1
|
Janner DE, Poetini MR, Musachio EAS, Chaves NSG, Meichtry LB, Fernandes EJ, Mustafa MMD, De Carvalho AS, Gonçalves OH, Leimann FV, de Freitas RA, Prigol M, Guerra GP. Neurodevelopmental changes in Drosophila melanogaster are restored by treatment with lutein-loaded nanoparticles: Positive modulation of neurochemical and behavioral parameters. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109998. [PMID: 39106915 DOI: 10.1016/j.cbpc.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), are characterized by persistent changes in communication and social interaction, as well as restricted and stereotyped patterns of behavior. The complex etiology of these disorders possibly combines the effects of multiple genes and environmental factors. Hence, exposure to insecticides such as imidacloprid (IMI) has been used to replicate the changes observed in these disorders. Lutein is known for its anti-inflammatory and antioxidant properties and is associated with neuroprotective effects. Therefore, the aim of this study was to evaluate the protective effect of lutein-loaded nanoparticles, along with their mechanisms of action, on Drosophila melanogaster offspring exposed to IMI-induced damage. To simulate the neurodevelopmental disorder model, flies were exposed to a diet containing IMI for 7 days. Posteriorly, their offspring were exposed to a diet containing lutein-loaded nanoparticles for a period of 24 h, and male and female flies were subjected to behavioral and biochemical evaluations. Treatment with lutein-loaded nanoparticles reversed the parameters of hyperactivity, aggressiveness, social interaction, repetitive movements, and anxiety in the offspring of flies exposed to IMI. It also protected markers of oxidative stress and cell viability, in addition to preventing the reduction of Nrf2 and Shank3 immunoreactivity. These results demonstrate that the damage induced by exposure to IMI was restored through treatment with lutein-loaded nanoparticles, elucidating lutein's mechanisms of action as a therapeutic agent, which, after further studies, can become a co-adjuvant in the treatment of neurodevelopmental disorders, such as ASD and ADHD.
Collapse
Affiliation(s)
- Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Nathalie Savedra Gomes Chaves
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Mustafa Munir Dahleh Mustafa
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Amarilis Santos De Carvalho
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | | | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil.
| |
Collapse
|
2
|
Montiel I, Bello-Medina PC, Prado-Alcalá RA, Quirarte GL, Verdín-Ruvalcaba LA, Marín-Juárez TA, Medina AC. Involvement of kinases in memory consolidation of inhibitory avoidance training. Rev Neurosci 2024:revneuro-2024-0093. [PMID: 39323086 DOI: 10.1515/revneuro-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024]
Abstract
The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca2+/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.
Collapse
Affiliation(s)
- Ivan Montiel
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Paola C Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Luis A Verdín-Ruvalcaba
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Tzitzi A Marín-Juárez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Andrea C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
3
|
Poleto KH, Janner DE, Dahleh MMM, Poetini MR, Fernandes EJ, Musachio EAS, de Almeida FP, Amador ECDM, Reginaldo JC, Carriço MRS, Roehrs R, Prigol M, Guerra GP. p-Coumaric acid potential in restoring neuromotor function and oxidative balance through the Parkin pathway in a Parkinson disease-like model in Drosophila melanogaster. Food Chem Toxicol 2024; 193:115002. [PMID: 39276910 DOI: 10.1016/j.fct.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
p-Coumaric acid is a significant phenolic compound known for its potent antioxidant activity. Thus, this study investigated the effects of p-coumaric acid on the behavioral and neurochemical changes induced in Drosophila melanogaster by exposure to rotenone in a Parkinson disease (PD)-like model. The flies were divided into four groups and maintained for seven days on different diets: a standard diet (control), a diet containing rotenone (500 μM), a control diet to which p-coumaric acid was added on the fourth day (0.3 μM), and a diet initially containing rotenone (500 μM) with p-coumaric acid added on the fourth day (0.3 μM). Exposure to p-coumaric acid ameliorated locomotor impairment and reduced mortality induced by rotenone. Moreover, p-coumaric acid normalized oxidative stress markers (ROS, TBARS, SOD, CAT, GST, and NPSH), mitigated oxidative damage, and reflected in the recovery of dopamine levels, AChE activity, and cellular viability post-rotenone exposure. Additionally, p-coumaric acid restored the immunoreactivity of Parkin and Nrf2. The results affirm that p-coumaric acid effectively mitigates PD-like model-induced damage, underscoring its antioxidant potency and potential neuroprotective effect.
Collapse
Affiliation(s)
- Kétnne Hanna Poleto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Francielli Polet de Almeida
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Elen Caroline de Matos Amador
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil
| | - Jocemara Corrêa Reginaldo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil
| | - Murilo Ricardo Sigal Carriço
- Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil; Environmental and Toxicological Chemical Analysis Laboratory, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Rafael Roehrs
- Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil; Environmental and Toxicological Chemical Analysis Laboratory, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Machado FR, Bortolotto VC, Araujo SM, Dahleh MMM, Fernandes EJ, Musachio EAS, Funguetto-Ribeiro AC, Haas SE, Guerra GP, Prigol M, Boeira SP. Toxicological analysis of chronic exposure to polymeric nanocapsules with different coatings in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109939. [PMID: 38723702 DOI: 10.1016/j.cbpc.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Nanotechnology involves the utilization of nanomaterials, including polymeric nanocapsules (NCs) that are drug carriers. For modify drug release and stability, nanoformulations can feature different types of polymers as surface coatings: Polysorbate 80 (P80), Polyethylene glycol (PEG), Chitosan (CS) and Eudragit (EUD). Although nanoencapsulation aims to reduce side effects, these polymers can interact with living organisms, inducing events in the antioxidant system. Thus far, little has been described about the impacts of chronic exposure, with Drosophila melanogaster being an in vivo model for characterizing the toxicology of these polymers. This study analyzes the effects of chronic exposure to polymeric NCs with different coatings. Flies were exposed to 10, 50, 100, and 500 μL of NCP80, NCPEG, NCCS, or EUD. The survival rate, locomotor changes, oxidative stress markers, cell viability, and Nrf2 expression were evaluated. Between the coatings, NCPEG had minimal effects, as only 500 μL affected the levels of reactive species (RS) and the enzymatic activities of catalase (CAT) and glutathione S-transferase (GST) without reducing Nrf2 expression. However, NCEUD significantly impacted the total flies killed, RS, CAT, and Superoxide dismutase from 100 μL. In part, the toxicity mechanisms of these coatings can be explained by the imbalance of the antioxidant system. This research provided initial evidence on the chronic toxicology of these nanomaterials in D. melanogaster to clarify the nanosafety profile of these polymers in future nanoformulations. Further investigations are essential to characterize possible biochemical pathways involved in the toxicity of these polymeric coatings.
