1
|
Li F, Zhou F, Yang B. MicroRNA152-3p Protects Against Ischemia/Reperfusion-Induced Bbb Destruction Possibly Targeting the MAP3K2/JNK/c-Jun Pathway. Neurochem Res 2022; 48:1293-1304. [PMID: 36445489 PMCID: PMC10066145 DOI: 10.1007/s11064-022-03828-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
AbstractIn the current study, we reported that overexpression of miR-152-3p effectively ameliorated neurological deficits and protected blood-brain barrier(BBB) integrity in middle cerebral artery occlusion (MCAO) rats. In an in vitro model, the level of miR-152-3p was significantly decreased in bEnd.3 cells after oxygen–glucose deprivation/reperfusion (OGD/R) insult. miR-152-3p overexpressing bEnd.3 cell monolayers were protected from OGD/R-induced microvascular hyperpermeability. The miR-152-3p-mediated protective effect was associated with lower apoptosis of endothelia by negatively modulating the MAP3K2/JNK/c-Jun pathway.
Collapse
Affiliation(s)
- Fei Li
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fangfang Zhou
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Binbin Yang
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Chen K, Ding L, Shui H, Liang Y, Zhang X, Wang T, Li L, Liu S, Wu H. MiR-615 Agomir Encapsulated in Pluronic F-127 Alleviates Neuron Damage and Facilitates Function Recovery After Brachial Plexus Avulsion. J Mol Neurosci 2021; 72:136-148. [PMID: 34569008 PMCID: PMC8755699 DOI: 10.1007/s12031-021-01916-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Brachial plexus avulsion (BPA) is a devastating traumatic peripheral nerve injury complicated with paralysis of the upper extremity. We previously reported that leucine-rich repeat and immunoglobulin-like domain-containing NOGO receptor-interacting protein 1 (LINGO-1) has a potent role in inhibiting neuron survival and axonal regeneration after the central nervous system (CNS) damage and miR-615 is a potential microRNA (miRNA) negatively regulated LINGO-1. However, the effect of miR-615 in BPA remains to be elucidated. Accumulating evidence indicates that pluronic F-127 (PF-127) hydrogel could serve as a promising vehicle for miRNA encapsulation. Thus, to further explore the potential role of hydrogel-miR-615 in BPA-reimplantation, the present study established the BPA rat model and injected miR-615 agomir encapsulated by PF-127 hydrogel into the reimplantation site using a microsyringe. In this study, results indicated that hydrogel-miR-615 agomir effectively alleviated motoneuron loss by LINGO-1 inhibition, promoted musculocutaneous nerve regeneration and myelination, reduced astrocytes activation, promoted angiogenesis and attenuated peripheral amyotrophy, leading to improved motor functional rehabilitation of the upper extremity. In conclusion, our findings demonstrate that miR-615-loaded PF-127 hydrogel may represent a novel therapeutic strategy for BPA treatment.
Collapse
Affiliation(s)
- Kangzhen Chen
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Lu Ding
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
- Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hua Shui
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China
| | - Yinru Liang
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaomin Zhang
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, 528318, China
| | - Linke Li
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Shuxian Liu
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China.
| | - Hongfu Wu
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
3
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
4
|
Wang P, Pan R, Weaver J, Jia M, Yang X, Yang T, Liang J, Liu KJ. MicroRNA-30a regulates acute cerebral ischemia-induced blood-brain barrier damage through ZnT4/zinc pathway. J Cereb Blood Flow Metab 2021; 41:641-655. [PMID: 32501158 PMCID: PMC7922758 DOI: 10.1177/0271678x20926787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanism of early blood-brain barrier (BBB) disruption after stroke has been intensively studied but still not fully understood. Here, we report that microRNA-30a (miR-30a) could mediate BBB damage using both cellular and animal models of ischemic stroke. In the experiments in vitro, inhibition of miR-30a decreased BBB permeability, prevented the degradation of tight junction proteins, and reduced intracellular free zinc in endothelial cells. We found that the zinc transporter ZnT4 was a direct target of negative regulation by miR-30a, and ZnT4/zinc signaling pathway contributed significantly to miR-30a-mediated BBB damage. Consistent with these in vitro findings, treatment with miR-30a inhibitor reduced zinc accumulation, increased the expression of ZnT4, and prevented the loss of tight junction proteins in microvessels of ischemic animals. Furthermore, inhibition of miR-30a, even at 90 min post onset of middle cerebral artery occlusion, prevented BBB damage, reduced infarct volume, and ameliorated neurological deficits. Together, our findings provide novel insights into the mechanisms of cerebral ischemia-induced BBB disruption and indicate miR-30a as a regulator of BBB function that can be an effective therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Rong Pan
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - John Weaver
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Mengjie Jia
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Xue Yang
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Tianhui Yang
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Jia Liang
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Ke J Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
5
|
Becerra-González M, Varman Durairaj R, Ostos Valverde A, Gualda EJ, Loza-Alvarez P, Portillo Martínez W, Gómez-González GB, Buffo A, Martínez-Torres A. Response to Hypoxic Preconditioning of Glial Cells from the Roof of the Fourth Ventricle. Neuroscience 2020; 439:211-229. [PMID: 31689390 DOI: 10.1016/j.neuroscience.2019.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
Abstract
The cerebellum harbors a specialized area on the roof of the fourth ventricle that is composed of glial cells and neurons that interface with the cerebrospinal fluid. This region includes the so-called ventromedial cord (VMC), which is composed of cells that are glial fibrillary acidic protein (GFAP)-positive and nestin-positive and distributes along the midline in association with blood vessels. We hypothesized that these cells should compare to GFAP and nestin-positive cells that are known to exist in other areas of the brain, which undergo proliferation and differentiation under hypoxic conditions. Thus, we tested whether cells of the VMC would display a similar reaction to hypoxic preconditioning (HPC). Indeed, we found that the VMC does respond to HPC by reorganizing its cellular components before it gradually returns to its basal state after about a week. This response we documented by monitoring global changes in the expression of GFAP-EGFP in transgenic mice, using light-sheet fluorescence microscopy (LSFM) revealed a dramatic loss of EGFP upon HPC, and was paralleled by retraction of Bergmann glial cell processes. This EGFP loss was supported by western blot analysis, which also showed a loss in the astrocyte-markers GFAP and ALDH1L1. On the other hand, other cell-markers appeared to be upregulated in the blots (including nestin, NeuN, and Iba1). Finally, we found that HPC does not remarkably affect the incorporation of BrdU into cells on the cerebellum, but strongly augments BrdU incorporation into periventricular cells on the floor of the fourth ventricle over the adjacent medulla.
Collapse
Affiliation(s)
- Marymar Becerra-González
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Ragu Varman Durairaj
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Aline Ostos Valverde
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Emilio J Gualda
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels (Barcelona), Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels (Barcelona), Spain
| | - Wendy Portillo Martínez
- Instituto de Neurobiología, Departamento de Neurobiología Conductual y Cognitiva, Laboratorio de Plasticidad y Conducta Sexual, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Gabriela Berenice Gómez-González
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Torino, Italy
| | - Ataúlfo Martínez-Torres
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
6
|
Bahlakeh G, Gorji A, Soltani H, Ghadiri T. MicroRNA alterations in neuropathologic cognitive disorders with an emphasis on dementia: Lessons from animal models. J Cell Physiol 2020; 236:806-823. [PMID: 32602584 DOI: 10.1002/jcp.29908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Cognitive dysfunction is a state of losing or having difficulties in remembering, learning, focusing, or making decisions that impact individual healthy life. Small single-stranded and nonprotein coding RNAs, microRNAs (miRNAs) participate actively in regulatory processes, incorporate cognitive signaling pathways, and intensely affect cognitive evolution. miRNAs exert their modification activities through translational or transcriptional processes. Reportedly, cognitive impairment and dementia are rising, especially in developing countries. Herein we provided a brief review of original studies addressing miRNA changes in the most common neurological diseases with a focus on dementia and Alzheimer's disease. It must be noted that an increase in the level of certain miRNAs but a decrease in other ones deteriorate cognitive performance. The current review revealed that induction of miR-214-3p, miR-302, miR-21, miR- 200b/c, miR-207, miR-132, miR-188-3p and 5p, and miR-873 improved cognitive impairment in various cognitive tasks. On the other hand, intentionally lowering the level of miR-34a, miR-124, miR-574, and miR-191a enhanced cognitive function and memory. Synaptic dysfunction is a core cause of cognitive dysfunction; miRNA-34, miRNA-34-c, miRNA-124, miRNA-188-5p, miRNA-210-5p, miRNA-335-3p, and miRNA-134 strongly influence synaptic-related mechanisms. The downregulation of miRNA-132 aggregates both amyloid and tau in tauopathy. Concerning the massive burden of neurological diseases worldwide, the future challenge is the translation of animal model knowledge into the detection of pathophysiological stages of neurocognitive disorders and designing efficient therapeutic strategies. While the delivery procedure of agomir or antagomir miRNAs into the brain is invasive and only applied in animal studies, finding a safe and specific delivery route is a priority.
