. Therefore, in this study, we investigated whether antipsychotic drugs (clozapine (CLZ) and haloperidol (HAL)) affected the formation of heterodimers of D2–5-HT1A receptors as well as 5-HT1A–5-HT2A receptors. Proximity ligation assay (PLA) was used to accurately visualize, for the first time, GPCR heterodimers both at in vitro and ex vivo levels. In line with our previous behavioral studies, we used ketamine to induce cognitive deficits in mice. Our study confirmed the co-localization of D2/5-HT1A and 5-HT1A/5-HT2A receptors in the mouse cortex. Low-dose CLZ (0.3 mg/kg) administered repeatedly, but not CLZ at 1 mg/kg, increased the level of D2–5-HT1A and 5-HT1A–5-HT2A heterodimers in the mouse prefrontal and frontal cortex. On the other hand, HAL decreased the level of GPCR heterodimers. Ketamine affected the formation of 5-HT1A–5-HT2A, but not D2–5-HT1A, heterodimers.
Collapse
Affiliation(s)
- Marta Szlachta
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Maciej Kuśmider
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Paulina Pabian
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Magdalena Kolasa
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Dariusz Żurawek
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Agata Faron-Górecka
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
12
|
Liu X, Li J, Guo C, Wang H, Sun Y, Wang H, Su YA, Li K, Si T. Olanzapine Reverses MK-801-Induced Cognitive Deficits and Region-Specific Alterations of NMDA Receptor Subunits. Front Behav Neurosci 2018; 11:260. [PMID: 29375333 PMCID: PMC5767175 DOI: 10.3389/fnbeh.2017.00260] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Cognitive dysfunction constitutes an essential component in schizophrenia for its early presence in the pathophysiology of the disease and close relatedness to life quality of patients. To develop effective treatment of cognitive deficits, it is important to understand their neurobiological causes and to identify potential therapeutic targets. In this study, adopting repeated MK-801 treatment as an animal model of schizophrenia, we investigated whether antipsychotic drugs, olanzapine and haloperidol, can reverse MK-801-induced cognitive deficits and how the reversal processes recruited proteins involved in glutamate neurotransmission in rat medial prefrontal cortex (mPFC) and hippocampus. We found that low-dose chronic MK-801 treatment impaired object-in-context recognition memory and reversal learning in the Morris water maze, leaving reference memory relatively unaffected, and that these cognitive deficits can be partially reversed by olanzapine, not haloperidol, treatment. At the molecular level, chronic MK-801 treatment resulted in the reduction of multiple N-methyl-D-aspartate (NMDA) receptor subunits in rat mPFC and olanzapine, not haloperidol, treatment restored the levels of GluN1 and phosphorylated GluN2B in this region. Taken together, MK-801-induced cognitive deficits may be associated with region-specific changes in NMDA receptor subunits and the reversal of specific NMDA receptor subunits may underlie the cognition-enhancing effects of olanzapine.
Collapse
Affiliation(s)
- Xiao Liu
- Institute of Psychology, North China University of Science and Technology, Tangshan, China.,The Sixth People's Hospital of Hebei Province, Baoding, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Jitao Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Chunmei Guo
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hongli Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yaxin Sun
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Han Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Keqing Li
- Institute of Psychology, North China University of Science and Technology, Tangshan, China.,The Sixth People's Hospital of Hebei Province, Baoding, China
| | - Tianmei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| |
Collapse
|
13
|
Tomasetti C, Iasevoli F, Buonaguro EF, De Berardis D, Fornaro M, Fiengo ALC, Martinotti G, Orsolini L, Valchera A, Di Giannantonio M, de Bartolomeis A. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions. Int J Mol Sci 2017; 18:E135. [PMID: 28085108 PMCID: PMC5297768 DOI: 10.3390/ijms18010135] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/25/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022] Open
Abstract
Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of "synapse-based" psychiatric therapeutic strategies.
Collapse
Affiliation(s)
- Carmine Tomasetti
- NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment, Hospital "Maria SS dello Splendore", 641021 Giulianova, Italy.
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Elisabetta Filomena Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Domenico De Berardis
- Polyedra Research Group, 64100 Teramo, Italy.
- NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", 64100 Teramo, Italy.
- Department of Neuroscience and Imaging, University "G. d'Annunzio", 66100 Chieti, Italy.
| | - Michele Fornaro
- Polyedra Research Group, 64100 Teramo, Italy.
