1
|
Sugahara S, Unuma K, Wen S, Funakoshi T, Aki T, Uemura K. Dissociation of mitochondrial and ribosomal biogenesis during thallium administration in rat kidney. PLoS One 2024; 19:e0311884. [PMID: 39630634 PMCID: PMC11616847 DOI: 10.1371/journal.pone.0311884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
Thallium (Tl) is a heavy metal with toxicity comparative to other heavy metals such as As, Cd, and Hg. Nevertheless, fewer studies have been reported concerning the molecular mechanism of Tl toxicity as compared to other heavy metals. To obtain insight into Tl toxicity in the kidney, rats were intraperitoneally administered Tl2SO4 (30 mg/kg), and the kidneys were removed 2 or 5 days later to examine the effects of Tl. Transcriptome analysis using DNA microarray of the rat kidney 2 and 5 days after Tl administration showed that cytoplasmic ribosomal proteins are the most upregulated category; many of the genes involved in ribosome biosynthesis were upregulated by Tl administration. This upregulation was associated with the activation of eukaryotic transcription initiation factor 2α (eIF2α), implying that increased ribosome biogenesis was linked to the subsequent activation of protein translation. In contrast, decreased mitochondrial biogenesis was revealed via proteomic analysis. Although we found an increase in Myc, a positive regulator of both ribosomal and mitochondrial biogenesis, decreased levels of NRF1 and TFAM, positive regulators of mitochondrial biogenesis whose gene expression is directory activated by Myc, were paradoxically observed. Taken together, differing responses of ribosomes and mitochondria to Tl toxicity were observed. Failure of transmission of the Myc signal to NRF1/TFAM might be involved in the observed disruption of coordinated responses in mitochondria and ribosomes during Tl administration in rat kidney.
Collapse
Affiliation(s)
- Sho Sugahara
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shuheng Wen
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
2
|
Anaya-Ramos L, Díaz-Ruíz A, Ríos C, Mendez-Armenta M, Montes S, Aguirre-Vidal Y, García-Jiménez S, Baron-Flores V, Monroy-Noyola A. The acute systemic toxicity of thallium in rats produces oxidative stress: attenuation by metallothionein and Prussian blue. Biometals 2021; 34:1295-1311. [PMID: 34529183 DOI: 10.1007/s10534-021-00343-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023]
Abstract
Thallium (TI) is one of the most toxic heavy metals. Human exposure to Tl occurs through contaminated drinking water and from there to food, a threat to health. Recently, environmental contamination by Tl has been reported in several countries, urging the need for studies to determine the impact of endogenous and exogenous mechanisms preventing thallium toxicity. The cytoprotective effect of metallothionein (MT), a protein with high capacity to chelate metals, at two doses (100 and 600 µg/rat), was tested. Prussian blue (PB) (50 mg/kg) was administered alone or in combination with MT. A dose of Tl (16mg/kg) was injected i.p. to Wistar rats. Antidotes were administered twice daily, starting 24h after Tl injection, for 4 days. Tl concentrations diminished in most organs (p < 0.05) by effect of PB, alone or in combination with MT, whereas MT alone decreased Tl concentrations in testis, spleen, lung and liver. Likewise, brain thallium also diminished (p < 0.05) by effect of PB and MT alone or in combination in most of the regions analyzed (p < 0.05). The greatest diminution of Tl was achieved when the antidotes were combined. Plasma markers of renal damage increased after Tl administration, while PB and MT, either alone or in combination, prevented the raise of those markers. Only MT increased the levels of reduced glutathione (GSH) in the kidney. Finally, increased Nrf2 was observed in liver and kidney, after treatment with MT alone or in combination with PB. Results showed that MT alone or in combination with PB is cytoprotective after thallium exposure.