Collapse
Affiliation(s)
- Franciéle Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | | | - Sandra Elisa Haas
- Pharmacology Laboratory - LABFAR, Federal University of Pampa, Uruguaiana, RS 22 97650-970, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil.
| |
Collapse
|
5
|
Dahleh MMM, Mello CF, Ferreira J, Rubin MA, Prigol M, Guerra GP. CaMKIIα mediates spermidine-induced memory enhancement in rats: A potential involvement of PKA/CREB pathway. Pharmacol Biochem Behav 2024; 240:173774. [PMID: 38648866 DOI: 10.1016/j.pbb.2024.173774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Memory consolidation is associated with the regulation of protein kinases, which impact synaptic functions and promote synaptogenesis. The administration of spermidine (SPD) has been shown to modulate major protein kinases associated with memory improvement, including the Ca2+-dependent protein kinase (PKC) and cAMP-dependent protein kinase (PKA), key players in the cAMP response element-binding protein (CREB) activation. Nevertheless, the initial mechanism underlying SPD-mediated memory consolidation remains unknown, as we hypothesize a potential involvement of the memory consolidation precursor, Ca2+/calmodulin-dependent protein kinase II-α (CaMKIIα), in this process. Based on this, our study aimed to investigate potential interactions among PKC, PKA, and CREB activation, mediated by CaMKIIα activation, in order to elucidate the SPD memory consolidation pathway. Our findings suggest that the post-training administration of the CaMKII inhibitor, KN-62 (0.25 nmol, intrahippocampal), prevented the memory enhancement induced by SPD (0.2 nmol, intrahippocampal) in the inhibitory avoidance task. Through western immunoblotting, we observed that phosphorylation of CaMKIIα in the hippocampus was facilitated 15 min after intrahippocampal SPD administration, resulting in the activation of PKA and CREB, 180 min after infusion, suggesting a possible sequential mechanism, since SPD with KN-62 infusion leads to a downregulation in CaMKIIα/PKA/CREB pathway. However, KN-62 does not alter the memory-facilitating effect of SPD on PKC, possibly demonstrating a parallel cascade in memory acquisition via PKA, without modulating CAMKIIα. These results suggest that memory enhancement induced by SPD administration involves crosstalk between CaMKIIα and PKA/CREB, with no PKC interaction.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Carlos Fernando Mello
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Juliano Ferreira
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Maribel Antonello Rubin
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil.
| |
Collapse
|
6
|
Dahleh MMM, Bortolotto VC, Boeira SP, Segat HJ, Guerra GP, Prigol M. From gains to gaps? How Selective Androgen Receptor Modulator (SARM) YK11 impact hippocampal function: In silico, in vivo, and ex vivo perspectives. Chem Biol Interact 2024; 394:110971. [PMID: 38521455 DOI: 10.1016/j.cbi.2024.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Selective Androgen Receptor Modulators (SARMs), particularly (17α,20E)-17,20-[(1-methoxyethylidene)bis(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic-acid-methyl-ester (YK11), are increasingly popular among athletes seeking enhanced performance. Serving as an Androgen Receptor (AR) agonist, YK11 stimulates muscle growth while inhibiting myostatin. Our study delved into the impact of YK11 on the rat hippocampus, analyzing potential alterations in neurochemical mechanisms and investigating its synergistic effects with exercise (EXE), based on the strong relationship between SARM users and regular exercise. Utilizing Physiologically Based Pharmacokinetic (PBPK) modeling, we demonstrated YK11 remarkable brain permeability, with molecular docking analysis revealing YK11 inhibitory effects on 5-alpha-reductase type II (5αR2), suggesting high cell bioavailability. Throughout a 5-week experiment, we divided the animals into the following groups: Control, YK11 (0.35 g/kg), EXE (swimming exercise), and EXE + YK11. Our findings showed that YK11 displayed a high binding affinity with AR in the hippocampus, influencing neurochemical function and modulating aversive memory consolidation, including the downregulation of the BDNF/TrkB/CREB signaling, irrespective of EXE combination. In the hippocampus, YK11 increased pro-inflammatory IL-1β and IL-6 cytokines, while reducing anti-inflammatory IL-10 levels. However, the EXE + YK11 group counteracted IL-6 effects and elevated IL-10. Analysis of apoptotic proteins revealed heightened p38 MAPK activity in response to YK11-induced inflammation, initiating the apoptotic cascade involving Bax/Bcl-2/cleaved caspase-3. Notably, the EXE + YK11 group mitigated alterations in Bcl-2 and cleaved caspase-3 proteins. In conclusion, our findings suggest that YK11, at anabolic doses, significantly alters hippocampal neurochemistry, leading to impairments in memory consolidation. This underscore concerns about the misuse risks of SARMs among athletes and challenges common perceptions of their minimal side effects.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil
| | - Hecson Jesser Segat
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio, Federal University of Pampa, Itaqui, CEP 97650-000, RS, Brazil.
| |
Collapse
|
7
|
Fernandes EJ, Santos Musachio EA, Meichtry LB, Janner DE, Machado Balok FR, Barrientos MS, Gomes NS, Poleto Pinto KH, Mustafa Dahleh MM, Rodrigues A, Haas SE, Boeira SP, Prigol M, Petri Guerra G. Evaluation of oxidative stress indicators as toxicity parameters after chronic exposure of Drosophila melanogaster to free curcumin and curcumin-loaded nanocapsules. Food Chem Toxicol 2023; 181:114109. [PMID: 37858841 DOI: 10.1016/j.fct.2023.114109] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
We investigated a possible toxic effect induced by chronic exposure to free curcumin and curcumin-loaded nanocapsules in Drosophila melanogaster, enabling safe applications. Flies of both sexes were divided into groups: control group; free curcumin at concentrations of 10, 30, 100, 300, 900, and 3000 μM; curcumin-loaded nanocapsules at concentrations of 10, 30, 100, and 300 μM. Initially, the diet consumption test was evaluated in flies exposed to different concentrations. During the 10-day treatment, the flies were evaluated for percentage survival. After the treatment, behaviors (geotaxis negative and open field), acetylcholinesterase activity (AChE), and oxidative stress parameters (reactive species (RS) and thiobarbituric acid reactive substances (TBARS) levels, Glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) enzymes activity, erythroid-derived nuclear factor 2 (Nrf2) immunoreactivity, and cellular metabolic capacity, were assessed. No significant difference in diet consumption, indicating that the flies equally consumed the different concentrations of free curcumin and the curcumin-loaded nanocapsules. Was observed that free curcumin and curcumin-loaded nanocapsules increased survival, locomotor and exploratory performance, decreased AChE activity, RS and TBARS levels, increased GST, SOD and CAT activity, Nrf2 and viable cells compared to the control. The chronic treatment did not cause toxicity, suggesting that nanoencapsulation of curcumin could be explored.
