1
|
Ikushiro H, Honda T, Murai Y, Murakami T, Takahashi A, Sawai T, Goto H, Ikushiro SI, Miyahara I, Hirabayashi Y, Kamiya N, Monde K, Yano T. Racemization of the substrate and product by serine palmitoyltransferase from Sphingobacterium multivorum yields two enantiomers of the product from d-serine. J Biol Chem 2024; 300:105728. [PMID: 38325740 PMCID: PMC10912632 DOI: 10.1016/j.jbc.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Serine palmitoyltransferase (SPT) catalyzes the pyridoxal-5'-phosphate (PLP)-dependent decarboxylative condensation of l-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (KDS). Although SPT was shown to synthesize corresponding products from amino acids other than l-serine, it is still arguable whether SPT catalyzes the reaction with d-serine, which is a question of biological importance. Using high substrate and enzyme concentrations, KDS was detected after the incubation of SPT from Sphingobacterium multivorum with d-serine and palmitoyl-CoA. Furthermore, the KDS comprised equal amounts of 2S and 2R isomers. 1H-NMR study showed a slow hydrogen-deuterium exchange at Cα of serine mediated by SPT. We further confirmed that SPT catalyzed the racemization of serine. The rate of the KDS formation from d-serine was comparable to those for the α-hydrogen exchange and the racemization reaction. The structure of the d-serine-soaked crystal (1.65 Å resolution) showed a distinct electron density of the PLP-l-serine aldimine, interpreted as the racemized product trapped in the active site. The structure of the α-methyl-d-serine-soaked crystal (1.70 Å resolution) showed the PLP-α-methyl-d-serine aldimine, mimicking the d-serine-SPT complex prior to racemization. Based on these enzymological and structural analyses, the synthesis of KDS from d-serine was explained as the result of the slow racemization to l-serine, followed by the reaction with palmitoyl-CoA, and SPT would not catalyze the direct condensation between d-serine and palmitoyl-CoA. It was also shown that the S. multivorum SPT catalyzed the racemization of the product KDS, which would explain the presence of (2R)-KDS in the reaction products.
Collapse
Affiliation(s)
- Hiroko Ikushiro
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| | - Takumi Honda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuta Murai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan; Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Taiki Murakami
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Aya Takahashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Taiki Sawai
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Haruna Goto
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Shin-Ichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Ikuko Miyahara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Yoshio Hirabayashi
- RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan; Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Nobuo Kamiya
- Research Center for Artificial Photosynthesis, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Monde
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| |
Collapse
|
2
|
Serra M, Di Maio A, Bassareo V, Nuzzo T, Errico F, Servillo F, Capasso M, Parekh P, Li Q, Thiolat ML, Bezard E, Calabresi P, Sulzer D, Carta M, Morelli M, Usiello A. Perturbation of serine enantiomers homeostasis in the striatum of MPTP-lesioned monkeys and mice reflects the extent of dopaminergic midbrain degeneration. Neurobiol Dis 2023; 184:106226. [PMID: 37451474 DOI: 10.1016/j.nbd.2023.106226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Loss of dopaminergic midbrain neurons perturbs l-serine and d-serine homeostasis in the post-mortem caudate putamen (CPu) of Parkinson's disease (PD) patients. However, it is unclear whether the severity of dopaminergic nigrostriatal degeneration plays a role in deregulating serine enantiomers' metabolism. Here, through high-performance liquid chromatography (HPLC), we measured the levels of these amino acids in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and MPTP-plus-probenecid (MPTPp)-treated mice to determine whether and how dopaminergic midbrain degeneration affects the levels of serine enantiomers in various basal ganglia subregions. In addition, in the same brain regions, we measured the levels of key neuroactive amino acids modulating glutamatergic neurotransmission, including l-glutamate, glycine, l-aspartate, d-aspartate, and their precursors l-glutamine, l-asparagine. In monkeys, MPTP treatment produced severe denervation of nigrostriatal dopaminergic fibers (⁓75%) and increased the levels of serine enantiomers in the rostral putamen (rPut), but not in the subthalamic nucleus, and the lateral and medial portion of the globus pallidus. Moreover, this neurotoxin significantly reduced the protein expression of the astrocytic serine transporter ASCT1 and the glycolytic enzyme GAPDH in the rPut of monkeys. Conversely, concentrations of d-serine and l-serine, as well as ASCT1 and GAPDH expression were unaffected in the striatum of MPTPp-treated mice, which showed only mild dopaminergic degeneration (⁓30%). These findings unveil a link between the severity of dopaminergic nigrostriatal degeneration and striatal serine enantiomers concentration, ASCT1 and GAPDH expression. We hypothesize that the up-regulation of d-serine and l-serine levels occurs as a secondary response within a homeostatic loop to support the metabolic and neurotransmission demands imposed by the degeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Anna Di Maio