Collapse
Affiliation(s)
- Gozal Bahlakeh
- Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Gorji
- Epilepsy Research Center, Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Soltani
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
miR-615 Fine-Tunes Growth and Development and Has a Role in Cancer and in Neural Repair. Cells 2020; 9:cells9071566. [PMID: 32605009 PMCID: PMC7408929 DOI: 10.3390/cells9071566] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that function as epigenetic modulators regulating almost any gene expression. Similarly, other noncoding RNAs, as well as epigenetic modifications, can regulate miRNAs. This reciprocal interaction forms a miRNA-epigenetic feedback loop, the deregulation of which affects physiological processes and contributes to a great diversity of diseases. In the present review, we focus on miR-615, a miRNA highly conserved across eutherian mammals. It is involved not only during embryogenesis in the regulation of growth and development, for instance during osteogenesis and angiogenesis, but also in the regulation of cell growth and the proliferation and migration of cells, acting as a tumor suppressor or tumor promoter. It therefore serves as a biomarker for several types of cancer, and recently has also been found to be involved in reparative processes and neural repair. In addition, we present the pleiad of functions in which miR-615 is involved, as well as their multiple target genes and the multiple regulatory molecules involved in its own expression. We do this by introducing in a comprehensible way the reported knowledge of their actions and interactions and proposing an integral view of its regulatory mechanisms.
Collapse
|
8
|
Safflor Yellow B Attenuates Ischemic Brain Injury via Downregulation of Long Noncoding AK046177 and Inhibition of MicroRNA-134 Expression in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4586839. [PMID: 32566081 PMCID: PMC7292966 DOI: 10.1155/2020/4586839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/11/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
Stroke breaks the oxidative balance in the body and causes extra reactive oxygen species (ROS) generation, leading to oxidative stress damage. Long noncoding RNAs (lncRNAs) and microRNAs play pivotal roles in oxidative stress-mediated brain injury. Safflor yellow B (SYB) was able to effectively reduce ischemia-mediated brain damage by increasing antioxidant capacity and inhibiting cell apoptosis. In this study, we investigated the putative involvement of lncRNA AK046177 and microRNA-134 (miR-134) regulation in SYB against ischemia/reperfusion- (I/R-) induced neuronal injury. I/R and oxygen-glucose deprivation/reoxygenation (OGD/R) were established in vivo and in vitro. Cerebral infarct volume, neuronal apoptosis, and protein expression were detected. The effects of SYB on cell activity, cell respiration, nuclear factor erythroid 2-related factor 2 (Nrf2), antioxidant enzymes, and ROS were evaluated. I/R or OGD/R upregulated the expression of AK046177 and miR-134 and subsequently inhibited the activation and expression of CREB, which caused ROS generation and brain/cell injury. SYB attenuated the effects of AK046177, inhibited miR-134 expression, and promoted CREB activation, which in turn promoted Nrf2 expression, and then increased antioxidant capacities, improved cell respiration, and reduced apoptosis. We suggested that the antioxidant effects of SYB were driven by an AK046177/miR-134/CREB-dependent mechanism that inhibited this pathway, and that SYB has potential use in reducing or possibly preventing I/R-induced neuronal injury.
Collapse
|
9
|
Parnall M, Perdios C, Pang KL, Rochette S, Loughna S. Characterisation of the developing heart in a pressure overloaded model utilising RNA sequencing to direct functional analysis. J Anat 2019; 236:549-563. [PMID: 31724174 PMCID: PMC7018637 DOI: 10.1111/joa.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiogenesis is influenced by both environmental and genetic factors, with blood flow playing a critical role in cardiac remodelling. Perturbation of any of these factors could lead to abnormal heart development and hence the formation of congenital heart defects. Although abnormal blood flow has been associated with a number of heart defects, the effects of abnormal pressure load on the developing heart gene expression profile have to date not clearly been defined. To determine the heart transcriptional response to haemodynamic alteration during development, outflow tract (OFT) banding was employed in the chick embryo at Hamburger and Hamilton stage (HH) 21. Stereological and expression studies, including the use of global expression analysis by RNA sequencing with an optimised procedure for effective globin depletion, were subsequently performed on HH29 OFT-banded hearts and compared with sham control hearts, with further targeted expression investigations at HH35. The OFT-banded hearts were found to have an abnormal morphology with a rounded appearance and left-sided dilation in comparison with controls. Internal analysis showed they typically had a ventricular septal defect and reductions in the myocardial wall and trabeculae, with an increase in the lumen on the left side of the heart. There was also a significant reduction in apoptosis. The differentially expressed genes were found to be predominately involved in contraction, metabolism, apoptosis and neural development, suggesting a cardioprotective mechanism had been induced. Therefore, altered haemodynamics during development leads to left-sided dilation and differential expression of genes that may be associated with stress and maintaining cardiac output.
Collapse
Affiliation(s)
- Matthew Parnall
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Chrysostomos Perdios
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Kar Lai Pang
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Sophie Rochette
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Shi J, Wang H, Feng W, Huang S, An J, Qiu Y, Wu K. Long non-coding RNA HOTTIP promotes hypoxia-induced glycolysis through targeting miR-615-3p/HMGB3 axis in non-small cell lung cancer cells. Eur J Pharmacol 2019; 862:172615. [PMID: 31422060 DOI: 10.1016/j.ejphar.2019.172615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Increased glycolysis under hypoxic stress is a fundamentally important feature of non-small cell lung cancer (NSCLC) cells, but molecular mechanisms of hypoxia on glycolysis remain elusive. Herein, we aimed to explore whether lncRNAs and miRNAs are involved in the glycolytic reprogramming under hypoxic conditions. The levels of HOXA transcript at the distal tip (HOTTIP), miR-615-3p and high mobility group box 3 (HMGB3) mRNA were assessed by qRT-PCR. Western blot was performed to determine the protein expression of hexokinase 2 (HK-2) and HMGB3. Glucose consumption and lactate production were analyzed using a respective assay kit. The targeted correlation between miR-615-3p and HOTTIP or HMGB3 was verified using dual-luciferase reporter and RNA immunoprecipition assays. Our data revealed that HOTTIP was upregulated and miR-615-3p was downregulated in NSCLC tissues and cells. Hypoxia induced glycolysis, increased HOTTIP and HMGB3 mRNA levels and repressed miR-615-3p expression in NSCLC cells. HOTTIP deficiency or miR-615-3p expression restoration repressed hypoxia-induced glycolysis. Moreover, HOTTIP acted as a molecular sponge for miR-615-3p and HMGB3 was a direct target of miR-615-3p. The inhibitory effect of HOTTIP deficiency on glycolysis under hypoxic exposure was reversed by miR-615-3p restoration. Additionally, HOTTIP regulated HMGB3 expression by acting as a molecular sponge of miR-615-3p in NSCLC cells. In conclusion, our study suggested that HOTTIP might promote glycolysis under hypoxic conditions at least partly through regulating miR-615-3p/HMGB3 axis in NSCLC cells. Targeting HOTTIP might be a promising therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Jiang Shi
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Huan Wang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Wanlu Feng
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Siyuan Huang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Jinlu An
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Yajuan Qiu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Ghoreishy A, Khosravi A, Ghaemmaghami A. Exosomal microRNA and stroke: A review. J Cell Biochem 2019; 120:16352-16361. [PMID: 31219202 DOI: 10.1002/jcb.29130] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
Blood vessels rupture or occlusion in brain results in stroke. Stroke is the major reason for mortality and dysfunction worldwide. Despite several attempts, there are no any approved therapeutic approaches for stroke subjects. The most neuroprotective agents showed the positive effects in preclinical reports, while there are no significant therapeutic impacts in the clinical trials. MicroRNAs (miRNAs) are small noncoding RNAs which involved in the modulation of a variety of cellular and molecular pathways. Given that deregulation of these molecules is related to initiation and progression of stroke. Exosomes are nano-carriers which are able to transfer different cargos such as miRNAs to recipient cells. Increasing evidence revealed that exosomal miRNAs are one of very important factors which are involved in the pathogenesis of stroke. Hence, more understanding about the role of exosomal miRNAs in stroke pathogenesis could contribute in discovering and developing new therapeutic approaches. Moreover, it has been proved the exosomal miRNAs could be used as noninvasive biomarkers in diagnosis and monitoring response to therapy in subjects with stroke. Herein for first time, we summarized different exosomal miRNAs involved in pathogenesis of stroke.