Collapse
Affiliation(s)
- Eliana Jardim Fernandes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Dieniffer Espinosa Janner
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Franciéle Romero Machado Balok
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Magna Sotelo Barrientos
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Nathalie Savedra Gomes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Kétnne Hanna Poleto Pinto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Andrieli Rodrigues
- Laboratório de Farmacologia e Farmacometria - LABFAR, Universidade Federal Do Pampa, UNIPAMPA, Campus Uruguaiana, RS, Brazil
| | - Sandra Elisa Haas
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil; Laboratório de Farmacologia e Farmacometria - LABFAR, Universidade Federal Do Pampa, UNIPAMPA, Campus Uruguaiana, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação Em Bioquímica, Universidade Federal Do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil.
| |
Collapse
|
8
|
Dahleh MMM, Bortolotto VC, Guerra GP, Boeira SP, Prigol M. YK11 induces oxidative stress and mitochondrial dysfunction in hippocampus: The interplay between a selective androgen receptor modulator (SARM) and exercise. J Steroid Biochem Mol Biol 2023; 233:106364. [PMID: 37468001 DOI: 10.1016/j.jsbmb.2023.106364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Our study investigates potential neurochemical effects of (17α,20E)- 17,20-[(1-methoxyethylidene)bis(oxy)]- 3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), a selective androgen receptor modulator (SARM), in the rat hippocampus, with a particular focus on oxidative stress and mitochondrial function, as well as its potential effect when combined with exercise (EXE). To validate YK11's anabolic potential, we performed a molecular docking analysis with the androgen receptor (AR), which showed high affinity with YK11, highlighting hydrogen interactions in Arg752. During the five-week protocol, we divided male Wistar rats into the following groups: Control, YK11 (0.35 g/kg), EXE (swimming protocol), and EXE+YK11. The administration of YK11 resulted in alterations in the endogenous antioxidant system, promoting increased oxidative stress and proteotoxic effects, impairing all mitochondrial function markers in the hippocampus. In contrast, EXE alone had a neuroprotective effect, increasing antioxidant defenses and improving mitochondrial metabolism. When combined, EXE+YK11 prevented alterations in some mitochondrial toxicity markers, including MnSOD/SOD2 and MTT reduction capacity, but did not reverse YK11's neurochemical impairments regarding increased oxidative stress and dysfunction of the mitochondrial respiratory chain and mitochondrial dynamics regulatory proteins in the hippocampus. In summary, our study identifies important pathways of YK11's hippocampal effects, revealing its potential to promote oxidative stress and mitochondrial dysfunction, suggesting that the administration of YK11 may pose potential neurological risks for athletes and bodybuilders seeking to enhance performance. These findings highlight the need for further research to assess the safety and efficacy of YK11 and SARM use in humans.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio - Federal University of Pampa, Itaqui CEP 97650-000, RS, Brazil
| | | | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio - Federal University of Pampa, Itaqui CEP 97650-000, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio - Federal University of Pampa, Itaqui CEP 97650-000, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio - Federal University of Pampa, Itaqui CEP 97650-000, RS, Brazil.
| |
Collapse
|
9
|
Madalosso LM, Balok FRM, Bortolotto VC, Dahleh MMM, Backes LG, Escalante ESS, Benites FV, da Silva e Silva FA, Segat HJ, Boeira SP. Pitaya Juice Consumption Protects against Oxidative Damage Induced by Aflatoxin B1. J Fungi (Basel) 2023; 9:874. [PMID: 37754981 PMCID: PMC10532851 DOI: 10.3390/jof9090874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Mycotoxins are toxic fungal metabolites and are responsible for contaminating several foods. The intake of foods contaminated by these substances is related to hepatotoxicity and carcinogenic effects, possibly due to increasing oxidative stress. The current study evaluated Pitaya fruit juice's antioxidant effects on oxidative damage aflatoxin B1 (AFB1)-induced. Rats received 1.5 mL of Pitaya juice via gavage (for 30 days), and on the 31st day, they received AFB1 (250 µg/kg, via gavage). Forty-eight hours after the AFB1 dose, rats were euthanized for dosages of alanine transaminase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP); dosage of oxidative markers (thiobarbituric acid reactive species (TBARS), reactive species (RS)) and antioxidant defenses (catalase (CAT), superoxide dismutase (SOD), Glutathione S-transferase (GST) activities and Glutathione (GSH)) levels in the liver; and detection of Heat shock protein 70 (Hsp-70) and nuclear factor- erythroid 2-related factor 2 (Nrf2) immunocontent in the liver. Our results indicated that the Pitaya juice reduced ALP activity. Further, rats exposed to AFB1 experienced liver damage due to the increase in TBARS, RS, and Hsp-70 and the reduction in CAT, GSH, and Nrf2. Pitaya juice could, however, protect against these damages. Finally, these results indicated that pre-treatment with Pitaya juice was effective against the oxidative damage induced. However, other aspects may be elucidated in the future to discover more targets of its action against mycotoxicosis.
Collapse
Affiliation(s)
- Luiggi Müller Madalosso
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Franciéle Romero Machado Balok
- Programa de Pós-Graduação em Bioquímica, Federal University of Pampa, Uruguaiana 97650-000, Brazil; (F.R.M.B.); (V.C.B.); (M.M.M.D.)
| | - Vandreza Cardoso Bortolotto
- Programa de Pós-Graduação em Bioquímica, Federal University of Pampa, Uruguaiana 97650-000, Brazil; (F.R.M.B.); (V.C.B.); (M.M.M.D.)
| | - Mustafa Munir Mustafa Dahleh
- Programa de Pós-Graduação em Bioquímica, Federal University of Pampa, Uruguaiana 97650-000, Brazil; (F.R.M.B.); (V.C.B.); (M.M.M.D.)
| | - Lucas Gabriel Backes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Elizabeth Sabryna Sarquis Escalante
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Fernanda Vilhalba Benites
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Francisco Andrey da Silva e Silva
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Hecson Jesser Segat
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
- Programa de Pós-Graduação em Bioquímica, Federal University of Pampa, Uruguaiana 97650-000, Brazil; (F.R.M.B.); (V.C.B.); (M.M.M.D.)
| |
Collapse
|
10
|
Viana CE, Bortolotto VC, Araujo SM, Dahleh MMM, Machado FR, de Souza Pereira A, Moreira de Oliveira BP, Leimann FV, Gonçalves OH, Prigol M, Guerra GP. Lutein-loaded nanoparticles reverse oxidative stress, apoptosis, and autism spectrum disorder-like behaviors induced by prenatal valproic acid exposure in female rats. Neurotoxicology 2023; 94:223-234. [PMID: 36528186 DOI: 10.1016/j.neuro.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction and repetitive behaviors. In this study, we assessed the effect of lutein-loaded nanoparticles on ASD-like behaviors induced by prenatal valproic acid (VPA) exposure in female offspring rats and the possible involvement of oxidative stress and apoptosis. Pregnant female Wistar rats received a single intraperitoneal injection of VPA (600 mg/kg), on the gestational day 12.5. The VPA-exposed female offspring rats were divided into two subgroups and received either lutein-loaded nanoparticles (5 mg/kg) or saline by oral gavage, for 14 days. The animals were submitted to the three-chamber test and open field to evaluate ASD-like behaviors. The hippocampus was removed for the determination of oxidative stress indicators (ROS; TBARS; SOD and Nrf2) and apoptosis biomarkers (Hsp-70; p38-MAPK; Bax and Bcl-2). The exposure to lutein-loaded nanoparticles reversed sociability deficit, social memory deficit, and anxiety-like and repetitive behaviors induced by VPA, and restored the oxidative stress indicators and apoptosis biomarkers in the hippocampus. This neurochemical effect must be associated with the reversal of ASD-like behaviors. These results provide evidence that lutein-loaded nanoparticles are an alternative treatment for VPA-induced behavioral damage in female rats and suggest the involvement of oxidative stress.