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università Degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Tommaso Nuzzo
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università Degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Errico
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
| | - Federica Servillo
- Department of Neuroscience, Cattolica Sacro Cuore University, Rome, Italy
| | - Mario Capasso
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini, 5, Napoli 80131, Italy
| | - Pathik Parekh
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Qin Li
- Motac Neuroscience, UKM15 6WE, Manchester, United Kingdom; Institute of Lab Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Marie-Laure Thiolat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Motac Neuroscience, UKM15 6WE, Manchester, United Kingdom; Institute of Lab Animal Sciences, China Academy of Medical Sciences, Beijing, China; Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Paolo Calabresi
- Department of Neuroscience, Cattolica Sacro Cuore University, Rome, Italy; Neurologia, Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy; National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Alessandro Usiello
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università Degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
3
|
Di Maio A, Nuzzo T, Gilio L, Serra M, Buttari F, Errico F, De Rosa A, Bassi MS, Morelli M, Sasabe J, Sulzer D, Carta M, Centonze D, Usiello A. Homeostasis of serine enantiomers is disrupted in the post-mortem caudate putamen and cerebrospinal fluid of living Parkinson's disease patients. Neurobiol Dis 2023:106203. [PMID: 37336364 DOI: 10.1016/j.nbd.2023.106203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
L-serine generated in astrocytes plays a pivotal role in modulating essential neurometabolic processes, while its enantiomer, D-serine, specifically regulates NMDA receptor (NMDAR) signalling. Despite their physiological relevance in modulating cerebral activity, serine enantiomers metabolism in Parkinson's disease (PD) remains elusive. Using High-Performance Liquid Chromatography (HPLC), we measured D- and L-serine levels along with other amino acids known to modulate NMDAR function, such as L-glutamate, L-aspartate, D-aspartate, and glycine, in the post-mortem caudate putamen (CPu) and superior frontal gyrus (SFG) of PD patients. Moreover, we examined these amino acids in the cerebrospinal fluid (CSF) of de novo living PD, Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) patients versus subjects with other neurological disorders (OND), used as control. We found higher D-serine and L-serine levels in the CPu of PD patients but not in the SFG, a cerebral region that, in contrast to the CPu, is not innervated by nigral dopaminergic terminals. We also highlighted a significant elevation of both serine enantiomers in the CSF samples from PD but not in those of AD and ALS patients, compared with control subjects. By contrast, none or only minor changes were found in the amount of other neuroactive amino acids mentioned above. Our findings identify D-serine and L-serine level upregulation as a biochemical signature associated with nigrostriatal dopaminergic degeneration in PD.
Collapse
Affiliation(s)
- Anna Di Maio
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Tommaso Nuzzo
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Luana Gilio
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy; Faculty of Psychology, Uninettuno Telematic International University, Rome, Italy; Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Errico
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Arianna De Rosa
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy; National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Jumpei Sasabe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Alessandro Usiello
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
4
|
Latif S, Kang YS. Blood-Brain Barrier Solute Carrier Transporters and Motor Neuron Disease. Pharmaceutics 2022; 14:2167. [PMID: 36297602 PMCID: PMC9608738 DOI: 10.3390/pharmaceutics14102167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2024] Open
Abstract
Defective solute carrier (SLC) transporters are responsible for neurotransmitter dysregulation, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). We provided the role and kinetic parameters of transporters such as ASCTs, Taut, LAT1, CAT1, MCTs, OCTNs, CHT, and CTL1, which are mainly responsible for the transport of essential nutrients, acidic, and basic drugs in blood-brain barrier (BBB) and motor neuron disease. The affinity for LAT1 was higher in the BBB than in the ALS model cell line, whereas the capacity was higher in the NSC-34 cell lines than in the BBB. Affinity for MCTs was lower in the BBB than in the NSC-34 cell lines. CHT in BBB showed two affinity sites, whereas no expression was observed in ALS cell lines. CTL1 was the main transporter for choline in ALS cell lines. The half maximal inhibitory concentration (IC50) analysis of [3H]choline uptake indicated that choline is sensitive in TR-BBB cells, whereas amiloride is most sensitive in ALS cell lines. Knowledge of the transport systems in the BBB and motor neurons will help to deliver drugs to the brain and develop the therapeutic strategy for treating CNS and neurological diseases.