- New York State Psychiatric Institute, Columbia University, New York, NY 10027, USA.
| | | | - Giovanni Martinotti
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience and Imaging, University "G. d'Annunzio", 66100 Chieti, Italy.
| | - Laura Orsolini
- Polyedra Research Group, 64100 Teramo, Italy.
- Casa di Cura Villa San Giuseppe, 63100 Ascoli Piceno, Italy.
| | - Alessandro Valchera
- Polyedra Research Group, 64100 Teramo, Italy.
- Casa di Cura Villa San Giuseppe, 63100 Ascoli Piceno, Italy.
| | | | - Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
| |
Collapse
|
14
|
Sinha P, Gupta A, Reddi VSK, Andrade C. An exploratory study for bladder dysfunction in atypical antipsychotic-emergent urinary incontinence. Indian J Psychiatry 2016; 58:438-442. [PMID: 28197002 PMCID: PMC5270270 DOI: 10.4103/0019-5545.196719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION This is an exploratory study, which aimed to analyze urodynamic findings in patients who are on atypical antipsychotics and present with urinary incontinence (UI) in order to understand the mechanisms of antipsychotic-emergent UI. PATIENTS AND METHODS Eight patients (34 ± 7.6 years; five males and three females) diagnosed with schizophrenia or other psychotic disorders, who were on risperidone, olanzapine, or clozapine monotherapy and having UI were recruited. Urodynamic study was performed in all patients. RESULTS Six out of eight (75%) patients had abnormal urodynamic findings. Three of them had detrusor overactivity (DO) without detrusor-sphincter dyssynergia (DSD); two had DO with DSD; and one had hypoactive detrusor with nonrelaxing sphincter during void phase. The common urinary symptoms were urgency, enuresis, and straining to void urine. Significant postvoid residual urine was found in two patients. CONCLUSION The evidence of bladder dysfunction in atypical antipsychotic-emergent UI is similar to that present in patients with neurological disorders. Urinary complaints in patients on antipsychotics thus need to be evaluated and managed systematically using the protocol followed for neurological conditions.
Collapse
Affiliation(s)
- Preeti Sinha
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Anupam Gupta
- Department of Neurological Rehabilitation, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - V Senthil Kumar Reddi
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Chittaranjan Andrade
- Department of Psychopharmacology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
15
|
Taylor DL, Tiwari AK, Lieberman JA, Potkin SG, Meltzer HY, Knight J, Remington G, Müller DJ, Kennedy JL. Genetic association analysis of N-methyl-D-aspartate receptor subunit gene GRIN2B and clinical response to clozapine. Hum Psychopharmacol 2016; 31:121-34. [PMID: 26876050 DOI: 10.1002/hup.2519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Approximately 30% of patients with schizophrenia fail to respond to antipsychotic therapy and are classified as having treatment-resistant schizophrenia. Clozapine is the most efficacious drug for treatment-resistant schizophrenia and may deliver superior therapeutic effects partly by modulating glutamate neurotransmission. Response to clozapine is highly variable and may depend on genetic factors as indicated by twin studies. We investigated eight polymorphisms in the N-methyl-D-aspartate glutamate receptor subunit gene GRIN2B with response to clozapine. METHODS GRIN2B variants were genotyped using standard TaqMan procedures in 175 European patients with schizophrenia deemed resistant or intolerant to treatment. Response was assessed using change in Brief Psychiatric Rating Scale scores following six months of clozapine therapy. Categorical and continuous response was assessed using chi-squared test and analysis of covariance, respectively. RESULTS No associations were observed between the variants and response to clozapine. A-allele carriers of rs1072388 responded marginally better to clozapine therapy than GG-homozygotes; however, the difference was not statistically significant (p = 0.067, uncorrected). CONCLUSIONS Our findings do not support a role for these GRIN2B variants in altering response to clozapine in our sample. Investigation of additional glutamate variants in clozapine response is warranted.