Collapse
Affiliation(s)
- Cristini Escobar Viana
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Franciéle Romero Machado
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Adson de Souza Pereira
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Byanca Pereira Moreira de Oliveira
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná, Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná, Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Odinei Hess Gonçalves
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná, Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil.
| |
Collapse
|
11
|
Jung M, Pan X, Cunningham EL, Passmore AP, McGuinness B, McAuley DF, Beverland D, O’Brien S, Mawhinney T, Schott JM, Zetterberg H, Green BD. The Influence of Orthopedic Surgery on Circulating Metabolite Levels, and their Associations with the Incidence of Postoperative Delirium. Metabolites 2022; 12:616. [PMID: 35888740 PMCID: PMC9319890 DOI: 10.3390/metabo12070616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
The mechanisms underlying the occurrence of postoperative delirium development are unclear and measurement of plasma metabolites may improve understanding of its causes. Participants (n = 54) matched for age and gender were sampled from an observational cohort study investigating postoperative delirium. Participants were ≥65 years without a diagnosis of dementia and presented for primary elective hip or knee arthroplasty. Plasma samples collected pre- and postoperatively were grouped as either control (n = 26, aged: 75.8 ± 5.2) or delirium (n = 28, aged: 76.2 ± 5.7). Widespread changes in plasma metabolite levels occurred following surgery. The only metabolites significantly differing between corresponding control and delirium samples were ornithine and spermine. In delirium cases, ornithine was 17.6% higher preoperatively, and spermine was 12.0% higher postoperatively. Changes were not associated with various perioperative factors. In binary logistic regression modeling, these two metabolites did not confer a significantly increased risk of delirium. These findings support the hypothesis that disturbed polyamine metabolism is an underlying factor in delirium that warrants further investigation.
Collapse
Affiliation(s)
- Mijin Jung
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 8 Malone Road, Belfast BT9 5BN, Northern Ireland, UK; (M.J.); (X.P.)
| | - Xiaobei Pan
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 8 Malone Road, Belfast BT9 5BN, Northern Ireland, UK; (M.J.); (X.P.)
| | - Emma L. Cunningham
- Centre for Public Health, Institute of Clinical Sciences, Queen’s University Belfast, Block B, Royal Victoria Hospital Site, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK; (E.L.C.); (A.P.P.); (B.M.)
| | - Anthony P. Passmore
- Centre for Public Health, Institute of Clinical Sciences, Queen’s University Belfast, Block B, Royal Victoria Hospital Site, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK; (E.L.C.); (A.P.P.); (B.M.)
| | - Bernadette McGuinness
- Centre for Public Health, Institute of Clinical Sciences, Queen’s University Belfast, Block B, Royal Victoria Hospital Site, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK; (E.L.C.); (A.P.P.); (B.M.)
| | - Daniel F. McAuley
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK;
| | - David Beverland
- Outcomes Assessment Unit, Musgrave Park Hospital, Belfast Trust, Stockman’s Lane, Belfast BT9 7JB, Northern Ireland, UK;
| | - Seamus O’Brien
- Cardiac Surgical Intensive Care Unit, Belfast Trust, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK; (S.O.); (T.M.)
| | - Tim Mawhinney
- Cardiac Surgical Intensive Care Unit, Belfast Trust, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK; (S.O.); (T.M.)
| | - Jonathan M. Schott
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1E 6BT, UK; (J.M.S.); (H.Z.)
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1E 6BT, UK; (J.M.S.); (H.Z.)
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V, S-431 80 Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Brian D. Green
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 8 Malone Road, Belfast BT9 5BN, Northern Ireland, UK; (M.J.); (X.P.)
| |
Collapse
|
12
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
13
|
Sandusky-Beltran LA, Kovalenko A, Placides DS, Ratnasamy K, Ma C, Hunt JB, Liang H, Calahatian JIT, Michalski C, Fahnestock M, Blair LJ, Darling AL, Baker JD, Fontaine SN, Dickey CA, Gamsby JJ, Nash KR, Abner E, Selenica MLB, Lee DC. Aberrant AZIN2 and polyamine metabolism precipitates tau neuropathology. J Clin Invest 2021; 131:126299. [PMID: 33586680 PMCID: PMC7880423 DOI: 10.1172/jci126299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/16/2020] [Indexed: 01/14/2023] Open
Abstract
Tauopathies display a spectrum of phenotypes from cognitive to affective behavioral impairments; however, mechanisms promoting tau pathology and how tau elicits behavioral impairment remain unclear. We report a unique interaction between polyamine metabolism, behavioral impairment, and tau fate. Polyamines are ubiquitous aliphatic molecules that support neuronal function, axonal integrity, and cognitive processing. Transient increases in polyamine metabolism hallmark the cell's response to various insults, known as the polyamine stress response (PSR). Dysregulation of gene transcripts associated with polyamine metabolism in Alzheimer's disease (AD) brains were observed, and we found that ornithine decarboxylase antizyme inhibitor 2 (AZIN2) increased to the greatest extent. We showed that sustained AZIN2 overexpression elicited a maladaptive PSR in mice with underlying tauopathy (MAPT P301S; PS19). AZIN2 also increased acetylpolyamines, augmented tau deposition, and promoted cognitive and affective behavioral impairments. Higher-order polyamines displaced microtubule-associated tau to facilitate polymerization but also decreased tau seeding and oligomerization. Conversely, acetylpolyamines promoted tau seeding and oligomers. These data suggest that tauopathies launch an altered enzymatic signature that endorses a feed-forward cycle of disease progression. Taken together, the tau-induced PSR affects behavior and disease continuance, but may also position the polyamine pathway as a potential entry point for plausible targets and treatments of tauopathy, including AD.