Collapse
Affiliation(s)
| | - Young-Sook Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea
| |
Collapse
|
5
|
Zhang H, Lu J, Shang H, Chen J, Lin Z, Liu Y, Wang X, Song L, Jiang X, Jiang H, Shi J, Yan D, Wu S. Alterations of serine racemase expression determine proliferation and differentiation of neuroblastoma cells. FASEB J 2022; 36:e22473. [PMID: 35976172 DOI: 10.1096/fj.202200394rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
Although the role of serine racemase (SR) in neuropsychiatric disorders has been extensively studied, its role in cell proliferation and differentiation remains unclear. Deletion of Srr, the encoding gene for SR, has been shown to reduce dendritic arborization and dendritic spine density in the brains of adult mice, whereas increased SR levels have been associated with differentiation in cell cultures. Previously, we demonstrated that valproic acid induces differentiation in the N2A neuroblastoma cell line, and that this differentiation is associated with increased SR expression. These observations suggest that SR may have a role in cell proliferation and differentiation. We herein found that both valproic acid and all-trans retinoic acid induced N2A differentiation. In contrast, knockdown of SR reduced levels of differentiation, increased N2A proliferation, promoted cell cycle entry, and modulated expression of cell cycle-related proteins. To further evaluate the effects of SR expression on cell proliferation and differentiation, we used an in vivo model of neuroblastoma in nude mice. N2A cells stably expressing scramble shRNA (Srrwt -N2A) or specific Srr shRNA (Srrkd -N2A) were subcutaneously injected into nude mice. The weights and volumes of Srrwt -N2A-derived tumors were lower than Srrkd -N2A-derived tumors. Furthermore, Srrwt -N2A-derived tumors were significantly mitigated by intraperitoneal injection of valproic acid, whereas Srrkd -N2A-derived tumors were unaffected. Taken together, our findings demonstrate for the first time that alterations in SR expression determine the transition between proliferation and differentiation in neural progenitor cells. Thus, in addition to its well-established roles in neuropsychiatric disorders, our study has highlighted a novel role for SR in cell proliferation and differentiation.
Collapse
Affiliation(s)
- He Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, P.R. China.,Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou, P.R. China.,School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jinfang Lu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, P.R. China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, P.R. China
| | - Huiping Shang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Juan Chen
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhengxiu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yimei Liu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xianwei Wang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Liping Song
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xue Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Haiyan Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jiandong Shi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Dongsheng Yan
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
6
|
Wu S, Zhou J, Zhang H, Barger SW. Serine Racemase Expression Differentiates Aging from Alzheimer's Brain. Curr Alzheimer Res 2022; 19:494-502. [PMID: 35929621 DOI: 10.2174/1567205019666220805105106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023]
Abstract
Aging is an inevitable process characterized by progressive loss of physiological integrity and increased susceptibility to cancer, diabetes, cardiovascular, and neurodegenerative diseases; aging is the primary risk factor for Alzheimer's disease (AD), the most common cause of dementia. AD is characterized by brain pathology, including extracellular deposition of amyloid aggregation and intracellular accumulation of neurofibrillary tangles composed of hyperphosphorylated tau protein. In addition, losses of synapses and a wide range of neurons are pivotal pathologies in the AD brain. Accumulating evidence demonstrates hypoactivation of hippocampal neural networks in the aging brain, whereas AD-related mild cognitive impairment (AD-MCI) begins with hyperactivation, followed by a diminution of hippocampal activity as AD develops. The biphasic trends of the activity of the hippocampal neural network are consistent with the alteration of N-methyl-D-aspartate receptor (NMDA-R) activity from aging to prodromal (AD-MCI) to mid-/late stage AD. D-serine, a product of racemization catalyzed by serine racemase (SR), is an important co-agonist of the NMDA-R which is involved in synaptic events including neurotransmission, synaptogenesis, long-term potentiation (LTP), development, and excitotoxicity. SR and D-serine are decreased in the hippocampus of the aging brain, correlating with impairment of cognitive function. By contrast, SR is increased in AD brain, which is associated with a greater degree of cognitive dysfunction. Emerging studies suggest that D-serine levels in the brain or in cerebral spinal fluid from AD patients are higher than in age-matched controls, but the results are inconsistent. Very recently, serum D-serine levels in AD were reported to correlate with sex and clinical dementia rating (CDR) stage. This review will discuss alterations of NMDA-R and SR in aging and AD brain, and the mechanisms underlying the differential regulation of SR will be probed. Collectively, we propose that SR may be a molecular switch that distinguishes the effects of aging from those of AD on the brain.
Collapse
Affiliation(s)
- Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China
| | - Jing Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, P.R. China
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock AR, USA.,Geriatric Research, Education & Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock AR, USA
| |
Collapse
|
7
|
Zhao J, Taylor CJ, Newcombe EA, Spanevello MD, O'Keeffe I, Cooper LT, Jhaveri DJ, Boyd AW, Bartlett PF. EphA4 Regulates Hippocampal Neural Precursor Proliferation in the Adult Mouse Brain by d-Serine Modulation of N-Methyl-d-Aspartate Receptor Signaling. Cereb Cortex 2020; 29:4381-4397. [PMID: 30590507 DOI: 10.1093/cercor/bhy319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
The hippocampal dentate gyrus (DG) is a major region of the adult rodent brain in which neurogenesis occurs throughout life. The EphA4 receptor, which regulates neurogenesis and boundary formation in the developing brain, is also expressed in the adult DG, but whether it regulates adult hippocampal neurogenesis is not known. Here, we show that, in the adult mouse brain, EphA4 inhibits hippocampal precursor cell proliferation but does not affect precursor differentiation or survival. Genetic deletion or pharmacological inhibition of EphA4 significantly increased hippocampal precursor proliferation in vivo and in vitro, by blocking EphA4 forward signaling. EphA4 was expressed by mature hippocampal DG neurons but not neural precursor cells, and an EphA4 antagonist, EphA4-Fc, did not activate clonal cultures of precursors until they were co-cultured with non-precursor cells, indicating an indirect effect of EphA4 on the regulation of precursor activity. Supplementation with d-serine blocked the increased precursor proliferation induced by EphA4 inhibition, whereas blocking the interaction between d-serine and N-methyl-d-aspartate receptors (NMDARs) promoted precursor activity, even at the clonal level. Collectively, these findings demonstrate that EphA4 indirectly regulates adult hippocampal precursor proliferation and thus plays a role in neurogenesis via d-serine-regulated NMDAR signaling.
