1
|
von Takach Dukai B, Peakall R, Lindenmayer DB, Banks SC. The influence of fire and silvicultural practices on the landscape-scale genetic structure of an Australian foundation tree species. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01245-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
2
|
Alwadani KG, Janes JK, Andrew RL. Chloroplast genome analysis of box-ironbark Eucalyptus. Mol Phylogenet Evol 2019; 136:76-86. [PMID: 30954587 DOI: 10.1016/j.ympev.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022]
Abstract
Eucalyptus L'Hérit. (Myrtaceae) is a taxonomically complex and highly speciose genus that dominates much of Australia's woody vegetation. However, very little information is available about the molecular biology and chloroplast diversity of certain groups, such as Eucalyptus section Adnataria, which is found in many woodland habitats of eastern Australia. We report four new complete chloroplast genomes of Eucalyptus, including three genomes from species previously lacking any chloroplast reference sequences. Plastomes of E. albens, E. conica, E. crebra and E. melliodora assembled using a de novo approach were shown to be largely identical to each other, and similar in size and structure to previously published chloroplast genomes from Eucalyptus. A total of 132 genes (114 single-copy genes and 18 duplicated genes in the IR regions) were identified, and shown to be highly conserved in terms of gene order, content and organization. Slightly higher divergence in the intergenic spacers was identified through comparative genomic analyses. Chloroplast sequences of 35 additional individuals representing 12 species were assembled using a reference guided approach. Rates of nucleotide substitution varied among the protein coding genes, with 17 genes under possible positive selection, and 29 invariant genes. Phylogenetic analysis of either the whole reconstructed plastome sequences or the individual genes revealed extreme discordance with expected species boundaries or higher-level relationships. Plastome relationships were better predicted by geography than by nuclear DNA or taxonomic relationships, suggesting a substantial influence of gene flow over and above the effects of incomplete lineage sorting. These results provide resources for future research and valuable insights into the prevalence of interspecific gene flow among Eucalyptus species.
Collapse
Affiliation(s)
- Khawla G Alwadani
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Biology Department, Faculty of Science, Jazan University, Saudi Arabia
| | - Jasmine K Janes
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Biology Department, Faculty of Science and Technology, Vancouver Island University, British Columbia, Canada
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
3
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 810] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Sumathi M, Yasodha R. Microsatellite resources of Eucalyptus: current status and future perspectives. BOTANICAL STUDIES 2014; 55:73. [PMID: 28510953 PMCID: PMC5430318 DOI: 10.1186/s40529-014-0073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/30/2014] [Indexed: 06/07/2023]
Abstract
Eucalyptus is the premier paper pulp, short rotation plantation species grown all over the world. Genetic improvement programs integrating molecular marker tools are in progress in many parts of the globe to increase the productivity. Whole genome sequence and expressed sequence tags (ESTs) of the eucalypts paved way for introduction of molecular genetics and breeding in this genus. Different molecular characterization approaches have been used simultaneously in eucalypts, however, microsatellites or simple sequence repeats (SSRs) with their prolific characteristics could occupy a special niche in Eucalyptus genetic improvement. Further, highly informative SSRs were used for the clonal identity, genetic fidelity and in certification of breeder's rights. Eucalyptus genetic linkage maps generated with microsatellite loci were used successfully to identify quantitative trait loci (QTLs) for various economically important traits. Progressively more numbers of microsatellites are being linked to genes associated with adaptive and functional variations, therefore making their utility broader in genetic applications. Availability of common SSR markers across the species provides an opportunity to validate the expression of QTLs across variable genetic backgrounds and accurately compare the position of QTLs in other species. Recent evidences suggest that the presence of SSRs in micro RNAs of plant species play a role in the quantitative trait expression. Similar studies in eucalypts may provide new insights into the genetic architecture of transcript-level variations and post transcriptional gene regulation. This review on eucalypts microsatellites, highlights the availability and characteristics of genomic and eSSRs and their potential in genetic analysis of natural and breeding populations and also discusses the future prospects in population genetics and marker assisted selection.
Collapse
Affiliation(s)
- Murugan Sumathi
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, Coimbatore, 641 002 India
| | - Ramasamy Yasodha
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, Coimbatore, 641 002 India
| |
Collapse
|
5
|
Nevill PG, Bradbury D, Williams A, Tomlinson S, Krauss SL. Genetic and palaeo-climatic evidence for widespread persistence of the coastal tree species Eucalyptus gomphocephala (Myrtaceae) during the Last Glacial Maximum. ANNALS OF BOTANY 2014; 113:55-67. [PMID: 24284819 PMCID: PMC3864724 DOI: 10.1093/aob/mct253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/06/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia. METHODS The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models. KEY RESULTS The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r(2) = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline. CONCLUSIONS The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.