Collapse
Affiliation(s)
- Leslie A. Sandusky-Beltran
- Byrd Alzheimer’s Institute and
- Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida, USA
| | - Andrii Kovalenko
- Byrd Alzheimer’s Institute and
- Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida, USA
| | - Devon S. Placides
- Byrd Alzheimer’s Institute and
- Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida, USA
| | - Kevin Ratnasamy
- Byrd Alzheimer’s Institute and
- Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida, USA
| | - Chao Ma
- Byrd Alzheimer’s Institute and
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
- Sanders-Brown Center on Aging
| | - Jerry B. Hunt
- Sanders-Brown Center on Aging
- Department of Neuroscience
| | - Huimin Liang
- Sanders-Brown Center on Aging
- Department of Neuroscience
| | - John Ivan T. Calahatian
- Byrd Alzheimer’s Institute and
- Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida, USA
| | - Camilla Michalski
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Laura J. Blair
- Byrd Alzheimer’s Institute and
- Department of Molecular Medicine and
| | - April L. Darling
- Byrd Alzheimer’s Institute and
- Department of Molecular Medicine and
| | - Jeremy D. Baker
- Byrd Alzheimer’s Institute and
- Department of Molecular Medicine and
| | | | - Chad A. Dickey
- Byrd Alzheimer’s Institute and
- Department of Molecular Medicine and
| | - Joshua J. Gamsby
- Byrd Alzheimer’s Institute and
- Department of Molecular Medicine and
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Erin Abner
- Sanders-Brown Center on Aging
- Department of Epidemiology, and
| | - Maj-Linda B. Selenica
- Sanders-Brown Center on Aging
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Daniel C. Lee
- Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida, USA
- Sanders-Brown Center on Aging
- Department of Neuroscience
| |
Collapse
|
14
|
Fabbrin SB, Girardi BA, de Lorena Wendel A, Coelho Ilha Valin C, Pillat MM, Viero FT, Mello CF, Rubin MA. Spermidine-induced improvement of memory consolidation involves PI3K/Akt signaling pathway. Brain Res Bull 2020; 164:208-213. [PMID: 32858125 DOI: 10.1016/j.brainresbull.2020.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/23/2023]
Abstract
Spermidine (SPD) is an endogenous polyamine that plays a facilitatory role in memory acquisition and consolidation. Memory consolidation occurs immediately after learning and again around 3-6 hours later. Current evidence indicates that the polyamine binding site at the NMDA receptor (NMDAr) mediates the effects of SPD on memory. While NMDAr activation increases brain-derived neurotrophic factor (BDNF) release, no study has investigated whether BDNF-activated signaling pathways, such as the phosphatidylinositol 3-kinase (PI3K)/Akt pathway play a role in SPD-induced improvement of memory consolidation. Therefore, the aim of the current study was to evaluate whether the TrkB receptor and the PI3K/Akt pathway are involved in the facilitatory effect of SPD on memory consolidation. Male Wistar rats were trained in the contextual conditioned fear task. SPD, ANA-12 (TrkB antagonist), and LY294002 (PI3K inhibitor) were administered immediately after training. The animals were tested 24 h after training. We found that SPD improved fear memory consolidation and that both ANA-12 and LY294002 prevented the facilitatory effect of SPD on memory. These results suggest that SPD-induced improvement of memory consolidation involves the activation of the TrkB receptor and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shaiana Beck Fabbrin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Bruna Amanda Girardi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Arithane de Lorena Wendel
- School of Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Carolina Coelho Ilha Valin
- School of Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Micheli Mainardi Pillat
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Carlos Fernando Mello
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Maribel Antonello Rubin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
15
|
Girardi BA, Fabbrin S, Wendel AL, Mello CF, Rubin MA. Spermidine, a positive modulator of the NMDA receptor, facilitates extinction and prevents the reinstatement of morphine-induced conditioned place preference in mice. Psychopharmacology (Berl) 2020; 237:681-693. [PMID: 31828395 DOI: 10.1007/s00213-019-05403-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
RATIONALE Individuals with opioid use disorders often relapse into drug-seeking behavior after recalling memories linked to the drug use experience. Improving extinction efficacy has been used as a strategy to treat substance use disorders and suppress relapse. Although N-methyl-D-aspartate receptor (NMDAr) agonists facilitate acquisition, consolidation, and extinction, no study has addressed whether spermidine (SPD), a natural polyamine ligand of the NMDA receptor, facilitates the extinction and reinstatement of morphine-induced conditioned place preference (CPP). OBJECTIVES AND METHODS The aim of the present study was to investigate the effect of SPD, an NMDAr agonist, on the extinction and reinstatement of morphine-induced CPP in mice. Adult male albino Swiss mice received saline (0.9% NaCl) or morphine (5 mg/kg) intraperitoneally (i.p.) and were respectively confined to a black or a white compartment for 30 min for four consecutive days for CPP induction. SPD (10-30 mg/kg, i.p.) or ifenprodil (NMDAr antagonist, 0.1-1 mg/kg, i.p.) were injected 15 min before extinction training. RESULTS SPD and ifenprodil facilitated the extinction of morphine-induced CPP. SPD treatment during the extinction period impaired reinstatement induced by a priming dose of morphine (1.25 mg/kg). Ifenprodil (0.1 mg/kg) prevented the facilitatory effect of spermidine on the extinction of morphine-induced CPP but did not prevent reinstatement induced by morphine. CONCLUSIONS These results suggest that SPD facilitated the extinction of morphine-induced CPP by modulating the polyamine binding site of the NMDA receptor. Our findings reveal important effects of SPD and ifenprodil on the re-exposure-induced decrease in morphine-induced CPP, which may be promising for developing novel pharmacological strategies to treat opioid use disorder.
Collapse
Affiliation(s)
- Bruna A Girardi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Shaiana Fabbrin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Arithane L Wendel
- School of Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Carlos F Mello
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Maribel A Rubin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil. .,Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
16
|
Sandusky-Beltran LA, Kovalenko A, Ma C, Calahatian JIT, Placides DS, Watler MD, Hunt JB, Darling AL, Baker JD, Blair LJ, Martin MD, Fontaine SN, Dickey CA, Lussier AL, Weeber EJ, Selenica MLB, Nash KR, Gordon MN, Morgan D, Lee DC. Spermidine/spermine-N 1-acetyltransferase ablation impacts tauopathy-induced polyamine stress response. Alzheimers Res Ther 2019; 11:58. [PMID: 31253191 PMCID: PMC6599347 DOI: 10.1186/s13195-019-0507-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/21/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tau stabilizes microtubules; however, in Alzheimer's disease (AD) and tauopathies, tau becomes hyperphosphorylated, aggregates, and results in neuronal death. Our group recently uncovered a unique interaction between polyamine metabolism and tau fate. Polyamines exert an array of physiological effects that support neuronal function and cognitive processing. Specific stimuli can elicit a polyamine stress response (PSR), resulting in altered central polyamine homeostasis. Evidence suggests that elevations in polyamines following a short-term stressor are beneficial; however, persistent stress and subsequent PSR activation may lead to maladaptive polyamine dysregulation, which is observed in AD, and may contribute to neuropathology and disease progression. METHODS Male and female mice harboring tau P301L mutation (rTg4510) were examined for a tau-induced central polyamine stress response (tau-PSR). The direct effect of tau-PSR byproducts on tau fibrillization and oligomerization were measured using a thioflavin T assay and a N2a split superfolder GFP-Tau (N2a-ssGT) cell line, respectively. To therapeutically target the tau-PSR, we bilaterally injected caspase 3-cleaved tau truncated at aspartate 421 (AAV9 Tau ΔD421) into the hippocampus and cortex of spermidine/spermine-N1-acetyltransferase (SSAT), a key regulator of the tau-PSR, knock out (SSAT-/-), and wild type littermates, and the effects on tau neuropathology, polyamine dysregulation, and behavior were measured. Lastly, cellular models were employed to further examine how SSAT repression impacted tau biology. RESULTS Tau induced a unique tau-PSR signature in rTg4510 mice, notably in the accumulation of acetylated spermidine. In vitro, higher-order polyamines prevented tau fibrillization but acetylated spermidine failed to mimic this effect and even promoted fibrillization and oligomerization. AAV9 Tau ΔD421 also elicited a unique tau-PSR in vivo, and targeted disruption of SSAT prevented the accumulation of acetylated polyamines and impacted several tau phospho-epitopes. Interestingly, SSAT knockout mice presented with altered behavior in the rotarod task, the elevated plus maze, and marble burying task, thus highlighting the impact of polyamine homeostasis within the brain. CONCLUSION These data represent a novel paradigm linking tau pathology and polyamine dysfunction and that targeting specific arms within the polyamine pathway may serve as new targets to mitigate certain components of the tau phenotype.