Collapse
Affiliation(s)
- Jing Zhao
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Chanel J Taylor
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Estella A Newcombe
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Mark D Spanevello
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Imogen O'Keeffe
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Leanne T Cooper
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,QIMR Berghofer Medical Research Institute, St Lucia, QLD, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew W Boyd
- QIMR Berghofer Medical Research Institute, St Lucia, QLD, Australia.,School of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Perry F Bartlett
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
8
|
Dual role of D-amino acid oxidase in experimental pain models. Eur J Pharmacol 2019; 855:98-102. [DOI: 10.1016/j.ejphar.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 02/08/2023]
|
9
|
Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Keio J Med 2018; 68:1-16. [PMID: 29794368 DOI: 10.2302/kjm.2018-0001-ir] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.
Collapse
|
10
|
Schöneich C. Sulfur Radical-Induced Redox Modifications in Proteins: Analysis and Mechanistic Aspects. Antioxid Redox Signal 2017; 26:388-405. [PMID: 27288212 DOI: 10.1089/ars.2016.6779] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The sulfur-containing amino acids cysteine (Cys) and methionine (Met) are prominent protein targets of redox modification during conditions of oxidative stress. Here, two-electron pathways have received widespread attention, in part due to their role in signaling processes. However, Cys and Met are equally prone to one-electron pathways, generating intermediary radicals and/or radial ions. These radicals/radical ions can generate various reaction products that are not commonly monitored in redox proteomic studies, but they may be relevant for the fate of proteins during oxidative stress. Recent Advances: Time-resolved kinetic studies and product analysis have expanded our mechanistic understanding of radical reaction pathways of sulfur-containing amino acids. These reactions are now studied in some detail for Met and Cys in proteins, and homocysteine (Hcy) chemically linked to proteins, and the role of protein radical reactions in physiological processes is evolving. CRITICAL ISSUES Radical-derived products from Cys, Hcy, and Met can react with additional amino acids in proteins, leading to secondary protein modifications, which are potentially remote from initial points of radical attack. These products may contain intra- and intermolecular cross-links, which may lead to protein aggregation. Protein sequence and conformation will have a significant impact on the formation of such products, and a thorough understanding of reaction mechanisms and specifically how protein structure influences reaction pathways will be critical for identification and characterization of novel reaction products. FUTURE DIRECTIONS Future studies must evaluate the biological significance of novel reaction products that are derived from radical reactions of sulfur-containing amino acids. Antioxid. Redox Signal. 26, 388-405.
Collapse
Affiliation(s)
- Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas , Lawrence, Kansas
| |
Collapse
|
11
|
Acton D, Miles GB. Differential regulation of NMDA receptors by d-serine and glycine in mammalian spinal locomotor networks. J Neurophysiol 2017; 117:1877-1893. [PMID: 28202572 PMCID: PMC5411468 DOI: 10.1152/jn.00810.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/11/2017] [Accepted: 02/11/2017] [Indexed: 12/11/2022] Open
Abstract
We provide evidence that NMDARs within murine spinal locomotor networks determine the frequency and amplitude of ongoing locomotor-related activity in vitro and that NMDARs are regulated by d-serine and glycine in a synapse-specific and activity-dependent manner. In addition, glycine transporter-1 is shown to be an important regulator of NMDARs during locomotor-related activity. These results show how excitatory transmission can be tuned to diversify the output repertoire of spinal locomotor networks in mammals. Activation of N-methyl-d-aspartate receptors (NMDARs) requires the binding of a coagonist, either d-serine or glycine, in addition to glutamate. Changes in occupancy of the coagonist binding site are proposed to modulate neural networks including those controlling swimming in frog tadpoles. Here, we characterize regulation of the NMDAR coagonist binding site in mammalian spinal locomotor networks. Blockade of NMDARs by d(−)-2-amino-5-phosphonopentanoic acid (d-APV) or 5,7-dichlorokynurenic acid reduced the frequency and amplitude of pharmacologically induced locomotor-related activity recorded from the ventral roots of spinal-cord preparations from neonatal mice. Furthermore, d-APV abolished synchronous activity induced by blockade of inhibitory transmission. These results demonstrate an important role for NMDARs in murine locomotor networks. Bath-applied d-serine enhanced the frequency of locomotor-related but not disinhibited bursting, indicating that coagonist binding sites are saturated during the latter but not the former mode of activity. Depletion of endogenous d-serine by d-amino acid oxidase or the serine-racemase inhibitor erythro-β-hydroxy-l-aspartic acid (HOAsp) increased the frequency of locomotor-related activity, whereas application of l-serine to enhance endogenous d-serine synthesis reduced burst frequency, suggesting a requirement for d-serine at a subset of synapses onto inhibitory interneurons. Consistent with this, HOAsp was ineffective during disinhibited activity. Bath-applied glycine (1–100 µM) failed to alter locomotor-related activity, whereas