Collapse
Affiliation(s)
- Abdolreza Ghoreishy
- Department of Neurology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Khosravi
- Department of Neurology, Clinical Immunology Research Center, School of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Amir Ghaemmaghami
- Department of Psychology, Behaviour, Genetics and Neurobiology Program, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Duan X, Gan J, Peng DY, Bao Q, Xiao L, Wei L, Wu J. Identification and functional analysis of microRNAs in rats following focal cerebral ischemia injury. Mol Med Rep 2019; 19:4175-4184. [PMID: 30896823 PMCID: PMC6471137 DOI: 10.3892/mmr.2019.10073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/22/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNA sequencing (miRNA‑seq) was performed in the present study to investigate miRNA expression profiles in infarcted brain areas following focal cerebral ischemia induced by middle cerebral artery occlusion in rats. In total, 20 miRNAs were identified to be upregulated and 17 to be downregulated in the infarct area. The expression levels of six differentially expressed miRNAs (DEmiRs), miR‑211‑5p, miR‑183‑5p, miR‑10b‑3p, miR‑182, miR‑217‑5p and miR‑96‑5p, were examined by reverse transcription‑quantitative polymerase chain reaction. Subsequently, a miRNA‑mRNA network was constructed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to investigate the functions of the mRNAs targeted by these DEmiRs. The present study aimed to investigate the association between miRNAs and cerebral ischemia to provide potential insight into the molecular mechanisms underlying ischemic stroke.
Collapse
Affiliation(s)
- Xianchun Duan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Jianghua Gan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Dai-Yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Qiuyu Bao
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Ling Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Liangbing Wei
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Jian Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| |
Collapse
|
13
|
Geribaldi-Doldán N, Gómez-Oliva R, Domínguez-García S, Nunez-Abades P, Castro C. Protein Kinase C: Targets to Regenerate Brain Injuries? Front Cell Dev Biol 2019; 7:39. [PMID: 30949480 PMCID: PMC6435489 DOI: 10.3389/fcell.2019.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Acute or chronic injury to the central nervous system (CNS), causes neuronal death and irreversible cognitive deficits or sensory-motor alteration. Despite the capacity of the adult CNS to generate new neurons from neural stem cells (NSC), neuronal replacement following an injury is a restricted process, which does not naturally result in functional regeneration. Therefore, potentiating endogenous neurogenesis is one of the strategies that are currently being under study to regenerate damaged brain tissue. The insignificant neurogenesis that occurs in CNS injuries is a consequence of the gliogenic/non-neurogenic environment that inflammatory signaling molecules create within the injured area. The modification of the extracellular signals to generate a neurogenic environment would facilitate neuronal replacement. However, in order to generate this environment, it is necessary to unearth which molecules promote or impair neurogenesis to introduce the first and/or eliminate the latter. Specific isozymes of the protein kinase C (PKC) family differentially contribute to generate a gliogenic or neurogenic environment in injuries by regulating the ADAM17 mediated release of growth factor receptor ligands. Recent reports describe several non-tumorigenic diterpenes isolated from plants of the Euphorbia genus, which specifically modulate the activity of PKC isozymes promoting neurogenesis. Diterpenes with 12-deoxyphorbol or lathyrane skeleton, increase NPC proliferation in neurogenic niches in the adult mouse brain in a PKCβ dependent manner exerting their effects on transit amplifying cells, whereas PKC inhibition in injuries promotes neurogenesis. Thus, compounds that balance PKC activity in injuries might be of use in the development of new drugs and therapeutic strategies to regenerate brain injuries.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
14
|
Zhao X, Bai F, Zhang E, Zhou D, Jiang T, Zhou H, Wang Q. Electroacupuncture Improves Neurobehavioral Function Through Targeting of SOX2-Mediated Axonal Regeneration by MicroRNA-132 After Ischemic Stroke. Front Mol Neurosci 2018; 11:471. [PMID: 30618618 PMCID: PMC6306468 DOI: 10.3389/fnmol.2018.00471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/04/2018] [Indexed: 11/14/2022] Open
Abstract
Our previous studies have shown that electroacupuncture (EA) enhances neurobehavioral functional recovery after ischemic stroke, however, the underlying regulatory mechanisms remain unclear. MicroRNAs (miRNAs) are abundant in the brain and are involved in post-transcriptional gene regulation. During cerebral ischemia reperfusion, miRNAs perform numerous biological functions in the central nervous system related to regeneration and repair of damaged nerves. Our previous studies also have shown that the expression of miRNA-132 (miR-132) is obviously down-regulated after stroke by middle cerebral artery occlusion (MCAO), which can be up-regulated by EA. This study aimed to identify whether up-regulation of miR-132 by EA improved the damaged nerves after stroke and to screen the potential target of miR-132. The results showed that EA up-regulated miR-132 thus suppressing SOX2 expression in vivo after MCAO, which obviously ameliorated neurobehavioral functional recovery. Moreover, our results also suggested that up-regulated miR-132 suppressed SOX2 in primary neurons after oxygen-glucose deprivation (OGD), which promoted neurite outgrowth. In conclusion, EA enhances neurobehavioral functional recovery against ischemic stroke through targeting of SOX2-mediated axonal regeneration by miR-132.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fuhai Bai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Erfei Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, The Affiliated Hospital of Yan'an University, Yan'an, China
| | - Dandan Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, The Northwest Women's and Children's Hospital, Xi'an, China
| | - Tao Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heng Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Zhou J, Chen L, Chen B, Huang S, Zeng C, Wu H, Chen C, Long F. Increased serum exosomal miR-134 expression in the acute ischemic stroke patients. BMC Neurol 2018; 18:198. [PMID: 30514242 PMCID: PMC6278025 DOI: 10.1186/s12883-018-1196-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The exosomal miRNAs have been emerged as biomarkers and therapeutic targets for various diseases, however, the function of exosomal miRNAs in stroke remains largely unknown. METHODS The blood samples from acute ischemic stroke (AIS) patients and normal controls were collected. The exosomes were isolated from the blood samples, which were confirmed by electron microscopy and western blot with the specific exosomes biomarker CD9, CD63 and Tsg101. RESULTS RT-qPCR analysis showed that exosomal miR-134 was significantly increased in AIS patients within 24 h after stroke onset compared with that of control group. Highly expressed exosomal miR-134 was correlated with the National Institutes of Health Stroke Scale (NIHSS) scores, infarct volume and positively associated with the worse prognosis of the stroke patients. Additionally, the exosomal miR-134 was strong positively correlated with the expression of serum interleukin 6 (IL-6) and plasma high-sensitivity C relative protein (hs-CRP). The receiver operating characteristic (ROC) curve suggested that miR-134 might be a potential factor to discriminate AIS patients from non-stroke controls. CONCLUSIONS The exosomal miR-134 as a possible novel biomarker for the diagnosis and prognosis of stroke.