Collapse
Affiliation(s)
- Paul G. Nevill
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005, Australia
- School of Plant Biology, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- For correspondence. E-mail
| | - Donna Bradbury
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005, Australia
- School of Plant Biology, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Anna Williams
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005, Australia
- School of Plant Biology, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Sean Tomlinson
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005, Australia
- School of Animal Biology, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Siegfried L. Krauss
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005, Australia
- School of Plant Biology, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
6
|
Bayly MJ, Rigault P, Spokevicius A, Ladiges PY, Ades PK, Anderson C, Bossinger G, Merchant A, Udovicic F, Woodrow IE, Tibbits J. Chloroplast genome analysis of Australian eucalypts – Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Mol Phylogenet Evol 2013; 69:704-16. [DOI: 10.1016/j.ympev.2013.07.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/28/2013] [Accepted: 07/08/2013] [Indexed: 12/01/2022]
|
7
|
Paiva JAP, Prat E, Vautrin S, Santos MD, San-Clemente H, Brommonschenkel S, Fonseca PGS, Grattapaglia D, Song X, Ammiraju JSS, Kudrna D, Wing RA, Freitas AT, Bergès H, Grima-Pettenati J. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries. BMC Genomics 2011; 12:137. [PMID: 21375742 PMCID: PMC3060884 DOI: 10.1186/1471-2164-12-137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 03/04/2011] [Indexed: 11/10/2022] Open
Abstract
Background Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC) libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. Results We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1) digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb) to 157 Kb (Eg_Ba), very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. Conclusions The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×), contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae, including genome sequencing, gene isolation, functional and comparative genomics. Because they have been constructed using the same tree (E. grandis BRASUZ1) whose full genome is being sequenced, they should prove instrumental for assembly and gap filling of the upcoming Eucalyptus reference genome sequence.
Collapse
Affiliation(s)
- Jorge A P Paiva
- Instituto de Investigação Científica Tropical, Centro de Florestas e dos Produtos Florestais, Tapada da Ajuda, 1349-018 Lisboa, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ebert D, Peakall R. Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Resour 2009; 9:673-90. [PMID: 21564725 DOI: 10.1111/j.1755-0998.2008.02319.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloroplast microsatellites, or simple sequence repeats (cpSSRs), are typically mononucleotide tandem repeats. When located in the noncoding regions of the chloroplast genome (cpDNA), they commonly show intraspecific variation in repeat number. Despite the growing number of studies applying cpSSRs, studies of economically important plants and their relatives remain over-represented. Thus, the potential of cpSSRs to offer unique insights into ecological and evolutionary processes in wild plant species has yet to be fully realized. This review provides an overview of the technical resources available to aid cpSSR discovery including a list of cpSSR primer sets available and cpDNA sequencing resources. Our updated analysis of 99 whole chloroplast genomes downloaded from GenBank confirms that potentially variable cpSSRs are abundant in the noncoding cpDNA of plants. Overall variation in the frequency of cpSSRs was extreme, ranging from one to 700 per genome (median = 93), while in 81 vascular plants, between 35 and 160 cpSSRs were detected per genome (median = 86). We offer five recommendations to aid wider development and application of cpSSRs: (i) When genus-specific cpSSR primers are available, cross-species amplification can often be fruitful. (ii) While potentially useful, universal cpSSR primers at best provide access to only a small number of variable markers. (iii) De novo sequencing of noncoding cpDNA is the most effective and efficient way to develop cpSSR markers in wild species. (iv) DNA sequencing of cpSSR alleles is essential, given the complex nature of the genetic variation associated with hypervariable cpDNA regions. (v) The reliability of cpSSR length based genetic assays need to be validated in all studies.