Collapse
Affiliation(s)
- Leslie A. Sandusky-Beltran
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
- 0000 0004 1936 8753grid.137628.9Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, 1 Park Avenue, New York, NY 10016 USA
| | - Andrii Kovalenko
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Chao Ma
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - John Ivan T. Calahatian
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Devon S. Placides
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Mallory D. Watler
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Jerry B. Hunt
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - April L. Darling
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Jeremy D. Baker
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Laura J. Blair
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Mackenzie D. Martin
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Sarah N. Fontaine
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Chad A. Dickey
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - April L. Lussier
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - Edwin J. Weeber
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - Maj-Linda B. Selenica
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Kevin R. Nash
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - Marcia N. Gordon
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
- 0000 0001 2150 1785grid.17088.36Department of Translational Science & Molecular Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503 USA
| | - Dave Morgan
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
- 0000 0001 2150 1785grid.17088.36Department of Translational Science & Molecular Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503 USA
| | - Daniel C. Lee
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| |
Collapse
|
17
|
Oliveira S, Oliveira M, Hipolide D. A1 adenosine receptors in the striatum play a role in the memory impairment caused by sleep deprivation through downregulation of the PKA pathway. Neurobiol Learn Mem 2019; 160:91-97. [DOI: 10.1016/j.nlm.2018.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/08/2018] [Accepted: 03/30/2018] [Indexed: 02/04/2023]
|
18
|
Rossato MF, Rigo FK, Oliveira SM, Guerra GP, Silva CR, Cunha TM, Gomez MV, Ferreira J, Trevisan G. Participation of transient receptor potential vanilloid 1 in paclitaxel-induced acute visceral and peripheral nociception in rodents. Eur J Pharmacol 2018; 828:42-51. [PMID: 29577893 DOI: 10.1016/j.ejphar.2018.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
The clinical use of paclitaxel as a chemotherapeutic agent is limited by the severe acute and chronic hypersensitivity caused when it is administered via intraperitoneal or intravenous routes. Thus far, evidence has suggested that transient receptor potential vanilloid-1 (TRPV1) has a key role in the chronic neuropathy induced by paclitaxel. Despite this, the role of TRPV1 in paclitaxel -related acute nociception, especially the development of visceral nociception, has not been evaluated. Thus, the goal of this study was to evaluate the participation of TRPV1 in a model of acute nociception induced by paclitaxel in rats and mice. A single intraperitoneal (i.p.) paclitaxel administration (1 mg/kg, i.p.) produced an immediate visceral nociception response 1 h after administration, caused mechanical and heat hypersensitivity, and diminished burrowing behaviour 24 h after administration. These nociceptive responses were reduced by SB-366791 treatment (0.5 mg/kg, i.p., a TRPV1 antagonist). In addition, TRPV1-positive sensory fibre ablation (using resiniferatoxin, 200 µg/kg, s.c.) reduced visceral nociception and mechanical or heat hypersensitivity caused by paclitaxel injection. Similarly, TRPV1 deficient mice showed a pronounced reduction in mechanical allodynia to paclitaxel acute injection and did not develop heat hypersensitivity. Moreover, 24 h after its injection, paclitaxel induced chemical hypersensitivity to capsaicin (a TRPV1 agonist, 0.01 nmol/site) and increased TRPV1 immunoreactivity in the dorsal root ganglion and sciatic nerve. In conclusion, TRPV1 is involved in mechanical and heat hypersensitivity and spontaneous-pain behaviour induced 24 h after a single paclitaxel injection. This receptor is also involved in visceral nociception induced immediately after paclitaxel administration.
Collapse
Affiliation(s)
- Mateus Fortes Rossato
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Flavia Karine Rigo
- Graduate Program in Health Science, University of the Extreme South of Santa Catarina (Unesc), 88806-000 Criciúma, SC, Brazil; Teaching and Research Institute, Santa Casa de Misericórdia de Belo Horizonte, 30150-221 Belo Horizonte, MG, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Gustavo Petri Guerra
- Federal University of Technology of Paraná (UTFPR), 85884-000 Medianeira, PR, Brazil
| | - Cássia Regina Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Marcus Vinícius Gomez
- Teaching and Research Institute, Santa Casa de Misericórdia de Belo Horizonte, 30150-221 Belo Horizonte, MG, Brazil
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88049-900 Florianópolis, SC, Brazil
| | - Gabriela Trevisan
- Graduate Program in Health Science, University of the Extreme South of Santa Catarina (Unesc), 88806-000 Criciúma, SC, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
19
|
Frühauf-Perez PK, Temp FR, Pillat MM, Signor C, Wendel AL, Ulrich H, Mello CF, Rubin MA. Spermine protects from LPS-induced memory deficit via BDNF and TrkB activation. Neurobiol Learn Mem 2018; 149:135-143. [DOI: 10.1016/j.nlm.2018.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/18/2018] [Accepted: 02/14/2018] [Indexed: 12/18/2022]
|
20
|
Spermidine improves the persistence of reconsolidated fear memory and neural differentiation in vitro: Involvement of BDNF. Neurobiol Learn Mem 2017; 140:82-91. [DOI: 10.1016/j.nlm.2017.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/02/2017] [Accepted: 02/20/2017] [Indexed: 11/22/2022]
|
21
|
Azimi L, Kachooeian M, Khodagholi F, Yans A, Heysieattalab S, Vakilzadeh G, Vosoughi N, Sanati M, Taghizadeh G, Sharifzadeh M. Protective effects of salicylate on PKA inhibitor (H-89)-induced spatial memory deficit via lessening autophagy and apoptosis in rats. Pharmacol Biochem Behav 2016; 150-151:158-169. [PMID: 27984096 DOI: 10.1016/j.pbb.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/23/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023]
|
22
|
Signor C, Temp FR, Mello CF, Oliveira MS, Girardi BA, Gais MA, Funck VR, Rubin MA. Intrahippocampal infusion of spermidine improves memory persistence: Involvement of protein kinase A. Neurobiol Learn Mem 2016; 131:18-25. [DOI: 10.1016/j.nlm.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
|
23
|
Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res 2016; 112:99-118. [PMID: 27015893 DOI: 10.1016/j.phrs.2016.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/08/2023]
Abstract
Spermine and spermidine are natural polyamines that are produced mainly via decarboxylation of l-ornithine and the sequential transfer of aminopropyl groups from S-adenosylmethionine to putrescine by spermidine synthase and spermine synthase. Spermine and spermidine interact with intracellular and extracellular acidic residues of different nature, including nucleic acids, phospholipids, acidic proteins, carboxyl- and sulfate-containing polysaccharides. Therefore, multiple actions have been suggested for these polycations, including modulation of the activity of ionic channels, protein synthesis, protein kinases, and cell proliferation/death, within others. In this review we summarize these neurochemical/neurophysiological/morphological findings, particularly those that have been implicated in the improving and deleterious effects of spermine and spermidine on learning and memory of naïve animals in shock-motivated and nonshock-motivated tasks, from a historical perspective. The interaction with the opioid system, the facilitation and disruption of morphine-induced reward and the effect of polyamines and putative polyamine antagonists on animal models of cognitive diseases, such as Alzheimer's, Huntington, acute neuroinflammation and brain trauma are also reviewed and discussed. The increased production of polyamines in Alzheimer's disease and the biphasic nature of the effects of polyamines on memory and on the NMDA receptor are also considered. In light of the current literature on polyamines, which include the description of an inborn error of the metabolism characterized by mild-to moderate mental retardation and polyamine metabolism alterations in suicide completers, we can anticipate that polyamine targets may be important for the development of novel strategies and approaches for understanding the etiopathogenesis of important central disorders and their pharmacological treatment.