Collapse
Affiliation(s)
- Jingxia Zhou
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Lin Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Bocan Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Shaozhu Huang
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Chaosheng Zeng
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Hairong Wu
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Cong Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Faqing Long
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China.
| |
Collapse
|
16
|
Zhang H, Zhong K, Lu M, Mei Y, Tan E, Sun X, Tan W. Neuroprotective effects of isosteviol sodium through increasing CYLD by the downregulation of miRNA-181b. Brain Res Bull 2018; 140:392-401. [DOI: 10.1016/j.brainresbull.2018.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/29/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
|
17
|
Kaur H, Sarmah D, Saraf J, Vats K, Kalia K, Borah A, Yavagal DR, Dave KR, Ghosh Z, Bhattacharya P. Noncoding RNAs in ischemic stroke: time to translate. Ann N Y Acad Sci 2018; 1421:19-36. [DOI: 10.1111/nyas.13612] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Harpreet Kaur
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
| | - Jackson Saraf
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
| | - Kanchan Vats
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory; Department of Life Science and Bioinformatics; Assam University; Silchar Assam India
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery; University of Miami Miller School of Medicine; Miami Florida
| | - Kunjan R. Dave
- Department of Neurology and Neurosurgery; University of Miami Miller School of Medicine; Miami Florida
| | - Zhumur Ghosh
- Department of Bioinformatics; Bose Institute; Kolkata India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Ahmedabad, Gandhinagar Gujarat India
- Department of Neurosurgery, Boston Children's Hospital; Harvard Medical School; Boston Massachusetts
| |
Collapse
|
18
|
Liu C, Yang J, Zhang C, Liu M, Geng X, Ji X, Du H, Zhao H. Analysis of long non-coding RNA expression profiles following focal cerebral ischemia in mice. Neurosci Lett 2018; 665:123-129. [PMID: 29195908 PMCID: PMC5955004 DOI: 10.1016/j.neulet.2017.11.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 11/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) have a variety of biological functions and play key roles in many diseases. However, the knowledge of lncRNA function during a stroke is limited. We analyzed the expression profiles of lncRNAs in the brain ischemic region of mice after a 45min middle cerebral artery occlusion (MCAO) with a 48h reperfusion. Gene ontology and pathway analysis were used to elucidate the potential functions of the differentially expressed mRNAs. A total of 255 lncRNAs (217 up-regulated and 38 down-regulated) and 894 mRNAs (870 up-regulated and 24 down-regulated) showed significantly altered expression in the ischemic brain compared to the sham controls (fold change ≫>2, P≪0.05). The gene ontology terms were mainly associated with neutrophil chemotaxis, positive regulation of inflammatory response, cell cycle, positive regulation of apoptotic process, and apoptotic process. The pathway analysis indicated that the mRNAs were mainly associated with inflammatory pathways. Additionally, the interactions between the differentially expressed lncRNAs and mRNAs are revealed by a dynamic lncRNA-mRNA network. Our findings provide an overview of aberrantly expressed lncRNAs in stroke and further broaden the understanding of stroke pathogenesis.
Collapse
Affiliation(s)
- Cuiying Liu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chencheng Zhang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Menglei Liu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huishan Du
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Heng Zhao
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Stanford University, Stanford, CA, United States.
| |
Collapse
|
19
|
Liu C, Zhang C, Yang J, Geng X, Du H, Ji X, Zhao H. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget 2017; 8:86535-86547. [PMID: 29156814 PMCID: PMC5689704 DOI: 10.18632/oncotarget.21238] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Circular RNAs (circRNAs) have been demonstrated to act as microRNA (miRNA) sponges and they play important roles in regulating gene expression through a circRNA-miRNA-gene pathway. The specific roles of circRNAs in the pathogenesis of cerebral ischemia, however, are still unclear. Thus, the aim of this study is to determine circRNA expression profiles in the ischemic brain after stroke, which was induced by 45 min of transient middle cerebral artery occlusion (MCAO). The results from the circRNA microarrays revealed that 1027 circRNAs were significantly altered 48 hours after reperfusion in the ischemic brain compared with the sham group. Among them, 914 circRNAs were significantly upregulated, and the remaining 113 were significantly downregulated. In addition, the expressions of the three selected circRNAs, mmu_circRNA_40001, mmu_circRNA_013120, and mmu_circRNA_40806, were verified using quantitative real-time polymerase chain reaction (qRT-PCR). After predicting their target genes, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were further used to predict the associated significant cell signaling pathways and functions. The results show that the most enriched pathways are associated with the Rap1 signaling pathway and the Hippo signaling pathway, which regulate cell survival and death. Finally, we constructed an interaction network of circRNA-miRNA-target genes, including 13 miRNAs and their corresponding genes, indicating that changes in circRNA are associated with genes related with brain injury and recovery. In conclusion, circRNAs are complicated in the pathological development of brain injury after stroke, suggesting novel diagnostic and therapeutic targets for stroke therapy.
Collapse
Affiliation(s)
- Cuiying Liu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chencheng Zhang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Huishan Du
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Heng Zhao
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Morphine Preconditioning Downregulates MicroRNA-134 Expression Against Oxygen-Glucose Deprivation Injuries in Cultured Neurons of Mice. J Neurosurg Anesthesiol 2017; 28:195-202. [PMID: 26372418 DOI: 10.1097/ana.0000000000000204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Brain protection by narcotics such as morphine is clinically relevant due to the extensive use of narcotics in the perioperative period. Morphine preconditioning induces neuroprotection in neurons, but it remains uncertain whether microRNA-134 (miR-134) is involved in morphine preconditioning against oxygen-glucose deprivation-induced injuries in primary cortical neurons of mice. The present study examined this issue. MATERIALS AND METHODS After cortical neurons of mice were cultured in vitro for 6 days, the neurons were transfected by respective virus vector, such as lentiviral vector (LV)-miR-control-GFP, LV-pre-miR-134-GFP, LV-pre-miR-134-inhibitor-GFP for 24 hours; after being normally cultured for 3 days again, morphine preconditioning was performed by incubating the transfected primary neurons with morphine (3 μM) for 1 hour, and then neuronal cells were exposed to oxygen-glucose deprivation (OGD) for 1 hour and oxygen-glucose recovery for 12 hours. The neuronal cells survival rate and the amount of apoptotic neurons were determined by MTT assay or TUNEL staining at designated time; and the expression levels of miR-134 were detected using real-time reverse transcription polymerase chain reaction at the same time. RESULTS The neuronal cell survival rate was significantly higher, and the amount of apoptotic neurons was significantly decreased in neurons preconditioned with morphine before OGD than that of OGD alone. The neuroprotection induced by morphine preconditioning was partially blocked by upregulating miR-134 expression, and was enhanced by downregulating miR-134 expression. The expression of miR-134 was significantly decreased in morphine-preconditioned neurons alone without transfection. CONCLUSIONS By downregulating miR-134 expression, morphine preconditioning protects primary cortical neurons of mice against injuries induced by OGD.
