1
|
Ayoub MJ, Legras JL, Abi-Nakhoul P, Nguyen HV, Saliba R, Gaillardin C. Lebanon's Native Oenological Saccharomyces cerevisiae Flora: Assessment of Different Aspects of Genetic Diversity and Evaluation of Winemaking Potential. J Fungi (Basel) 2021; 7:jof7080678. [PMID: 34436217 PMCID: PMC8398109 DOI: 10.3390/jof7080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
A total of 296 isolates of Saccharomyces cerevisiae sampled from naturally fermenting grape musts from various locations in Lebanon were typed by interdelta fingerprinting. Of these, 88 isolates were compared with oenological strains originating from various countries, using microsatellite characterization at six polymorphic loci. These approaches evidenced a large diversity of the natural oenological Lebanese flora over the territory as well as in individual spontaneous fermentations. Several cases of dominance and perenniality of isolates were observed in the same wineries, where fermentations appeared to involve lineages of sibling isolates. Our work thus evidenced a “winery effect” on strains’ relatedness. Similarly, related or identical strains were also detected in vicinal wineries, suggesting strain circulation within small geographical areas and a further “vicinity effect”. Moreover, and despite its diversity, the Lebanese flora seemed interrelated, on the basis of microsatellite loci analysis, in comparison to worldwide communities. We finally tested the ability of 21 indigenous strains to act as potential starters for winemaking. Seven of them passed our pre-selection scheme and two of them at least may be good candidates for use provided pilot-scale assays confirm their suitability.
Collapse
Affiliation(s)
- Marie-José Ayoub
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
- Correspondence:
| | - Jean-Luc Legras
- SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
- CIRM-Levures, SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
| | - Pierre Abi-Nakhoul
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
| | - Huu-Vang Nguyen
- CIRM-Levures, SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
| | - Rachad Saliba
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
| | - Claude Gaillardin
- AgroParisTech, Micalis UMR 1319, CBAI, F-78850 Thiverval-Grignon, France;
- INRA, Micalis UMR 1319, CBAI, F-78850 Thiverval-Grignon, France
| |
Collapse
|
2
|
Vinification without Saccharomyces: Interacting Osmotolerant and "Spoilage" Yeast Communities in Fermenting and Ageing Botrytised High-Sugar Wines (Tokaj Essence). Microorganisms 2020; 9:microorganisms9010019. [PMID: 33374579 PMCID: PMC7822429 DOI: 10.3390/microorganisms9010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/16/2022] Open
Abstract
The conversion of grape juice to wine starts with complex yeast communities consisting of strains that have colonised the harvested grape and/or reside in the winery environment. As the conditions in the fermenting juice gradually become inhibitory for most species, they are rapidly overgrown by the more adaptable Saccharomyces strains, which then complete the fermentation. However, there are environmental factors that even Saccharomyces cannot cope with. We show that when the sugar content is extremely high, osmotolerant yeasts, usually considered as “spoilage yeasts“, ferment the must. The examination of the yeast biota of 22 botrytised Tokaj Essence wines of sugar concentrations ranging from 365 to 752 g∙L−1 identified the osmotolerant Zygosaccharomyces rouxii, Candida (Starmerella) lactis-condensi and Candida zemplinina (Starmerella bacillaris) as the dominating species. Ten additional species, mostly known as osmotolerant spoilage yeasts or biofilm-producing yeasts, were detected as minor components of the populations. The high phenotypical and molecular (karyotype, mtDNA restriction fragment length polymorphism (RFLP) and microsatellite-primed PCR (MSP-PCR)) diversity of the conspecific strains indicated that diverse clones of the species coexisted in the wines. Genetic segregation of certain clones and interactions (antagonism and crossfeeding) of the species also appeared to shape the fermenting yeast biota.