ALX 5407, a selective inhibitor of glycine transporter-1 (GlyT1), enhanced burst frequency, supporting a role for GlyT1 in NMDAR regulation. Together these findings indicate activity-dependent and synapse-specific regulation of the coagonist binding site within spinal locomotor networks, illustrating the importance of NMDAR regulation in shaping motor output. NEW & NOTEWORTHY We provide evidence that NMDARs within murine spinal locomotor networks determine the frequency and amplitude of ongoing locomotor-related activity in vitro and that NMDARs are regulated by d-serine and glycine in a synapse-specific and activity-dependent manner. In addition, glycine transporter-1 is shown to be an important regulator of NMDARs during locomotor-related activity. These results show how excitatory transmission can be tuned to diversify the output repertoire of spinal locomotor networks in mammals.
Collapse
Affiliation(s)
- David Acton
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, United Kingdom
| |
Collapse
|
12
|
Lee NY, Kim Y, Ryu H, Kang YS. The alteration of serine transporter activity in a cell line model of amyotrophic lateral sclerosis (ALS). Biochem Biophys Res Commun 2017; 483:135-141. [DOI: 10.1016/j.bbrc.2016.12.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 11/29/2022]
|
13
|
Martinez FJ, Pratt GA, Van Nostrand EL, Batra R, Huelga SC, Kapeli K, Freese P, Chun SJ, Ling K, Gelboin-Burkhart C, Fijany L, Wang HC, Nussbacher JK, Broski SM, Kim HJ, Lardelli R, Sundararaman B, Donohue JP, Javaherian A, Lykke-Andersen J, Finkbeiner S, Bennett CF, Ares M, Burge CB, Taylor JP, Rigo F, Yeo GW. Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System. Neuron 2016; 92:780-795. [PMID: 27773581 DOI: 10.1016/j.neuron.2016.09.050] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022]
Abstract
HnRNPA2B1 encodes an RNA binding protein associated with neurodegeneration. However, its function in the nervous system is unclear. Transcriptome-wide crosslinking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ∼2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. HnRNP A2/B1 loss results in alternative splicing (AS), including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells (iPSC-MNs) demonstrate abnormal splicing changes, likely due to increased nuclear-insoluble hnRNP A2/B1. Mutant iPSC-MNs display decreased survival in long-term culture and exhibit hnRNP A2/B1 localization to cytoplasmic granules as well as exacerbated changes in gene expression and splicing upon cellular stress. Our findings provide a cellular resource and reveal RNA networks relevant to neurodegeneration, regulated by normal and mutant hnRNP A2/B1. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Fernando J Martinez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ranjan Batra
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie C Huelga
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katannya Kapeli
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Peter Freese
- Department of Biology, MIT, Cambridge, MA 02139, USA
| | | | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Chelsea Gelboin-Burkhart
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Layla Fijany
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Harrison C Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julia K Nussbacher
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sara M Broski
- Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Hong Joo Kim
- Howard Hughes Medical Institute, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rea Lardelli
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Balaji Sundararaman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - John P Donohue
- Department of Molecular, Cell, and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ashkan Javaherian
- Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Jens Lykke-Andersen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven Finkbeiner
- Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA 94107, USA
| | | | - Manuel Ares
- Department of Molecular, Cell, and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - J Paul Taylor
- Howard Hughes Medical Institute, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Molecular Engineering Laboratory, A(∗)STAR, Singapore 138673, Singapore.
| |
Collapse
|
14
|
Ultimate Translation: Developing Therapeutics Targeting on N-Methyl-d-Aspartate Receptor. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:257-309. [PMID: 27288080 DOI: 10.1016/bs.apha.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are broadly distributed in the central nervous system (CNS), where they mediate excitatory signaling. NMDAR-mediated neurotransmission (NMDARMN) is the molecular engine of learning, memory and cognition, which are the basis for high cortical function. NMDARMN is also critically involved in the development and plasticity of CNS. Due to its essential and critical role, either over- or under-activation of NMDARMN can contribute substantially to the development of CNS disorders. The involvement of NMDARMN has been demonstrated in a variety of CNS disorders, including schizophrenia, depression, posttraumatic stress disorder, aging, mild cognitive impairment and Alzheimer's dementia, amyotrophic lateral sclerosis, and anti-NMDAR encephalitis. Several targets to "correct" or "reset" the NMDARMN in these CNS disorders have been identified and confirmed. With analogy to aminergic treatments, these targets include the glycine/d-serine co-agonist site, channel ionophore, glycine transporter-1, and d-amino acid oxidase. It is still early days in terms of developing novel therapeutics targeting the NMDAR. However, agents modulating NMDARMN hold promise as the next generation of CNS therapeutics.