Collapse
Affiliation(s)
- Laura Anaya-Ramos
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos Cuernavaca, Av. Universidad 1001 Col. Chamilpa, Cuernavaca, C.P. 62209, Morelos, Mexico
| | - Araceli Díaz-Ruíz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de Mexico, Mexico
| | - Marisela Mendez-Armenta
- Laboratorio de Neuropatología experimental, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
| | - Sergio Montes
- Unidad Académica Multidiciplinaria, Reynosa-Aztlan, Reynosa, Tamaulipas, Mexico
| | - Yoshajandith Aguirre-Vidal
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | - Sara García-Jiménez
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos Cuernavaca, Av. Universidad 1001 Col. Chamilpa, Cuernavaca, C.P. 62209, Morelos, Mexico
| | - Veronica Baron-Flores
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de Mexico, Mexico
| | - Antonio Monroy-Noyola
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos Cuernavaca, Av. Universidad 1001 Col. Chamilpa, Cuernavaca, C.P. 62209, Morelos, Mexico.
| |
Collapse
|
3
|
Osorio-Rico L, Santamaria A, Galván-Arzate S. Thallium Toxicity: General Issues, Neurological Symptoms, and Neurotoxic Mechanisms. ADVANCES IN NEUROBIOLOGY 2017; 18:345-353. [PMID: 28889276 DOI: 10.1007/978-3-319-60189-2_17] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thallium (Tl+) is a ubiquitous natural trace metal considered as the most toxic among heavy metals. The ionic ratio of Tl+ is similar to that of potassium (K+), therefore accounting for the replacement of the latter during enzymatic reactions. The principal organelle damaged after Tl+ exposure is mitochondria. Studies on the mechanisms of Tl+ include intrinsic pathways altered and changes in antiapoptotic and proapoptotic proteins, cytochrome c, and caspases. Oxidative damage pathways increase after Tl+ exposure to produce reactive oxygen species (ROS), changes in physical properties of the cell membrane caused by lipid peroxidation, and concomitant activation of antioxidant mechanisms. These processes are likely to account for the neurotoxic effects of the metal. In humans, Tl+ is absorbed through the skin and mucous membranes and then is widely distributed throughout the body to be accumulated in bones, renal medulla, liver, and the Central Nervous System. Given the growing relevance of Tl+ intoxication, in recent years there is a notorious increase in the number of reports attending Tl+ pollution in different countries. In this sense, the neurological symptoms produced by Tl+ and its neurotoxic effects are gaining attention as they represent a serious health problem all over the world. Through this review, we present an update to general information about Tl+ toxicity, making emphasis on some recent data about Tl+ neurotoxicity, as a field requiring attention at the clinical and preclinical levels.
Collapse
Affiliation(s)
- Laura Osorio-Rico
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, Mexico City, 14269, Mexico
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, Mexico City, 14269, Mexico
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, Mexico City, 14269, Mexico.
| |
Collapse
|
4
|
Wanger T, Wetzel W, Scheich H, Ohl FW, Goldschmidt J. Spatial patterns of neuronal activity in rat cerebral cortex during non-rapid eye movement sleep. Brain Struct Funct 2015; 220:3469-84. [PMID: 25113606 PMCID: PMC4575691 DOI: 10.1007/s00429-014-0867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/29/2014] [Indexed: 11/06/2022]
Abstract
It is commonly assumed that cortical activity in non-rapid eye movement sleep (NREMS) is spatially homogeneous on the mesoscopic scale. This is partly due to the limited observational scope of common metabolic or imaging methods in sleep. We used the recently developed technique of thallium-autometallography (TlAMG) to visualize mesoscopic patterns of activity in the sleeping cortex with single-cell resolution. We intravenously injected rats with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC) during spontaneously occurring periods of NREMS and mapped the patterns of neuronal uptake of the potassium (K+) probe thallium (Tl+). Using this method, we show that cortical activity patterns are not spatially homogeneous during discrete 5-min episodes of NREMS in unrestrained rats-rather, they are complex and spatially diverse. Along with a relative predominance of infragranular layer activation, we find pronounced differences in metabolic activity of neighboring neuronal assemblies, an observation which lends support to the emerging paradigm that sleep is a distributed process with regulation on the local scale.