Collapse
|
21
|
Zhou H, Yang C, Bai F, Ma Z, Wang J, Wang F, Li F, Wang Q, Xiong L. Electroacupuncture Alleviates Brain Damage Through Targeting of Neuronal Calcium Sensor 1 by miR-191a-5p After Ischemic Stroke. Rejuvenation Res 2017; 20:492-505. [PMID: 28537507 DOI: 10.1089/rej.2017.1920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Electroacupuncture (EA) administration before or after cerebral ischemia has been shown to afford protection against ischemic injury. However, the underlying mechanism of EA-mediated protection is still unclear. Functional microRNAs (miRNAs) are believed to play important roles in neuroprotection and synaptic plasticity during and after ischemia. In a previous study, we identified 20 miRNAs that are expressed in the penumbra and are significantly changed after EA treatment. Here, we used bioinformatic analysis to predict the biological functions and gene networks of these miRNAs. Consistent with our predictions, downregulation of miR-191a-5p in primary neurons and in cortexes of rats increased cell viability, decreased apoptosis, reduced infarct volumes, and improved neurological scores; whereas upregulation of miR-191a-5p exacerbated neuronal injury and partly reversed the neuroprotective effect of EA treatment after ischemia/reperfusion injury. In silico analysis predicted that miR-191a-5p targets neuronal calcium sensor 1 (NCS-1), brain-derived neurotrophic factor, and growth-associated protein 43 (GAP43), and using luciferase reporter assays, we confirmed that the NCS-1 3'UTR (untranslated region) is targeted by miR-191a-5p. Furthermore, lentivirus-mediated overexpression of NCS-1 in primary neurons and in the cortexes of rats induced neuroprotection, while lentivirus-mediated knockdown had the opposite effect. Taken together, these data suggest that miRNAs participate in the response to EA treatment after cerebral ischemia and further imply that NCS-1 may constitute a miR-191a-5p target gene and a potential therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Heng Zhou
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Cen Yang
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Fuhai Bai
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Zhi Ma
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Jingyi Wang
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Feng Wang
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Feng Li
- 2 Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Qiang Wang
- 2 Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Lize Xiong
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| |
Collapse
|
22
|
Abstract
Preconditioning is a paradigm in which sublethal stress-prior to a more injurious insult-induces protection against injury. In the central nervous system (CNS), preconditioning against ischemic stroke is induced by short durations of ischemia, brief seizures, exposure to anesthetics, and other stresses. Increasing evidence supports the contribution of microRNAs (miRNAs) to the pathogenesis of cerebral ischemia and ischemic tolerance induced by preconditioning. Studies investigating miRNA changes induced by preconditioning have to date identified 562 miRNAs that change expression levels after preconditioning, and 15% of these changes were reproduced in at least one additional study. Of miRNAs assessed as changed by preconditioning in more than one study, about 40% changed in the same direction in more than one study. Most of the studies to assess the role of specific miRNAs in the neuroprotective mechanism of preconditioning were performed in vitro, with fewer studies manipulating individual miRNAs in vivo. Thus, while many miRNAs change in response to preconditioning stimuli, the mechanisms underlying their effects are not well understood. The data does suggest that miRNAs may play significant roles in preconditioning-induced neuroprotection. This review focuses on the current state of knowledge of the possible role of miRNAs in preconditioning-induced cerebral protection.
Collapse
Affiliation(s)
- Josh D Bell
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Jang-Eun Cho
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
|
24
|
Neuroprotective Role of Exogenous Brain-Derived Neurotrophic Factor in Hypoxia-Hypoglycemia-Induced Hippocampal Neuron Injury via Regulating Trkb/MiR134 Signaling. J Mol Neurosci 2017; 62:35-42. [PMID: 28343294 DOI: 10.1007/s12031-017-0907-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/27/2017] [Indexed: 01/19/2023]
Abstract
Hypoxic-ischemic brain injury is an important cause of neonatal mortality and morbidity. Brain-derived neurotrophic factor (BDNF) has been reported to play a neuroprotective role in hypoxic-ischemic brain injury; however, the specific effects and mechanism of BDNF on hypoxic-hypoglycemic hippocampal neuron injury remains unknown. The current study investigated the action of BDNF in regulating cerebral hypoxic-ischemic injury by simulating hippocampal neuron ischemia and hypoxia. We found that BDNF, p-Trkb, and miR-134 expression levels decreased, and that exogenous BDNF increased survival and reduced apoptosis in hypoxic-hypoglycemic hippocampal neurons. The results also show that BDNF inhibits MiR-134 expression by activating the TrkB pathway. Transfection with TrkB siRNA and pre-miR-134 abrogated the neuroprotective role of BDNF in hypoxic-hypoglycemic hippocampal neurons. Our results suggest that exogenous BDNF alleviates hypoxic-ischemic brain injury through the Trkb/MiR-134 pathway. These findings may help to identify a potential therapeutic agent for the treatment of hypoxic-ischemic brain injury.
Collapse
|
25
|
Chandran R, Mehta SL, Vemuganti R. Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochem Int 2017; 111:12-22. [PMID: 28131900 DOI: 10.1016/j.neuint.2017.01.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that various classes of non-coding RNAs (ncRNAs) including microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and long non-coding RNAs (lncRNAs) play important roles in normal state as well as the diseases of the CNS. Interestingly, ncRNAs have been shown to interact with messenger RNA, DNA and proteins, and these interactions could induce epigenetic modifications and control transcription and translation, thereby adding a new layer of genomic regulation. The ncRNA expression profiles are known to be altered after acute CNS injuries including stroke, traumatic brain injury and spinal cord injury that are major contributors of morbidity and mortality worldwide. Hence, a better understanding of the functional significance of ncRNAs following CNS injuries could help in developing potential therapeutic strategies to minimize the neuronal damage in those conditions. The potential of ncRNAs in blood and CSF as biomarkers for diagnosis and/or prognosis of acute CNS injuries has also gained importance in the recent years. This review highlighted the current progress in the understanding of the role of ncRNAs in initiation and progression of secondary neuronal damage and their application as biomarkers after acute CNS injuries.
Collapse
Affiliation(s)
- Raghavendar Chandran
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
26
|
|
27
|
MicroRNA-378 Alleviates Cerebral Ischemic Injury by Negatively Regulating Apoptosis Executioner Caspase-3. Int J Mol Sci 2016; 17:ijms17091427. [PMID: 27598143 PMCID: PMC5037706 DOI: 10.3390/ijms17091427] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/04/2023] Open
Abstract
miRNAs have been linked to many human diseases, including ischemic stroke, and are being pursued as clinical diagnostics and therapeutic targets. Among the aberrantly expressed miRNAs in our previous report using large-scale microarray screening, the downregulation of miR-378 in the peri-infarct region of middle cerebral artery occluded (MCAO) mice can be reversed by hypoxic preconditioning (HPC). In this study, the role of miR-378 in the ischemic injury was further explored. We found that miR-378 levels significantly decreased in N2A cells following oxygen-glucose deprivation (OGD) treatment. Overexpression of miR-378 significantly enhanced cell viability, decreased TUNEL-positive cells and the immunoreactivity of cleaved-caspase-3. Conversely, downregulation of miR-378 aggravated OGD-induced apoptosis and ischemic injury. By using bioinformatic algorithms, we discovered that miR-378 may directly bind to the predicted 3'-untranslated region (UTR) of Caspase-3 gene. The protein level of caspase-3 increased significantly upon OGD treatment, and can be downregulated by pri-miR-378 transfection. The luciferase reporter assay confirmed the binding of miR-378 to the 3'-UTR of Caspase-3 mRNA and repressed its translation. In addition, miR-378 agomir decreased cleaved-caspase-3 ratio, reduced infarct volume and neural cell death induced by MCAO. Furthermore, caspase-3 knockdown could reverse anti-miR-378 mediated neuronal injury. Taken together, our data demonstrated that miR-378 attenuated ischemic injury by negatively regulating the apoptosis executioner, caspase-3, providing a potential therapeutic target for ischemic stroke.
Collapse
|
28
|
Hu Z, Zhong B, Tan J, Chen C, Lei Q, Zeng L. The Emerging Role of Epigenetics in Cerebral Ischemia. Mol Neurobiol 2016; 54:1887-1905. [PMID: 26894397 DOI: 10.1007/s12035-016-9788-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
Abstract
Despite great progresses in the treatment and prevention of ischemic stroke, it is still among the leading causes of death and serious long-term disability all over the world, indicating that innovative neural regenerative and neuroprotective agents are urgently needed for the development of therapeutic approaches with greater efficacy for ischemic stroke. More and more evidence suggests that a spectrum of epigenetic processes play an important role in the pathophysiology of cerebral ischemia. In the present review, we first discuss recent developments in epigenetic mechanisms, especially their roles in the pathophysiology of cerebral ischemia. Specifically, we focus on DNA methylation, histone deacetylase, histone methylation, and microRNAs (miRNAs) in the regulation of vascular and neuronal regeneration after cerebral ischemia. Additionally, we highlight epigenetic strategies for ischemic stroke treatments, including the inhibition of histone deacetylase enzyme and DNA methyltransferase activities, and miRNAs. These therapeutic strategies are far from clinic use, but preliminary data indicate that neuroprotective agents targeting these pathways can modulate neural cell regeneration and promote brain repair and functional recovery after cerebral ischemia. A better understanding of how epigenetics influences the process and progress of cerebral ischemia will pave the way for discovering more sensitive and specific biomarkers and new targets and therapeutics for ischemic stroke.