Collapse
|
15
|
Lewerenz J, Maher P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front Neurosci 2015; 9:469. [PMID: 26733784 PMCID: PMC4679930 DOI: 10.3389/fnins.2015.00469] [Citation(s) in RCA: 499] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
16
|
Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, Lu YF, Wang Q, Krueger BJ, Ren Z, Keebler J, Han Y, Levy SE, Boone BE, Wimbish JR, Waite LL, Jones AL, Carulli JP, Day-Williams AG, Staropoli JF, Xin WW, Chesi A, Raphael AR, McKenna-Yasek D, Cady J, Vianney de Jong JMB, Kenna KP, Smith BN, Topp S, Miller J, Gkazi A, Al-Chalabi A, van den Berg LH, Veldink J, Silani V, Ticozzi N, Shaw CE, Baloh RH, Appel S, Simpson E, Lagier-Tourenne C, Pulst SM, Gibson S, Trojanowski JQ, Elman L, McCluskey L, Grossman M, Shneider NA, Chung WK, Ravits JM, Glass JD, Sims KB, Van Deerlin VM, Maniatis T, Hayes SD, Ordureau A, Swarup S, Landers J, Baas F, Allen AS, Bedlack RS, Harper JW, Gitler AD, Rouleau GA, Brown R, Harms MB, Cooper GM, Harris T, Myers RM, Goldstein DB. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 2015; 347:1436-41. [PMID: 25700176 DOI: 10.1126/science.aaa3650] [Citation(s) in RCA: 743] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elizabeth T Cirulli
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | | | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Peter C Sapp
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Patrick A Dion
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Claire S Leblond
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi-Fan Lu
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Quanli Wang
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Brian J Krueger
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | | | - Yujun Han
- Duke University School of Medicine, Durham, NC 27708, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Braden E Boone
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jack R Wimbish
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Lindsay L Waite
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Angela L Jones
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | | | - Winnie W Xin
- Neurogenetics DNA Diagnostic Laboratory, Center for Human Genetics Research, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alessandra Chesi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alya R Raphael
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Diane McKenna-Yasek
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Janet Cady
- Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J M B Vianney de Jong
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Kevin P Kenna
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Bradley N Smith
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Simon Topp
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Jack Miller
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Athina Gkazi
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | | | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, 3508 GA Utrecht, Netherlands
| | - Jan Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, 3508 GA Utrecht, Netherlands
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy, and Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan 20122, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy, and Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan 20122, Italy
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | | | - Stanley Appel
- Houston Methodist Hospital, Houston, TX 77030, USA, and Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Ericka Simpson
- Houston Methodist Hospital, Houston, TX 77030, USA, and Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Clotilde Lagier-Tourenne
- Ludwig Institute for Cancer Research and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Summer Gibson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Elman
- Department of Neurology, Penn ALS Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leo McCluskey
- Department of Neurology, Penn ALS Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | - John M Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan D Glass
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Katherine B Sims
- Neurogenetics DNA Diagnostic Laboratory, Center for Human Genetics Research, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tom Maniatis
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Sebastian D Hayes
- Biogen Idec, Cambridge, MA 02142, USA. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sharan Swarup
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, USA
| | | | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Robert Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Matthew B Harms
- Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| |
Collapse
|
17
|
Kim HY, Huang BX, Spector AA. Phosphatidylserine in the brain: metabolism and function. Prog Lipid Res 2014; 56:1-18. [PMID: 24992464 DOI: 10.1016/j.plipres.2014.06.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 01/08/2023]
Abstract
Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear.
Collapse
Affiliation(s)
- Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States.