Collapse
Affiliation(s)
- Tim Wanger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany.
| | - Wolfram Wetzel
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Henning Scheich
- Emeritus Group Lifelong Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
- Otto-von-Guericke University, 39106, Magdeburg, Germany
- Center for Behavioral Brain Science (CBBS), Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
- Otto-von-Guericke University, 39106, Magdeburg, Germany
| |
Collapse
|
5
|
Osorio-Rico L, Villeda-Hernández J, Santamaría A, Königsberg M, Galván-Arzate S. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain. Int J Toxicol 2015; 34:505-13. [DOI: 10.1177/1091581815603936] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thallium (Tl+) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl+-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl+ acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl+-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl+-induced altered regional brain redox activity and motor performance in rats.
Collapse
Affiliation(s)
- Laura Osorio-Rico
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Juana Villeda-Hernández
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Mina Königsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| |
Collapse
|
6
|
Stöber F, Baldauf K, Ziabreva I, Harhausen D, Zille M, Neubert J, Reymann KG, Scheich H, Dirnagl U, Schröder UH, Wunder A, Goldschmidt J. Single-cell resolution mapping of neuronal damage in acute focal cerebral ischemia using thallium autometallography. J Cereb Blood Flow Metab 2014; 34:144-52. [PMID: 24129748 PMCID: PMC3887354 DOI: 10.1038/jcbfm.2013.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/16/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
Neuronal damage shortly after onset or after brief episodes of cerebral ischemia has remained difficult to assess with clinical and preclinical imaging techniques as well as with microscopical methods. We here show, in rodent models of middle cerebral artery occlusion (MCAO), that neuronal damage in acute focal cerebral ischemia can be mapped with single-cell resolution using thallium autometallography (TlAMG), a histochemical technique for the detection of the K(+)-probe thallium (Tl(+)) in the brain. We intravenously injected rats and mice with thallium diethyldithiocarbamate (TlDDC), a lipophilic chelate complex that releases Tl(+) after crossing the blood-brain barrier. We found, within the territories of the affected arteries, areas of markedly reduced neuronal Tl(+) uptake in all animals at all time points studied ranging from 15 minutes to 24 hours after MCAO. In large lesions at early time points, areas with neuronal and astrocytic Tl(+) uptake below thresholds of detection were surrounded by putative penumbral zones with preserved but diminished Tl(+) uptake. At 24 hours, the areas of reduced Tl(+)uptake matched with areas delineated by established markers of neuronal damage. The results suggest the use of (201)TlDDC for preclinical and clinical single-photon emission computed tomography (SPECT) imaging of hyperacute alterations in brain K(+) metabolism and prediction of tissue viability in cerebral ischemia.
Collapse
Affiliation(s)
- Franziska Stöber
- 1] Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany [2] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kathrin Baldauf
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Partner site Magdeburg, Magdeburg, Germany
| | - Iryna Ziabreva
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Research Institute for Applied Neurosciences (FAN) GmbH, Magdeburg, Germany [3] Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Denise Harhausen
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Marietta Zille
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Jenni Neubert
- 1] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Institute of Cell Biology and Neurobiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Klaus G Reymann
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Partner site Magdeburg, Magdeburg, Germany
| | - Henning Scheich
- 1] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Partner site Magdeburg, Magdeburg, Germany [3] Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Ulrich Dirnagl
- 1] Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany [2] German Centre for Neurodegenerative Diseases (DZNE), Partner site Berlin, Berlin, Germany
| | - Ulrich H Schröder
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Research Institute for Applied Neurosciences (FAN) GmbH, Magdeburg, Germany
| | - Andreas Wunder
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Jürgen Goldschmidt
- 1] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Clinic for Neurology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|