Collapse
Affiliation(s)
- Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Bingwu Zhong
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Department of Traditional Chinese Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jieqiong Tan
- National Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, Hunan, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiang Lei
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
29
|
Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2015; 16:24895-917. [PMID: 26492239 PMCID: PMC4632781 DOI: 10.3390/ijms161024895] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia-reperfusion injury involves multiple independently fatal terminal pathways in the mitochondria. These pathways include the reactive oxygen species (ROS) generation caused by changes in mitochondrial membrane potential and calcium overload, resulting in apoptosis via cytochrome c (Cyt c) release. In addition, numerous microRNAs are associated with the overall process. In this review, we first briefly summarize the mitochondrial changes in cerebral ischemia-reperfusion and then describe the possible molecular mechanism of miRNA-regulated mitochondrial function, which likely includes oxidative stress and energy metabolism, as well as apoptosis. On the basis of the preceding analysis, we conclude that studies of microRNAs that regulate mitochondrial function will expedite the development of treatments for cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yue Hu
- Graduate School, Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Hao Deng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| |
Collapse
|
30
|
Liu C, Zhao L, Han S, Li J, Li D. Identification and Functional Analysis of MicroRNAs in Mice following Focal Cerebral Ischemia Injury. Int J Mol Sci 2015; 16:24302-18. [PMID: 26473853 PMCID: PMC4632751 DOI: 10.3390/ijms161024302] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023] Open
Abstract
Numerous studies have demonstrated that genes, RNAs, and proteins are involved in the occurrence and development of stroke. In addition, previous studies concluded that microRNAs (miRNAs or miRs) are closely related to the pathological process of ischemic and hypoxic disease. Therefore, the aims of this study were to quantify the altered expression levels of miRNAs in the infarct region 6 h after middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia in mice using a large-scale miRNAs microarray. Firstly, MCAO-induced cerebral ischemic injuries were investigated by observing the changes of neurological deficits, infarct volume and edema ratio. One hundred and eighteen differentially expressed miRNAs were identified in the infarct region of mice following the MCAOs compared with sham group (p < 0.05 was considered as significant). Among these 118 significantly expressed microRNAs, we found that 12 miRNAs were up-regulated with fold changes lager than two, and 18 miRNAs were down-regulated with fold changes less than 0.5 in the infarct region of mice following the 6 h MCAOs, compared with the sham group. Then, these 30 miRNAs with expression in fold change larger than two or less than 0.5 was predicted, and the functions of the target genes of 30 miRNAs were analyzed using a bioinformatics method. Finally, the miRNA-gene network was established and the functional miRNA-mRNA pairs were identified, which provided insight into the roles of the specific miRNAs that regulated specified genes in the ischemic injuries. The miRNAs identified in this study may represent effective therapeutic targets for stroke, and further study of the role of these targets may increase our understanding of the mechanisms underlying ischemic injuries.
Collapse
Affiliation(s)
- Cuiying Liu
- Institute of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.
| | - Lei Zhao
- Department of Anesthesiology Xuan Wu Hospital, Capital Medical University, Beijing 100053, China.
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Dongguo Li
- Institute of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
31
|
Wang P, Zhang N, Liang J, Li J, Han S, Li J. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res 2015; 93:1756-68. [DOI: 10.1002/jnr.23637] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Peng Wang
- Department of Neurobiology and Center of Stroke; Beijing Institute for Brain Disorders, Capital Medical University; Beijing People's Republic of China
- Central Laboratory, Liaoning Medical University; Jinzhou People's Republic of China
| | - Nan Zhang
- Department of Anatomy; Capital Medical University; Beijing People's Republic of China
| | - Jia Liang
- Central Laboratory, Liaoning Medical University; Jinzhou People's Republic of China
| | - Jiefei Li
- Department of Neurobiology and Center of Stroke; Beijing Institute for Brain Disorders, Capital Medical University; Beijing People's Republic of China
| | - Song Han
- Department of Neurobiology and Center of Stroke; Beijing Institute for Brain Disorders, Capital Medical University; Beijing People's Republic of China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke; Beijing Institute for Brain Disorders, Capital Medical University; Beijing People's Republic of China
| |
Collapse
|
32
|
Saugstad JA. Non-Coding RNAs in Stroke and Neuroprotection. Front Neurol 2015; 6:50. [PMID: 25821444 PMCID: PMC4358219 DOI: 10.3389/fneur.2015.00050] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/23/2015] [Indexed: 01/08/2023] Open
Abstract
This review will focus on the current state of knowledge regarding non-coding RNAs (ncRNA) in stroke and neuroprotection. There will be a brief introduction to microRNAs (miRNA), long ncRNAs (lncRNA), and piwi-interacting RNAs (piRNA), followed by evidence for the regulation of ncRNAs in ischemia. This review will also discuss the effect of neuroprotection induced by a sublethal duration of ischemia or other stimuli given before a stroke (preconditioning) on miRNA expression and the role of miRNAs in preconditioning-induced neuroprotection. Experimental manipulation of miRNAs and/or their targets to induce pre- or post-stroke protection will also be presented, as well as discussion on miRNA responses to current post-stroke therapies. This review will conclude with a brief discussion of future directions for ncRNAs studies in stroke, such as new approaches to model complex ncRNA datasets, challenges in ncRNA studies, and the impact of extracellular RNAs on human diseases such as stroke.
Collapse
Affiliation(s)
- Julie A Saugstad
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University , Portland, OR , USA
| |
Collapse
|
33
|
Shao Y, Yu Y, Zhou Q, Li C, Yang L, Pei CG. Inhibition of miR-134 Protects Against Hydrogen Peroxide-Induced Apoptosis in Retinal Ganglion Cells. J Mol Neurosci 2015; 56:461-71. [PMID: 25744098 DOI: 10.1007/s12031-015-0522-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) have been suggested to play an important role in neurological diseases. Particularly, miR-134 is reportedly involved in regulating neuron survival. However, the association between miR-134 and retinal ganglion cell (RGC) survival under adverse stimulus has not been extensively investigated. In this study, we aimed to explore the role and underlying mechanism of miR-134 in regulating RGC apoptosis in response to hydrogen peroxide (H2O2) treatment. Results showed that the expression of miR-134 dose- and time-dependently increased in RGC after H2O2 treatment. H2O2-induced RGC apoptosis was significantly attenuated by the inhibition of miR-134 expression by antagomiR-134 and was enhanced by miR-134 overexpression. Luciferase reporter assay revealed a direct interaction between miR-134 and the 3'-untranslated region of cyclic AMP-response element-binding protein (CREB), a critical transcription factor for neuronal protection. In H2O2-treated RGCs, the inhibition of miR-134 significantly elevated the expression of CREB and its downstream genes, including brain-derived neurotrophic factor (BDNF) and Bcl-2. Furthermore, the inhibition of miR-134 also increased the expression of miR-132, a rapid response gene downstream of CREB. In addition, the target gene of miR-132, acetylcholinesterase was expectedly decreased by miR-134 inhibition. However, the overexpression of miR-134 exerted an opposite effect. The knockdown of CREB apparently abolished the protective effect of miR-134 inhibition against H2O2-induced RGC apoptosis. The increased expression of BDNF and Bcl-2 induced by miR-134 inhibition was also abrogated by CREB knockdown. Overall, our results suggested that the downregulation of miR-134 can effectively protect against H2O2-induced RGC apoptosis by negatively modulating CREB expression.