Collapse
Affiliation(s)
- Danielle L Taylor
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Arun K Tiwari
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeffrey A Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University and the New York State Psychiatric Institute, New York City, New York, USA
| | - Steven G Potkin
- Department of Psychiatry, University of California, Irvine, Irvine, California, USA
| | - Herbert Y Meltzer
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jo Knight
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel J Müller
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Oyamada Y, Horiguchi M, Rajagopal L, Miyauchi M, Meltzer HY. Combined serotonin (5-HT)1A agonism, 5-HT2A and dopamine D2 receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats. Behav Brain Res 2015; 285:165-75. [DOI: 10.1016/j.bbr.2014.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/12/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023]
|
17
|
Samaddar S, Ranasinghe B, Tantry SJ, Debata PR, Banerjee P. Involvement of Vascular Endothelial Growth Factor in Serotonin 1A Receptor-Mediated Neuroproliferation in Neonatal Mouse Hippocampus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:375-88. [DOI: 10.1007/978-3-319-11280-0_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Bosia M, Lorenzi C, Pirovano A, Guglielmino C, Cocchi F, Spangaro M, Bramanti P, Smeraldi E, Cavallaro R. COMT Val158Met and 5-HT1A-R -1019 C/G polymorphisms: effects on the negative symptom response to clozapine. Pharmacogenomics 2015; 16:35-44. [DOI: 10.2217/pgs.14.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Clozapine is still considered the gold standard for treatment-resistant schizophrenia patients; however, up to 40% of patients do not respond adequately. Identifying potential predictors of clinical response to this last-line antipsychotic could represent an important goal for treatment. Among these, functional polymorphisms involved in dopamine system modulation, known to be disrupted in schizophrenia, may play a role. We examined the COMT Val158Met polymorphism, which plays a key role in dopamine regulation at the prefrontal level, and the 5-HT1A-R -1019 C/G polymorphism, a target of clozapine activity involved in the interaction between the serotonin and dopamine systems. Materials & methods: 107 neuroleptic-refractory, biologically unrelated Italian patients (70 males and 37 females) with a DSM-IV diagnosis of schizophrenia who were being treated with clozapine were recruited. Psychopathology was assessed by the Positive and Negative Symptoms Scale (PANSS) at the beginning of treatment, and at weeks 8 and 12. Genomic DNA was extracted from venous blood samples. COMT rs4680 (Val158Met) and 5-HT1A-R rs6295 (-1019 C/G) polymorphisms were analyzed by PCR-based restriction fragment length and direct sequencing, respectively. Results: We found a significant effect of COMT and 5-HT1A-R on the PANSS Negative Subscale variation, with greater improvement among COMT Val/Val and 5-HT1A-R G/G subjects. Conclusion: The findings support the hypothesis that COMT rs4680 and 5-HT1A-R rs6295 polymorphisms could influence the negative symptom response to clozapine, probably through modulation of the dopaminergic system. Original submitted 26 February 2014; Revision submitted 15 October 2014
Collapse
Affiliation(s)
- Marta Bosia
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
- Center for Neurolinguistics & Theoretical Syntax (NeTS), Institute for Advanced Study, (IUSS), Pavia, Italy
| | - Cristina Lorenzi
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
| | | | - Carmelo Guglielmino
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cocchi
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Enrico Smeraldi
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
19
|
Bosia M, Pigoni A, Cavallaro R. Genomics and epigenomics in novel schizophrenia drug discovery: translating animal models to clinical research and back. Expert Opin Drug Discov 2014; 10:125-39. [PMID: 25345474 DOI: 10.1517/17460441.2015.976552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Schizophrenia is a major psychiatric disorder that afflicts about 1% of the world's population, falling into the top 10 medical disorders causing disability. Existing therapeutic strategies have had limited success; they have poor effects on core cognitive impairment and long-term disability. They are also burdened by relevant side effects. Although new antipsychotic medications have been launched in the past decades, there has been a general lack of significant innovation over the past 60 years. This lack of significant progress in the pharmacotherapy of schizophrenia is a reflection of the complexity and heterogeneity of its etiopathogenetic mechanisms. AREAS COVERED In this article, the authors briefly review genetic models of schizophrenia, focusing on examples of how new therapeutic strategies have been developed from them. They report on the evidence of epigenetic alterations in schizophrenia and their relevance to pharmacological studies. Further, they describe the implications of epigenetic mechanisms in the etiopathogenesis of the disease and the effects of current antipsychotic drugs on epigenetic processes. Finally, they provide their perspective of using epigenetic drugs for treating schizophrenia. EXPERT OPINION Current genetic and epigenetic studies are finally shedding light on the biomolecular mechanisms linked to the core pathogenetic alterations in schizophrenia, rather than just their symptoms. These advancements in the understanding of the physiopathology of schizophrenia provide exciting new perspectives for treatments. Indeed, the possibility of looking directly at the biomolecular level allows us to bypass the age-old issues of animal studies pertaining to their questionable validity as behavioral models.