| | - Bill X Huang
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States
| | - Arthur A Spector
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States
| |
Collapse
|
18
|
Canu N, Ciotti MT, Pollegioni L. Serine racemase: a key player in apoptosis and necrosis. Front Synaptic Neurosci 2014; 6:9. [PMID: 24795622 PMCID: PMC4000995 DOI: 10.3389/fnsyn.2014.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022] Open
Abstract
A fine balance between cell survival and cell death is required to sculpt the nervous system during development. However, an excess of cell death can occur following trauma, exposure to neurotoxins or alcohol, and some developmental and neurodegenerative diseases, such as Alzheimer's disease (AD). N-Methyl-D-aspartate receptors (NMDARs) support synaptic plasticity and survival of many neuronal populations whereas inappropriate activation may promote various forms of cell death, apoptosis, and necrosis representing the two extremes of a continuum of cell death processes both “in vitro” and “in vivo.” Hence, by identifying the switches controlling pro-survival vs. apoptosis and apoptosis vs. pro-excitotoxic outcome of NMDAR stimulation, NMDAR modulators could be developed that selectively block the cell death enhancing pro-survival signaling or synaptic plasticity mediated by NMDAR. Among these modulators, a role is emerging for the enzyme serine racemase (SR) that synthesizes D-serine, a key co-agonist with glutamate at NMDAR. This review summarizes the experimental evidence from “in vitro” neuronal cultures—with special emphasis on cerebellar granule neurons (CGNs)—and “in vivo” models of neurodegeneration, where the dual role of the SR/D-serine pathway as a master regulator of apoptosis and the apoptosis-necrosis shift will be discussed.
Collapse
Affiliation(s)
- Nadia Canu
- Dipartimento di Medicina dei Sistemi, Università degli Studi di Roma Roma, Italy ; Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Maria Teresa Ciotti
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria Varese, Italy ; Centro Interuniversitario di Ricerca in Biotecnologie Proteiche "The Protein Factory," Politecnico di Milano, ICRM-CNR Milano and Università degli studi dell'Insubria Milano, Italy
| |
Collapse
|
19
|
McGoldrick P, Joyce PI, Fisher EMC, Greensmith L. Rodent models of amyotrophic lateral sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1421-36. [PMID: 23524377 DOI: 10.1016/j.bbadis.2013.03.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by the degeneration of upper and lower motor neurons. Recent advances in our understanding of some of the genetic causes of ALS, such as mutations in SOD1, TARDBP, FUS and VCP have led to the generation of rodent models of the disease, as a strategy to help our understanding of the pathophysiology of ALS and to assist in the development of therapeutic strategies. This review provides detailed descriptions of TDP-43, FUS and VCP models of ALS, and summarises potential therapeutics which have been recently trialled in rodent models of the disease. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Philip McGoldrick
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK.
| | | | | | | |
Collapse
|
20
|
Maucler C, Pernot P, Vasylieva N, Pollegioni L, Marinesco S. In vivo D-serine hetero-exchange through alanine-serine-cysteine (ASC) transporters detected by microelectrode biosensors. ACS Chem Neurosci 2013; 4:772-81. [PMID: 23581544 DOI: 10.1021/cn4000549] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
D-serine, a co-agonist of N-methyl D-aspartate (NMDA) receptors, has been implicated in neurological and psychiatric disorders such as cerebral ischemia, lateral amyotrophic sclerosis, or schizophrenia. D-serine signaling represents an important pharmacological target for treating these diseases; however, the biochemical mechanisms controlling extracellular D-serine levels in vivo are still unclear. D-serine heteroexchange through small neutral amino acid transporters has been shown in cell cultures and brain slices and could provide a biochemical mechanism for the control of D-serine extracellular concentration in vivo. Alternatively, exocytotic D-serine release has also been proposed. In this study, the dynamics of D-serine release and clearance were explored in vivo on a second-by-second time scale using microelectrode biosensors. The rate of D-serine clearance in the rat frontal cortex after a microionophoretic injection revealed a transporter-mediated uptake mechanism. D-serine uptake was blocked by small neutral l-amino acids, implicating alanine-serine-cysteine (ASC) transporters, in particular high affinity Asc-1 and low affinity ASCT2 transporters. Interestingly, changes in alanine, serine, or threonine levels resulted in D-serine release through ASC transporters. Asc-1, but not ASCT2, appeared to release D-serine in response to changes in amino acid concentrations. Finally, neuronal silencing by tetrodotoxin increased D-serine extracellular concentration by an ASC-transporter-dependent mechanism. Together, these results indicate that D-serine heteroexchange through ASC transporters is present in vivo and may constitute a key component in the regulation of D-serine extracellular concentration.