Collapse
Affiliation(s)
- Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, China
| | | | | | | | | | | |
Collapse
|
34
|
Chi W, Meng F, Li Y, Li P, Wang G, Cheng H, Han S, Li J. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Res 2014; 1592:22-33. [DOI: 10.1016/j.brainres.2014.09.072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/11/2014] [Accepted: 09/29/2014] [Indexed: 01/23/2023]
|
35
|
Huang W, Liu X, Cao J, Meng F, Li M, Chen B, Zhang J. miR-134 Regulates Ischemia/Reperfusion Injury-Induced Neuronal Cell Death by Regulating CREB Signaling. J Mol Neurosci 2014; 55:821-9. [DOI: 10.1007/s12031-014-0434-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 12/21/2022]
|
36
|
Liu Y, Sun Z, Sun S, Duan Y, Shi J, Qi Z, Meng R, Sun Y, Zeng X, Chui D, Ji X. Effects of hypoxic preconditioning on synaptic ultrastructure in mice. Synapse 2014; 69:7-14. [PMID: 25155519 DOI: 10.1002/syn.21777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/21/2014] [Accepted: 08/08/2014] [Indexed: 11/06/2022]
Abstract
Hypoxic preconditioning (HPC) elicits resistance to more drastic subsequent insults, which potentially provide neuroprotective therapeutic strategy, but the underlying mechanisms remain to be fully elucidated. Here, we examined the effects of HPC on synaptic ultrastructure in olfactory bulb of mice. Mice underwent up to five cycles of repeated HPC treatments, and hypoxic tolerance was assessed with a standard gasp reflex assay. As expected, HPC induced an increase in tolerance time. To assess synaptic responses, Western blots were used to quantify protein levels of representative markers for glia, neuron, and synapse, and transmission electron microscopy was used to examine synaptic ultrastructure and mitochondrial density. HPC did not significantly alter the protein levels of astroglial marker (GFAP), neuron-specific markers (GAP43, Tuj-1, and OMP), synaptic number markers (synaptophysin and SNAP25) or the percentage of excitatory synapses versus inhibitory synapses. However, HPC significantly affected synaptic curvature and the percentage of synapses with presynaptic mitochondria, which showed concomitant change pattern. These findings demonstrate that HPC is associated with changes in synaptic ultrastructure.
Collapse
Affiliation(s)
- Yi Liu
- China-America Joint Institute of Neuroscience, CAJIN, Xuanwu Hospital, Capital Medical University, Beijing, China; Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Staib-Lasarzik I, Kriege O, Timaru-Kast R, Pieter D, Werner C, Engelhard K, Thal SC. Anesthesia for euthanasia influences mRNA expression in healthy mice and after traumatic brain injury. J Neurotrauma 2014; 31:1664-71. [PMID: 24945082 DOI: 10.1089/neu.2013.3243] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10-11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited reproduciblity of real-time PCR data between studies or research groups and should therefore be considered for quantitative PCR data.
Collapse
Affiliation(s)
- Irina Staib-Lasarzik
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Chi W, Meng F, Li Y, Wang Q, Wang G, Han S, Wang P, Li J. Downregulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B. Neuroscience 2014; 277:111-22. [PMID: 25003713 DOI: 10.1016/j.neuroscience.2014.06.062] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
Abstract
MicroRNAs (miRNAs) have emerged as a major regulator in neurological diseases, and understanding their molecular mechanism in modulating cerebral ischemic injury may provide potential therapeutic targets for ischemic stroke. However, as one of 19 differentially expressed miRNAs in mouse brain with middle cerebral artery occlusion (MCAO), the role of miR-134 in ischemic injury is not well understood. In this study, the miR-134 expression level was manipulated both in oxygen-glucose deprivation (OGD)-treated N2A neuroblastoma cells in vitro and mouse brain with MCAO-induced ischemic stroke in vivo, and its possible targets of heat shock protein A5 (HSPA5) and HSPA12B were determined by bioinformatics analysis and dual luciferase assay. The results showed that overexpression of miR-134 exacerbated cell death and apoptosis both in vitro and in vivo. Conversely, downregulating miR-134 levels reduced cell death and apoptosis. Furthermore, non-expression of miR-134 enhanced HSPA12B protein levels in OGD-treated N2A cells as well as in the ischemic region. It could attenuate brain infarction size and neural cell damage, and improve neurological outcomes in mice with ischemic stroke, whereas upregulation of miR-134 had the opposite effect. In addition, HSPA12B was validated to be a target of miR-134 and its short interfering RNAs (siRNAs) could block miR-134 inhibitor-induced neuroprotection in OGD-treated N2A cells. In conclusion, downregulation of miR-134 could induce neuroprotection against ischemic injury in vitro and in vivo by negatively upregulating HSPA12B protein expression.
Collapse
Affiliation(s)
- W Chi
- Department of Anesthesiology, Weifang Medical University, Weifang City 261053, Shangdong Province, PR China
| | - F Meng
- Department of Anesthesiology, Shandong University Affiliated Jinan City Central Hospital, Jinan 250013, PR China.
| | - Y Li
- Department of Anesthesiology, Shandong University Affiliated Jinan City Central Hospital, Jinan 250013, PR China
| | - Q Wang
- Department of Anesthesiology, Shandong University Affiliated Jinan City Central Hospital, Jinan 250013, PR China
| | - G Wang
- Department of Anesthesiology, Weifang Medical University, Weifang City 261053, Shangdong Province, PR China
| | - S Han
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - P Wang
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - J Li
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
39
|
Down-Regulation of miRNA-30a Alleviates Cerebral Ischemic Injury Through Enhancing Beclin 1-Mediated Autophagy. Neurochem Res 2014; 39:1279-91. [DOI: 10.1007/s11064-014-1310-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/16/2014] [Accepted: 04/11/2014] [Indexed: 12/22/2022]
|
40
|
Garcia-Bonilla L, Benakis C, Moore J, Iadecola C, Anrather J. Immune mechanisms in cerebral ischemic tolerance. Front Neurosci 2014; 8:44. [PMID: 24624056 PMCID: PMC3940969 DOI: 10.3389/fnins.2014.00044] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Stressor-induced tolerance is a central mechanism in the response of bacteria, plants, and animals to potentially harmful environmental challenges. This response is characterized by immediate changes in cellular metabolism and by the delayed transcriptional activation or inhibition of genetic programs that are not generally stressor specific (cross-tolerance). These programs are aimed at countering the deleterious effects of the stressor. While induction of this response (preconditioning) can be established at the cellular level, activation of systemic networks is essential for the protection to occur throughout the organs of the body. This is best signified by the phenomenon of remote ischemic preconditioning, whereby application of ischemic stress to one tissue or organ induces ischemic tolerance (IT) in remote organs through humoral, cellular and neural signaling. The immune system is an essential component in cerebral IT acting simultaneously both as mediator and target. This dichotomy is based on the fact that activation of inflammatory pathways is necessary to establish IT and that IT can be, in part, attributed to a subdued immune activation after index ischemia. Here we describe the components of the immune system required for induction of IT and review the mechanisms by which a reprogrammed immune response contributes to the neuroprotection observed after preconditioning. Learning how local and systemic immune factors participate in endogenous neuroprotection could lead to the development of new stroke therapies.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Corinne Benakis
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Jamie Moore
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Josef Anrather
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
41
|
The "memory kinases": roles of PKC isoforms in signal processing and memory formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:31-59. [PMID: 24484697 DOI: 10.1016/b978-0-12-420170-5.00002-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The protein kinase C (PKC) isoforms, which play an essential role in transmembrane signal conduction, can be viewed as a family of "memory kinases." Evidence is emerging that they are critically involved in memory acquisition and maintenance, in addition to their involvement in other functions of cells. Deficits in PKC signal cascades in neurons are one of the earliest abnormalities in the brains of patients suffering from Alzheimer's disease. Their dysfunction is also involved in several other types of memory impairments, including those related to emotion, mental retardation, brain injury, and vascular dementia/ischemic stroke. Inhibition of PKC activity leads to a reduced capacity of many types of learning and memory, but may have therapeutic values in treating substance abuse or aversive memories. PKC activators, on the other hand, have been shown to possess memory-enhancing and antidementia actions. PKC pharmacology may, therefore, represent an attractive area for developing effective cognitive drugs for the treatment of many types of memory disorders and dementias.