Collapse
Affiliation(s)
- Marta Bosia
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences , Via Stamira d'Ancona 20, 20127 Milano , Italy +390 226 433 218 ; +390 226 433 265 ;
| | | | | |
Collapse
|
20
|
Bosia M, Zanoletti A, Spangaro M, Buonocore M, Bechi M, Cocchi F, Pirovano A, Lorenzi C, Bramanti P, Smeraldi E, Cavallaro R. Factors affecting cognitive remediation response in schizophrenia: the role of COMT gene and antipsychotic treatment. Psychiatry Res 2014; 217:9-14. [PMID: 24656901 DOI: 10.1016/j.psychres.2014.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/04/2014] [Accepted: 02/09/2014] [Indexed: 11/25/2022]
Abstract
Cognitive remediation is the best available tool to treat cognitive deficits in schizophrenia and has evidence of biological validity; however results are still heterogeneous and significant predictors are lacking. Previous studies showed that cognitive remediation is able to induce changes in PFC function and dopaminergic transmission and thus the study of possible sources of variability at these levels (i.e. antipsychotic treatments and genetic variability) might help to gain a deeper understanding of neurobiological correlates and translate into optimization and personalization of interventions. In the present study, we analyzed the interaction between pharmacological treatment (clozapine vs typical/atypical D2 blockers) and COMT rs4680 polymorphism on cognitive changes after cognitive remediation therapy, in a sample of 98 clinically stabilized patients with schizophrenia. The General Linear Model showed a significant interaction of pharmacological treatment and COMT polymorphism on the improvement in "Symbol Coding" subtest, a global measure of speed of processing. Post-hoc analysis revealed a significant difference between COMT genotypes, when treated with D2 blockers, with worse results among Val/Val patients. These preliminary results suggest that genetic variability, influencing prefrontal dopamine, might affect individual capacity to improve with different patterns, depending on antipsychotic treatment.
Collapse
Affiliation(s)
- Marta Bosia
- San Raffaele Scientific Institute, Department of Clinical Neurosciences, Milan, Italy; Institute for Advanced Study, IUSS, Center for Neurolinguistics and Theoretical Syntax (NeTS), Pavia, Italy.
| | | | - Marco Spangaro
- San Raffaele Scientific Institute, Department of Clinical Neurosciences, Milan, Italy; Università Vita -Salute San Raffaele, Milan, Italy
| | - Mariachiara Buonocore
- San Raffaele Scientific Institute, Department of Clinical Neurosciences, Milan, Italy
| | - Margherita Bechi
- San Raffaele Scientific Institute, Department of Clinical Neurosciences, Milan, Italy
| | - Federica Cocchi
- San Raffaele Scientific Institute, Department of Clinical Neurosciences, Milan, Italy
| | | | - Cristina Lorenzi
- San Raffaele Scientific Institute, Department of Clinical Neurosciences, Milan, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Palermo 113, 98121 Messina, Italy
| | - Enrico Smeraldi
- San Raffaele Scientific Institute, Department of Clinical Neurosciences, Milan, Italy; Università Vita -Salute San Raffaele, Milan, Italy
| | - Roberto Cavallaro
- San Raffaele Scientific Institute, Department of Clinical Neurosciences, Milan, Italy
| |
Collapse
|
21
|
Iasevoli F, Tomasetti C, Buonaguro EF, de Bartolomeis A. The glutamatergic aspects of schizophrenia molecular pathophysiology: role of the postsynaptic density, and implications for treatment. Curr Neuropharmacol 2014; 12:219-38. [PMID: 24851087 PMCID: PMC4023453 DOI: 10.2174/1570159x12666140324183406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 01/23/2023] Open
Abstract
Schizophrenia is one of the most debilitating psychiatric diseases with a lifetime prevalence of approximately
1%. Although the specific molecular underpinnings of schizophrenia are still unknown, evidence has long linked its
pathophysiology to postsynaptic abnormalities.
The postsynaptic density (PSD) is among the molecular structures suggested to be potentially involved in schizophrenia.
More specifically, the PSD is an electron-dense thickening of glutamatergic synapses, including ionotropic and
metabotropic glutamate receptors, cytoskeletal and scaffolding proteins, and adhesion and signaling molecules. Being
implicated in the postsynaptic signaling of multiple neurotransmitter systems, mostly dopamine and glutamate, the PSD
constitutes an ideal candidate for studying dopamine-glutamate disturbances in schizophrenia. Recent evidence suggests
that some PSD proteins, such as PSD-95, Shank, and Homer are implicated in severe behavioral disorders, including
schizophrenia. These findings, further corroborated by genetic and animal studies of schizophrenia, offer new insights for
the development of pharmacological strategies able to overcome the limitations in terms of efficacy and side effects of
current schizophrenia treatment. Indeed, PSD proteins are now being considered as potential molecular targets against this
devastating illness.