Collapse
Affiliation(s)
- Gustavo Petri Guerra
- Department of Food Technology, Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR 85884-000, Brazil
| | - Maribel Antonello Rubin
- Department of Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| | - Carlos Fernando Mello
- Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
24
|
Girardi BA, Ribeiro DA, Signor C, Muller M, Gais MA, Mello CF, Rubin MA. Spermidine-induced improvement of reconsolidation of memory involves calcium-dependent protein kinase in rats. ACTA ACUST UNITED AC 2015; 23:21-8. [PMID: 26670183 PMCID: PMC4749837 DOI: 10.1101/lm.039396.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022]
Abstract
In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus. Twenty-four hours after training, animals were re-exposed to the apparatus in the absence of shock (reactivation session). Immediately after the reactivation session, spermidine (2–200 pmol/site), the PKC inhibitor 3-[1-(dimethylaminopropyl)indol-3-yl]-4-(indol-3-yl) maleimide hydrochloride (GF 109203X, 0.3–30 pg/site), the antagonist of the polyamine-binding site at the NMDA receptor, arcaine (0.2–200 pmol/site), or the PKC activator phorbol 12-myristate 13-acetate (PMA, 0.02–2 nmol/site) was injected. While the post-reactivation administration of spermidine (20 and 200 pmol/site) and PMA (2 nmol/site) improved memory reconsolidation, GF 109203X (1, 10, and 30 pg/site) and arcaine (200 pmol/site) impaired it. GF 109203X (0.3 pg/site) impaired memory reconsolidation in the presence of spermidine (200 pmol/site). PMA (0.2 nmol/site) prevented the arcaine (200 pmol/site)-induced impairment of memory reconsolidation. Anisomycin (2 µg/site) also impaired memory reconsolidation in the presence of spermidine (200 pmol/site). Drugs had no effect when they were administered in the absence of reactivation. These results suggest that the spermidine-induced enhancement of memory reconsolidation involves PKC activation.
Collapse
Affiliation(s)
- Bruna Amanda Girardi
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Daniela Aymone Ribeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Signor
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Michele Muller
- Undergraduate in Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Mayara Ana Gais
- Undergraduate in Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Carlos Fernando Mello
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Maribel Antonello Rubin
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
25
|
Rigo LA, da Silva CR, de Oliveira SM, Cabreira TN, de Bona da Silva C, Ferreira J, Beck RCR. Nanoencapsulation of rice bran oil increases its protective effects against UVB radiation-induced skin injury in mice. Eur J Pharm Biopharm 2015; 93:11-7. [PMID: 25818120 DOI: 10.1016/j.ejpb.2015.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 01/08/2023]
Abstract
Excessive UV-B radiation by sunlight produces inflammatory and oxidative damage of skin, which can lead to sunburn, photoaging, and cancer. This study evaluated whether nanoencapsulation improves the protective effects of rice bran oil against UVB radiation-induced skin damage in mice. Lipid-core nanocapsules containing rice bran oil were prepared, and had mean size around 200 nm, negative zeta potential (∼-9 mV), and low polydispersity index (<0.20). In order to allow application on the skin, a hydrogel containing the nanoencapsulated rice bran oil was prepared. This formulation was able to prevent ear edema induced by UVB irradiation by 60 ± 9%, when compared with a hydrogel containing LNC prepared with a mixture of medium chain triglycerides instead of rice bran oil. Protein carbonylation levels (biomarker of oxidative stress) and NF-κB nuclear translocation (biomarker of pro-inflammatory and carcinogenesis response) were reduced (81% and 87%, respectively) in animals treated with the hydrogel containing the nanoencapsulated rice bran oil. These in vivo results demonstrate the beneficial effects of nanoencapsulation to improve the protective properties of rice bran oil on skin damage caused by UVB exposure.
Collapse
Affiliation(s)
- Lucas Almeida Rigo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Cássia Regina da Silva
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Sara Marchesan de Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Thaíssa Nunes Cabreira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Cristiane de Bona da Silva
- Programa de Pós-Graduação e Ciências Farmacêuticas, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil
| | - Juliano Ferreira
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Ihara M, Asanuma H, Yamazaki S, Kato H, Asano Y, Shinozaki Y, Mori H, Minamino T, Asakura M, Sugimachi M, Mochizuki N, Kitakaze M. An interaction between glucagon-like peptide-1 and adenosine contributes to cardioprotection of a dipeptidyl peptidase 4 inhibitor from myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2015; 308:H1287-97. [PMID: 25747753 DOI: 10.1152/ajpheart.00835.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) inhibitors suppress the metabolism of the potent antihyperglycemic hormone glucagon-like peptide-1 (GLP-1). DPP4 was recently shown to provide cardioprotection through a reduction of infarct size, but the mechanism for this remains elusive. Known interactions between DPP4 and adenosine deaminase (ADA) suggest an involvement of adenosine signaling in DPP4 inhibitor-mediated cardioprotection. We tested whether the protective mechanism of the DPP4 inhibitor alogliptin against myocardial ischemia-reperfusion injury involves GLP-1- and/or adenosine-dependent signaling in canine hearts. In anesthetized dogs, the coronary artery was occluded for 90 min followed by reperfusion for 6 h. A 4-day pretreatment with alogliptin reduced the infarct size from 43.1 ± 2.5% to 17.1 ± 5.0% without affecting collateral flow and hemodynamic parameters, indicating a potent antinecrotic effect. Alogliptin also suppressed apoptosis as demonstrated by the following analysis: 1) reduction in the Bax-to-Bcl2 ratio; 2) cytochrome c release, 3) an increase in Bad phosphorylation in the cytosolic fraction; and 4) terminal deoxynucleotidyl transferase dUTP nick end labeling assay. This DPP4 inhibitor did not affect blood ADA activity or adenosine concentrations. In contrast, the nonselective adenosine receptor blocker 8-(p-sulfophenyl)theophylline (8SPT) completely blunted the effect of alogliptin. Alogliptin did not affect Erk1/2 phosphorylation, but it did stimulate phosphorylation of Akt, glycogen synthase kinase-3β, and cAMP response element-binding protein (CREB). Only 8SPT prevented alogliptin-induced CREB phosphorylation. In conclusion, the DPP4 inhibitor alogliptin suppresses ischemia-reperfusion injury via adenosine receptor- and CREB-dependent signaling pathways.