Collapse
|
42
|
Vemuganti R. All's well that transcribes well: non-coding RNAs and post-stroke brain damage. Neurochem Int 2013; 63:438-49. [PMID: 23954844 PMCID: PMC3805745 DOI: 10.1016/j.neuint.2013.07.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/26/2013] [Accepted: 07/28/2013] [Indexed: 12/13/2022]
Abstract
The mammalian genome is replete with various classes of non-coding (nc) RNA genes. Many of them actively transcribe, and their relevance to CNS diseases is just beginning to be understood. CNS is one of the organs in the body that shows very high ncRNAs activity. Recent studies demonstrated that cerebral ischemia rapidly changes the expression profiles of different classes of ncRNAs: including microRNA, long noncoding RNA and piwi-interacting RNA. Several studies further showed that post-ischemic neuronal death and/or plasticity/regeneration can be altered by modulating specific microRNAs. These studies are of interest for therapeutic development as they may contribute to identifying new ncRNA targets that can be modulated to prevent secondary brain damage after stroke.
Collapse
Affiliation(s)
- Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
43
|
Peng Z, Li J, Li Y, Yang X, Feng S, Han S, Li J. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1. J Neurosci Res 2013; 91:1349-62. [PMID: 23900885 DOI: 10.1002/jnr.23255] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/04/2013] [Accepted: 05/12/2013] [Indexed: 12/29/2022]
Abstract
Understanding the molecular mechanism of cerebral hypoxic preconditioning (HPC)-induced endogenous neuroprotection may provide potential therapeutic targets for ischemic stroke. By using bioinformatics analysis, we found that miR-181b, one of 19 differentially expressed miRNAs, may target aconitate hydratase (ACO2), heat shock protein A5 (HSPA5), and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) among 26 changed protein kinase C isoform-specific interacting proteins in HPC mouse brain. In this study, the role of miR-181b in oxygen-glucose deprivation (OGD)-induced N2A cell ischemic injury in vitro and mouse middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury in vivo, and its regulation of ACO2, HSPA5, and UCHL1 were further determined. We found that miR-181b expression levels significantly decreased in mouse brain following MCAO and in OGD-treated N2A cells. Up- and downregulation of miR-181b by transfection of pre- or anti-miR-181b could negatively regulate HSPA5 and UCHL1 (but not ACO2) protein levels as well as N2A cell death and programmed cell death in OGD-treated N2A cells. By using a T7 promoter-driven control dual luciferase assay, we confirmed that miR-181b could bind to the 3'-untranslated rergions of HSPA5 and UCHL1 mRNAs and repress their translations. miR-181b antagomir reduced caspase-3 cleavage and neural cell loss in cerebral ischemic cortex and improved neurological deficit of mice after MCAO. In addition, HSPA5 and UCHL1 short interfering RNAs (siRNAs) blocked anti-miR-181b-mediated neuroprotection against OGD-induced N2A cell injury in vitro. These results suggest that the downregulated miR-181b induces neuroprotection against ischemic injury through negatively regulating HSPA5 and UCHL1 protein levels, providing a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Zhifeng Peng
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, People's Republic of China; Department of Physiology, School of Medicine, Shanxi Datong University, Datong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
MicroRNAs in Cerebral Ischemia. Stroke Res Treat 2013; 2013:276540. [PMID: 23533957 PMCID: PMC3606790 DOI: 10.1155/2013/276540] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/09/2013] [Accepted: 01/24/2013] [Indexed: 01/08/2023] Open
Abstract
The risk of ischemic stroke increases substantially with age, making it the third leading cause of death and the leading cause of long-term disability in the world. Numerous studies demonstrated that genes, RNAs, and proteins are involved in the occurrence and development of stroke. Current studies found that microRNAs (miRNAs or miRs) are also closely related to the pathological process of stroke. miRNAs are a group of short, noncoding RNA molecules playing important role in posttranscriptional regulation of gene expression and they have emerged as regulators of ischemic preconditioning and ischemic postconditioning. Here we give an overview of the expression and function of miRNAs in the brain, miRNAs as biomarkers during cerebral ischemia, and clinical applications and limitations of miRNAs. Future prospects of miRNAs are also discussed.
Collapse
|
45
|
Ferrari LF, Levine E, Levine JD. Role of a novel nociceptor autocrine mechanism in chronic pain. Eur J Neurosci 2013; 37:1705-13. [PMID: 23379641 DOI: 10.1111/ejn.12145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/11/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
We have previously shown, in the rat, that neuropathic and inflammatory events produce a neuroplastic change in nociceptor function whereby a subsequent exposure to a proinflammatory mediator (e.g. prostaglandin E2 ; PGE2 ) produces markedly prolonged mechanical hyperalgesia. While the initial approximately 30 min of this prolonged PGE2 hyperalgesia remains PKA-dependent, it subsequently switches to become dependent on protein kinase C epsilon (PKCε). In this study we tested the hypothesis that the delayed onset, PKCε-mediated, component of PGE2 hyperalgesia is generated by the active release of a nucleotide from the peripheral terminal of the primed nociceptor and this nucleotide is then metabolized to produce adenosine, which acts on a Gi-coupled A1 adenosine receptor on the nociceptor to generate PKCε-dependent hyperalgesia. We report that inhibitors of ATP-binding cassette transporters, of ecto-5'-phosphodiesterase and ecto-5'nucleotidase (enzymes involved in the metabolism of cyclic nucleotides to adenosine) and of A1 adenosine receptors each eliminated the late, but not the early, phase of PGE2 -induced hyperalgesia in primed animals. A second model of chronic pain induced by transient attenuation of G-protein-coupled receptor kinase 2, in which the prolongation of PGE2 hyperalgesia is not PKCε-dependent, was not attenuated by inhibitors of any of these mechanisms. Based on these results we propose a contribution of an autocrine mechanism, in the peripheral terminal of the nociceptor, in the hyperalgesic priming model of chronic pain.
Collapse
Affiliation(s)
- Luiz F Ferrari
- Division of Neuroscience, Departments of Medicine and Oral Surgery, University of California, San Francisco, CA 94143-0440, USA
| | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Ischemic preconditioning (IPC) is gaining attention as a novel neuroprotective therapy and could provide an improved mechanistic understanding of tolerance to cerebral ischemia. The purpose of this article is to review the recent work in the field of IPC and its applications to clinical scenarios. RECENT FINDINGS The cellular signaling pathways that are activated following IPC are now better understood and have enabled investigators to identify several IPC mimetics. Most of these studies were performed in rodents, and efficacy of these mimetics remains to be evaluated in human patients. Additionally, remote ischemic preconditioning (RIPC) may have higher translational value than IPC. Repeated cycles of temporary ischemia in a remote organ can activate protective pathways in the target organ, including the heart and brain. Clinical trials are underway to test the efficacy of RIPC in protecting brain against subarachnoid hemorrhage. SUMMARY IPC, RIPC, and IPC mimetics have the potential to be therapeutic in various clinical scenarios. Further understanding of IPC-induced neuroprotection pathways and utilization of clinically relevant animal models are necessary to increase the translational potential of IPC in the near future.
Collapse
Affiliation(s)
- Srinivasan V Narayanan
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | | | | |
Collapse
|
47
|
Sun MK, Alkon DL. Activation of protein kinase C isozymes for the treatment of dementias. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:273-302. [PMID: 22840750 DOI: 10.1016/b978-0-12-394816-8.00008-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Memories are much more easily impaired than improved. Dementias, a lasting impairment of memory function, occur in a variety of cognitive disorders and become more clinically dominant as the population ages. Protein kinase C is one of the "cognitive kinases," and plays an essential role in both memory acquisition and maintenance. Deficits in protein kinase C (PKC) signal cascades in neurons represent one of the earliest changes in the brains of patients with Alzheimer's disease (AD) and other types of memory impairment, including those related to cerebral ischemia and ischemic stroke. Inhibition or impairment of PKC activity results in compromised learning and memory, whereas an appropriate activation of certain PKC isozymes leads to an enhancement of learning and memory and/or antidementic effects. In preclinical studies, PKC activators have been shown to increase the expression and activity of PKC isozymes, thereby restoring PKC signaling and downstream activity, including stimulation of neurotrophic activity, synaptic/structural remodeling, and synaptogenesis in the hippocampus and related cortical areas. PKC activators also reduce the accumulation of neurotoxic amyloid and tau protein hyperphosphorylation and support anti-apoptotic processes in the brain. These observations strongly suggest that PKC pharmacology may represent an attractive area for the development of effective cognition-enhancing therapeutics for the treatment of dementias.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | | |
Collapse
|