The current paper reviews the most recent hypotheses on the molecular mechanisms underlying schizophrenia
pathophysiology. First, we review glutamatergic dysfunctions in schizophrenia and we provide an update on postsynaptic
molecules involvement in schizophrenia pathophysiology by addressing both human and animal studies. Finally, the
possibility that PSD proteins may represent potential targets for new molecular interventions in psychosis will be
discussed.
Collapse
Affiliation(s)
- Felice Iasevoli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| |
Collapse
|
22
|
Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun K, Jankowski Z, Kumaratilake J, Henneberg M, Gos T, Henneberg M, Gos T. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry 2014; 5:47. [PMID: 24904434 PMCID: PMC4032934 DOI: 10.3389/fpsyt.2014.00047] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Abstract
Dopamine is an inhibitory neurotransmitter involved in the pathology of schizophrenia. The revised dopamine hypothesis states that dopamine abnormalities in the mesolimbic and prefrontal brain regions exist in schizophrenia. However, recent research has indicated that glutamate, GABA, acetylcholine, and serotonin alterations are also involved in the pathology of schizophrenia. This review provides an in-depth analysis of dopamine in animal models of schizophrenia and also focuses on dopamine and cognition. Furthermore, this review provides not only an overview of dopamine receptors and the antipsychotic effects of treatments targeting them but also an outline of dopamine and its interaction with other neurochemical models of schizophrenia. The roles of dopamine in the evolution of the human brain and human mental abilities, which are affected in schizophrenia patients, are also discussed.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Arthur Saniotis
- School of Medical Sciences, The University of Adelaide , Adelaide, SA , Australia ; Centre for Evolutionary Medicine, University of Zurich , Zurich , Switzerland
| | - Rainer Wolf
- Department of Psychiatry and Psychotherapy, Ruhr University Bochum , Bochum , Germany
| | - Hendrik Bielau
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Katharina Braun
- Department of Zoology, Institute of Biology, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| |
Collapse
|
23
|
Yamamoto S, Ohba H, Nishiyama S, Harada N, Kakiuchi T, Tsukada H, Domino EF. Subanesthetic doses of ketamine transiently decrease serotonin transporter activity: a PET study in conscious monkeys. Neuropsychopharmacology 2013; 38:2666-74. [PMID: 23880871 PMCID: PMC3828538 DOI: 10.1038/npp.2013.176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/18/2013] [Accepted: 07/17/2013] [Indexed: 01/10/2023]
Abstract
Subanesthetic doses of ketamine, an N-methyl-D-aspartic acid (NMDA) antagonist, have a rapid antidepressant effect which lasts for up to 2 weeks. However, the neurobiological mechanism regarding this effect remains unclear. In the present study, the effects of subanesthetic doses of ketamine on serotonergic systems in conscious monkey brain were investigated. Five young monkeys underwent four positron emission tomography measurements with [(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)benzonitrile ([(11)C]DASB) for the serotonin transporter (SERT), during and after intravenous infusion of vehicle or ketamine hydrochloride in a dose of 0.5 or 1.5 mg/kg for 40 min, and 24 h post infusion. Global reduction of [(11)C]DASB binding to SERT was observed during ketamine infusion in a dose-dependent manner, but not 24 h later. The effect of ketamine on the serotonin 1A receptor (5-HT1A-R) and dopamine transporter (DAT) was also investigated in the same subjects studied with [(11)C]DASB. No significant changes were observed in either 5-HT1A-R or DAT binding after ketamine infusion. Microdialysis analysis indicated that ketamine infusion transiently increased serotonin levels in the extracellular fluid of the prefrontal cortex. The present study demonstrates that subanesthetic ketamine selectively enhanced serotonergic transmission by inhibition of SERT activity. This action coexists with the rapid antidepressant effect of subanesthetic doses of ketamine. Further studies are needed to investigate whether the transient combination of SERT and NMDA reception inhibition enhances each other's antidepressant actions.