Collapse
Affiliation(s)
- Madoka Ihara
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroshi Asanuma
- Department of Cardiovascular Science and Technology, Kyoto Prefectural University School of Medicine, Kyoto, Japan
| | - Satoru Yamazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan;
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshihiro Shinozaki
- Department of Physiological Science, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Hidezo Mori
- Department of Physiological Science, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Tetsuo Minamino
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masanori Asakura
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Suita, Japan; and
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Suita, Japan; and
| |
Collapse
|
27
|
Ingram DK, Roth GS. Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res Rev 2015; 20:46-62. [PMID: 25530568 DOI: 10.1016/j.arr.2014.11.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/31/2022]
Abstract
Strong consensus exists regarding the most robust environmental intervention for attenuating aging processes and increasing healthspan and lifespan: calorie restriction (CR). Over several decades, this paradigm has been replicated in numerous nonhuman models, and has been expanded over the last decade to formal, controlled human studies of CR. Given that long-term CR can create heavy challenges to compliance in human diets, the concept of a calorie restriction mimetic (CRM) has emerged as an active research area within gerontology. In past presentations on this subject, we have proposed that a CRM is a compound that mimics metabolic, hormonal, and physiological effects of CR, activates stress response pathways observed in CR and enhances stress protection, produces CR-like effects on longevity, reduces age-related disease, and maintains more youthful function, all without significantly reducing food intake, at least initially. Over 16 years ago, we proposed that glycolytic inhibition could be an effective strategy for developing CRM. The main argument here is that inhibiting energy utilization as far upstream as possible provides the highest chance of generating a broad spectrum of CR-like effects when compared to targeting a singular molecular target downstream. As an initial candidate CRM, 2-deoxyglucose, a known anti-glycolytic, was shown to produce a remarkable phenotype of CR, but further investigation found that this compound produced cardiotoxicity in rats at the doses we had been using. There remains interest in 2DG as a CRM but at lower doses. Beyond the proposal of 2DG as a candidate CRM, the field has grown steadily with many investigators proposing other strategies, including novel anti-glycolytics. Within the realm of upstream targeting at the level of the digestive system, research has included bariatric surgery, inhibitors of fat digestion/absorption, and inhibitors of carbohydrate digestion. Research focused on downstream sites has included insulin receptors, IGF-1 receptors, sirtuin activators, inhibitors of mTOR, and polyamines. In the current review we discuss progress made involving these various strategies and comment on the status and future for each within this exciting research field.
Collapse
Affiliation(s)
- Donald K Ingram
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70809, United States.
| | - George S Roth
- GeroScience, Inc., Pylesville, MD 21132, United States.
| |
Collapse
|
28
|
Frühauf PKS, Ineu RP, Tomazi L, Duarte T, Mello CF, Rubin MA. Spermine reverses lipopolysaccharide-induced memory deficit in mice. J Neuroinflammation 2015; 12:3. [PMID: 25573647 PMCID: PMC4302583 DOI: 10.1186/s12974-014-0220-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/11/2014] [Indexed: 12/16/2022] Open
Abstract
Background Lipopolysaccharide (LPS) induces neuroinflammation and memory deficit. Since polyamines improve memory in various cognitive tasks, we hypothesized that spermine administration reverses LPS-induced memory deficits in an object recognition task in mice. The involvement of the polyamine binding site at the N-methyl-D-aspartate (NMDA) receptor and cytokine production in the promnesic effect of spermine were investigated. Methods Adult male mice were injected with LPS (250 μg/kg, intraperitoneally) and spermine (0.3 to 1 mg/kg, intraperitoneally) or ifenprodil (0.3 to 10 mg/kg, intraperitoneally), or both, and their memory function was evaluated using a novel object recognition task. In addition, cortical and hippocampal cytokines levels were measured by ELISA four hours after LPS injection. Results Spermine increased but ifenprodil decreased the recognition index in the novel object recognition task. Spermine, at doses that did not alter memory (0.3 mg/kg, intraperitoneally), reversed the cognitive impairment induced by LPS. Ifenprodil (0.3 mg/kg, intraperitoneally) reversed the protective effect of spermine against LPS-induced memory deficits. However, spermine failed to reverse the LPS-induced increase of cortical and hippocampal cytokine levels. Conclusions Spermine protects against LPS-induced memory deficits in mice by a mechanism that involves GluN2B receptors.
Collapse
Affiliation(s)
- Pâmella Karina Santana Frühauf
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Rafael Porto Ineu
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Lediane Tomazi
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Thiago Duarte
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Carlos Fernando Mello
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil. .,Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Maribel Antonello Rubin
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil. .,Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, CEP: 97105900, Santa Maria, RS, Brazil.
| |
Collapse
|
29
|
Signor C, Mello CF, Porto GP, Ribeiro DA, Rubin MA. Spermidine improves fear memory persistence. Eur J Pharmacol 2014; 730:72-6. [DOI: 10.1016/j.ejphar.2014.02.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/18/2014] [Accepted: 02/28/2014] [Indexed: 12/29/2022]
|
30
|
Ribeiro DA, Mello CF, Signor C, Rubin MA. Polyaminergic agents modulate the reconsolidation of conditioned fear. Neurobiol Learn Mem 2013; 104:9-15. [DOI: 10.1016/j.nlm.2013.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
|
31
|
López-Cebral R, Paolicelli P, Romero-Caamaño V, Seijo B, Casadei MA, Sanchez A. Spermidine-Cross-linked Hydrogels as Novel Potential Platforms for Pharmaceutical Applications. J Pharm Sci 2013; 102:2632-43. [DOI: 10.1002/jps.23631] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 01/25/2023]
|
32
|
Marisco PC, Carvalho FB, Rosa MM, Girardi BA, Gutierres JM, Jaques JAS, Salla APS, Pimentel VC, Schetinger MRC, Leal DBR, Mello CF, Rubin MA. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities. Neurochem Res 2013; 38:1704-14. [PMID: 23677777 DOI: 10.1007/s11064-013-1072-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 11/26/2022]
Abstract
Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.
Collapse
Affiliation(s)
- Patricia C Marisco
- Graduation Program in Pharmacology, Center of Health Sciences (CCS), Federal University of Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|