Collapse
Affiliation(s)
- Daniel Ebert
- School of Botany and Zoology, The Australian National University, Canberra ACT 0200, Australia
| | | |
Collapse
|
9
|
Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 2008; 8:36. [PMID: 18237435 PMCID: PMC2275221 DOI: 10.1186/1471-2148-8-36] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 01/31/2008] [Indexed: 11/24/2022] Open
Abstract
Background Various expansions or contractions of inverted repeats (IRs) in chloroplast genomes led to fluxes in the IR-LSC (large single copy) junctions. Previous studies revealed that some monocot IRs contain a trnH-rps19 gene cluster, and it has been speculated that this may be an evidence of a duplication event prior to the divergence of monocot lineages. Therefore, we compared the organizations of genes flanking two IR-LSC junctions in 123 angiosperm representatives to uncover the evolutionary dynamics of IR-LSC junctions in basal angiosperms and monocots. Results The organizations of genes flanking IR-LSC junctions in angiosperms can be classified into three types. Generally each IR of monocots contains a trnH-rps19 gene cluster near the IR-LSC junctions, which differs from those in non-monocot angiosperms. Moreover, IRs expanded more progressively in monocots than in non-monocot angiosperms. IR-LSC junctions commonly occurred at polyA tract or A-rich regions in angiosperms. Our RT-PCR assays indicate that in monocot IRA the trnH-rps19 gene cluster is regulated by two opposing promoters, S10A and psbA. Conclusion Two hypotheses are proposed to account for the evolution of IR expansions in monocots. Based on our observations, the inclusion of a trnH-rps19 cluster in majority of monocot IRs could be reasonably explained by the hypothesis that a DSB event first occurred at IRB and led to the expansion of IRs to trnH, followed by a successive DSB event within IRA and lead to the expansion of IRs to rps19 or to rpl22 so far. This implies that the duplication of trnH-rps19 gene cluster was prior to the diversification of extant monocot lineages. The duplicated trnH genes in the IRB of most monocots and non-monocot angiosperms have distinct fates, which are likely regulated by different expression levels of S10A and S10B promoters. Further study is needed to unravel the evolutionary significance of IR expansion in more recently diverged monocots.
Collapse
Affiliation(s)
- Rui-Jiang Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | | | | | | | | | | |
Collapse
|
10
|
Brondani RPV, Williams ER, Brondani C, Grattapaglia D. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC PLANT BIOLOGY 2006; 6:20. [PMID: 16995939 PMCID: PMC1599733 DOI: 10.1186/1471-2229-6-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/22/2006] [Indexed: 05/11/2023]
Abstract
BACKGROUND Eucalypts are the most widely planted hardwood trees in the world occupying globally more than 18 million hectares as an important source of carbon neutral renewable energy and raw material for pulp, paper and solid wood. Quantitative Trait Loci (QTLs) in Eucalyptus have been localized on pedigree-specific RAPD or AFLP maps seriously limiting the value of such QTL mapping efforts for molecular breeding. The availability of a genus-wide genetic map with transferable microsatellite markers has become a must for the effective advancement of genomic undertakings. This report describes the development of a novel set of 230 EMBRA microsatellites, the construction of the first comprehensive microsatellite-based consensus linkage map for Eucalyptus and the consolidation of existing linkage information for other microsatellites and candidate genes mapped in other species of the genus. RESULTS The consensus map covers approximately 90% of the recombining genome of Eucalyptus, involves 234 mapped EMBRA loci on 11 linkage groups, an observed length of 1,568 cM and a mean distance between markers of 8.4 cM. A compilation of all microsatellite linkage information published in Eucalyptus allowed us to establish the homology among linkage groups between this consensus map and other maps published for E. globulus. Comparative mapping analyses also resulted in the linkage group assignment of other 41 microsatellites derived from other Eucalyptus species as well as candidate genes and QTLs for wood and flowering traits published in the literature. This report significantly increases the availability of microsatellite markers and mapping information for species of Eucalyptus and corroborates the high conservation of microsatellite flanking sequences and locus ordering between species of the genus. CONCLUSION This work represents an important step forward for Eucalyptus comparative genomics, opening stimulating perspectives for evolutionary studies and molecular breeding applications. The generalized use of an increasingly larger set of interspecific transferable markers and consensus mapping information, will allow faster and more detailed investigations of QTL synteny among species, validation of expression-QTL across variable genetic backgrounds and positioning of a growing number of candidate genes co-localized with QTLs, to be tested in association mapping experiments.
Collapse
Affiliation(s)
- Rosana PV Brondani
- EMBRAPA Recursos Genéticos e Biotecnologia, CP 02372, 70770-970 DF Brasilia, Brazil
- Department of Cell Biology, Universidade de Brasília UnB, DF, Brasília
- EMBRAPA Arroz e Feijão, CP 179, Goiânia GO 74001-970, Brazil
| | - Emlyn R Williams
- CSIRO Forestry and Forest Products, POBox E4008, Kingston ACT 2604, Australia
| | - Claudio Brondani
- EMBRAPA Recursos Genéticos e Biotecnologia, CP 02372, 70770-970 DF Brasilia, Brazil
- EMBRAPA Arroz e Feijão, CP 179, Goiânia GO 74001-970, Brazil
| | - Dario Grattapaglia
- EMBRAPA Recursos Genéticos e Biotecnologia, CP 02372, 70770-970 DF Brasilia, Brazil
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Catolica de Brasília, 70790-160 DF Brasilia, Brazil
| |
Collapse
|