Collapse
Affiliation(s)
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Edward F Domino
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-05632, USA, Tel: +1 734 764 9115, Fax: +1 734 763 4450, E-mail:
| |
Collapse
|
24
|
de Bartolomeis A, Latte G, Tomasetti C, Iasevoli F. Glutamatergic postsynaptic density protein dysfunctions in synaptic plasticity and dendritic spines morphology: relevance to schizophrenia and other behavioral disorders pathophysiology, and implications for novel therapeutic approaches. Mol Neurobiol 2013; 49:484-511. [PMID: 23999870 DOI: 10.1007/s12035-013-8534-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023]
Abstract
Emerging researches point to a relevant role of postsynaptic density (PSD) proteins, such as PSD-95, Homer, Shank, and DISC-1, in the pathophysiology of schizophrenia and autism spectrum disorders. The PSD is a thickness, detectable at electronic microscopy, localized at the postsynaptic membrane of glutamatergic synapses, and made by scaffolding proteins, receptors, and effector proteins; it is considered a structural and functional crossroad where multiple neurotransmitter systems converge, including the dopaminergic, serotonergic, and glutamatergic ones, which are all implicated in the pathophysiology of psychosis. Decreased PSD-95 protein levels have been reported in postmortem brains of schizophrenia patients. Variants of Homer1, a key PSD protein for glutamate signaling, have been associated with schizophrenia symptoms severity and therapeutic response. Mutations in Shank gene have been recognized in autism spectrum disorder patients, as well as reported to be associated to behaviors reminiscent of schizophrenia symptoms when expressed in genetically engineered mice. Here, we provide a critical appraisal of PSD proteins role in the pathophysiology of schizophrenia and autism spectrum disorders. Then, we discuss how antipsychotics may affect PSD proteins in brain regions relevant to psychosis pathophysiology, possibly by controlling synaptic plasticity and dendritic spine rearrangements through the modulation of glutamate-related targets. We finally provide a framework that may explain how PSD proteins might be useful candidates to develop new therapeutic approaches for schizophrenia and related disorders in which there is a need for new biological treatments, especially against some symptom domains, such as negative symptoms, that are poorly affected by current antipsychotics.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Section of Psychiatry, University School of Medicine "Federico II", Via Pansini 5, 80131, Naples, Italy,
| | | | | | | |
Collapse
|
25
|
Serotonin-glutamate and serotonin-dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins. Psychopharmacology (Berl) 2013. [PMID: 23179966 DOI: 10.1007/s00213-012-2921-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The physical and functional interactions between serotonin-glutamate and serotonin-dopamine signaling have been suggested to be involved in psychosis pathophysiology and are supposed to be relevant for antipsychotic treatment. Type II metabotropic glutamate receptors (mGluRs) and serotonin 5-HT(2A) receptors have been reported to form heterodimers that modulate G-protein-mediated intracellular signaling differentially compared to mGluR2 and 5-HT(2A) homomers. Additionally, direct evidence has been provided that D(2) and 5-HT(2A) receptors form physical heterocomplexes which exert a functional cross-talk, as demonstrated by studies on hallucinogen-induced signaling. Moving from receptors to postsynaptic density (PSD) scenario, the scaffolding protein PSD-95 is known to interact with N-methyl-D-aspartate (NMDA), D(2) and 5-HT(2) receptors, regulating their activation state. Homer1a, the inducible member of the Homer family of PSD proteins that is implicated in glutamatergic signal transduction, is induced in striatum by antipsychotics with high dopamine receptor affinity and in the cortex by antipsychotics with mixed serotonergic/dopaminergic profile. Signaling molecules, such as Akt and glycogen-synthase-kinase-3 (GSK-3), could be involved in the mechanism of action of antipsychotics, targeting dopamine, serotonin, and glutamate neurotransmission. Altogether, these proteins stand at the crossroad of glutamate-dopamine-serotonin signaling pathways and may be considered as valuable molecular targets for current and new antipsychotics. The aim of this review is to provide a critical appraisal on serotonin-glutamate and serotonin-dopamine interplay to support the idea that next generation schizophrenia pharmacotherapy should not exclusively rely on receptor targeting strategies.
Collapse
|
26
|
de Bartolomeis A, Tomasetti C. Calcium-Dependent Networks in Dopamine–Glutamate Interaction: The Role of Postsynaptic Scaffolding Proteins. Mol Neurobiol 2012; 46:275-96. [DOI: 10.1007/s12035-012-8293-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/21/2012] [Indexed: 01/11/2023]
|