Collapse
Affiliation(s)
- Caroline Maucler
- INSERM U1028; CNRS UMR5292 Lyon Neuroscience Research Center, AniRA-Neurochem technological platform, team WAKING, Lyon F-69000, France
- Université Claude Bernard Lyon 1, Lyon F-69000, France
| | - Pierre Pernot
- INSERM U1028; CNRS UMR5292 Lyon Neuroscience Research Center, AniRA-Neurochem technological platform, team WAKING, Lyon F-69000, France
- Université Claude Bernard Lyon 1, Lyon F-69000, France
| | - Natalia Vasylieva
- INSERM U1028; CNRS UMR5292 Lyon Neuroscience Research Center, AniRA-Neurochem technological platform, team WAKING, Lyon F-69000, France
- Université Claude Bernard Lyon 1, Lyon F-69000, France
- Institut de nanotechnologie de Lyon, CNRS UMR-5270, INSA de Lyon, France
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell’Insubria, Varese, Italy
- “The Protein Factory”, Centro Interuniversitario di Ricerca in Biotecnologie Proteiche ICRM-CNR Milano, Politecnico di Milano and Università degli studi dell’Insubria, Italy
| | - Stéphane Marinesco
- INSERM U1028; CNRS UMR5292 Lyon Neuroscience Research Center, AniRA-Neurochem technological platform, team WAKING, Lyon F-69000, France
- Université Claude Bernard Lyon 1, Lyon F-69000, France
| |
Collapse
|
21
|
Spalloni A, Nutini M, Longone P. Role of the N-methyl-d-aspartate receptors complex in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2012. [PMID: 23200922 DOI: 10.1016/j.bbadis.2012.11.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease pathologically characterized by the massive loss of motor neurons in the spinal cord, brain stem and cerebral cortex. There is a consensus in the field that ALS is a multifactorial pathology and a number of possible mechanisms have been suggested. Among the proposed hypothesis, glutamate toxicity has been one of the most investigated. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor mediated cell death and impairment of the glutamate-transport system have been suggested to play a central role in the glutamate-mediated motor neuron degeneration. In this context, the role played by the N-methyl-d-aspartate (NMDA) receptor has received considerable less attention notwithstanding its high Ca(2+) permeability, expression in motor neurons and its importance in excitotoxicity. This review overviews the critical role of NMDA-mediated toxicity in ALS, with a particular emphasis on the endogenous modulators of the NMDAR.
Collapse
Affiliation(s)
- Alida Spalloni
- Molecular Neurobiology Unit, Experimental Neurology, Fondazione Santa Lucia, Rome Italy
| | | | | |
Collapse
|
22
|
D-Serine Production, Degradation, and Transport in ALS: Critical Role of Methodology. Neurol Res Int 2012; 2012:625245. [PMID: 23029613 PMCID: PMC3458282 DOI: 10.1155/2012/625245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 07/31/2012] [Indexed: 01/12/2023] Open
Abstract
In mammalian systems, D-serine is perhaps the most biologically active D-amino acid described to date. D-serine is a coagonist at the NMDA-receptor, and receptor activation is dependent on D-serine binding. Because D-serine binding dramatically increases receptor affinity for glutamate, it can produce excitotoxicity without any change in glutamate per se. D-serine is twofold higher in the spinal cords of mSOD1 (G93A) ALS mice, and the deletion of serine racemase (SR), the enzyme that produces D-serine, results in an earlier onset of symptoms, but with a much slower rate of disease progression. Localization studies within the brain suggest that mSOD1 and subsequent glial activation could contribute to the alterations in SR and D-serine seen in ALS. By also degrading both D-serine and L-serine, SR appears to be a prime bidirectional regulator of free serine levels in vivo. Therefore, accurate and reproducible measurements of D-serine are critical to understanding its regulation by SR. Several methods for measuring D-serine have been employed, and significant issues related to validation and standardization remain unresolved. Further insights into the intracellular transport and tissue-specific compartmentalization of D-serine within the CNS will aid in the understanding of the role of D-serine in the pathogenesis of ALS.
Collapse
|
23
|
Yamanaka M, Miyoshi Y, Ohide H, Hamase K, Konno R. d-Amino acids in the brain and mutant rodents lacking d-amino-acid oxidase activity. Amino Acids 2012; 43:1811-21. [DOI: 10.1007/s00726-012-1384-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 07/30/2012] [Indexed: 12/27/2022]
|
24
|
Paul P, de Belleroche J. The role of D-amino acids in amyotrophic lateral sclerosis pathogenesis: a review. Amino Acids 2012; 43:1823-31. [PMID: 22890612 DOI: 10.1007/s00726-012-1385-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
Abstract
A potential role for D-amino acids in motor neuron disease/amyotrophic lateral sclerosis (ALS) is emerging. D-Serine, which is an activator/co-agonist at the N-methyl-D-aspartate glutamate receptor subtype, is elevated both in spinal cord from sporadic cases of ALS and in an animal model of ALS. Furthermore, we have shown that a mutation in D-amino acid oxidase (DAO), an enzyme strongly localized to spinal cord motor neurons and brain stem motor nuclei, is associated with familial ALS. DAO plays an important role in regulating levels of D-serine, and its function is impaired by the presence of this mutation and this may contribute to the pathogenic process in ALS. In sporadic ALS cases, elevated D-serine may arise from induction of serine racemase, its synthetic enzyme, caused by cell stress and inflammatory processes thought to contribute to disease progression. Both these abnormalities in D-serine metabolism lead to an increase in synaptic D-serine which may contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Praveen Paul
- Neurogenetics Group, Centre for Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | |
Collapse
|
25
|
Mohd Zain Z, Ab Ghani S, O’Neill RD. Amperometric microbiosensor as an alternative tool for investigation of d-serine in brain. Amino Acids 2012; 43:1887-94. [DOI: 10.1007/s00726-012-1365-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/06/2012] [Indexed: 12/23/2022]
|