Collapse
|
3
|
Alexandre H. Wine Yeast Terroir: Separating the Wheat from the Chaff-for an Open Debate. Microorganisms 2020; 8:E787. [PMID: 32466171 PMCID: PMC7285325 DOI: 10.3390/microorganisms8050787] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023] Open
Abstract
Wine terroir is characterized by a specific taste and style influenced by the cultivar of the fermented grapes, geographical factors such as the vineyard, mesoclimate, topoclimate, and microclimate, soil geology and pedology, and the agronomic approach used. These characteristics together define the concept of "terroir". Thus, regional distinctive flavors in wine have been the subject of many studies aimed at better understanding the link between the wine and the vineyard. Indeed, the identification of key environmental elements involved in the regional variation of grape and wine quality characteristics is a critical feature for improving wine production in terms of consumer preference and economic appreciation. Many studies have demonstrated the role of abiotic factors in grape composition and consequently in wine style. Biotic factors are also involved such as grape microbial communities. However, the occurrence and effects of region-specific microbiota in defining wine characteristics are more controversial issues. Indeed, several studies using high throughput sequencing technologies have made it possible to describe microbial communities and revealed a link between grape must and soil microbial communities, and the geography of the territory. Based on these observations, the concept of "microbial terroir" emerged. However, this concept has been subject to contradictory studies. The aim of this opinion article is to take a step back and examine in perspective the concept of microbial terroir, by comparing numerous data from different studies and providing arguments in favor of or against this concept to stimulate discussion and point out that experimental research is still needed to study the contribution of this assembly of microorganisms to the final product and to support or refute the concept.
Collapse
Affiliation(s)
- Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| |
Collapse
|
4
|
Ramírez M, López-Piñeiro A, Velázquez R, Muñoz A, Regodón JA. Analysing the vineyard soil as a natural reservoir for wine yeasts. Food Res Int 2020; 129:108845. [DOI: 10.1016/j.foodres.2019.108845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
|
5
|
Abstract
Filamentous growth is a fungal morphogenetic response that is critical for virulence in some fungal species. Many aspects of filamentous growth remain poorly understood. We have identified an aspect of filamentous growth in the budding yeast Saccharomyces cerevisiae and the human pathogen Candida albicans where cells behave collectively to invade surfaces in aggregates. These responses may reflect an extension of normal filamentous growth, as they share the same signaling pathways and effector processes. Aggregate responses may involve cooperation among individual cells, because aggregation was stimulated by cell adhesion molecules, secreted enzymes, and diffusible molecules that promote quorum sensing. Our study may provide insights into the genetic basis of collective cellular responses in fungi. The study may have ramifications in fungal pathogenesis, in situations where collective responses occur to promote virulence. Many fungal species, including pathogens, undergo a morphogenetic response called filamentous growth, where cells differentiate into a specialized cell type to promote nutrient foraging and surface colonization. Despite the fact that filamentous growth is required for virulence in some plant and animal pathogens, certain aspects of this behavior remain poorly understood. By examining filamentous growth in the budding yeast Saccharomyces cerevisiae and the opportunistic pathogen Candida albicans, we identify responses where cells undergo filamentous growth in groups of cells or aggregates. In S. cerevisiae, aggregate invasive growth was regulated by signaling pathways that control normal filamentous growth. These pathways promoted aggregation in part by fostering aspects of microbial cooperation. For example, aggregate invasive growth required cellular contacts mediated by the flocculin Flo11p, which was produced at higher levels in aggregates than cells undergoing regular invasive growth. Aggregate invasive growth was also stimulated by secreted enzymes, like invertase, which produce metabolites that are shared among cells. Aggregate invasive growth was also induced by alcohols that promote density-dependent filamentous growth in yeast. Aggregate invasive growth also required highly polarized cell morphologies, which may affect the packing or organization of cells. A directed selection experiment for aggregating phenotypes uncovered roles for the fMAPK and RAS pathways, which indicates that these pathways play a general role in regulating aggregate-based responses in yeast. Our study extends the range of responses controlled by filamentation regulatory pathways and has implications in understanding aspects of fungal biology that may be relevant to fungal pathogenesis. IMPORTANCE Filamentous growth is a fungal morphogenetic response that is critical for virulence in some fungal species. Many aspects of filamentous growth remain poorly understood. We have identified an aspect of filamentous growth in the budding yeast Saccharomyces cerevisiae and the human pathogen Candida albicans where cells behave collectively to invade surfaces in aggregates. These responses may reflect an extension of normal filamentous growth, as they share the same signaling pathways and effector processes. Aggregate responses may involve cooperation among individual cells, because aggregation was stimulated by cell adhesion molecules, secreted enzymes, and diffusible molecules that promote quorum sensing. Our study may provide insights into the genetic basis of collective cellular responses in fungi. The study may have ramifications in fungal pathogenesis, in situations where collective responses occur to promote virulence.
Collapse
|
6
|
Bonciani T, De Vero L, Mezzetti F, Fay JC, Giudici P. A multi-phase approach to select new wine yeast strains with enhanced fermentative fitness and glutathione production. Appl Microbiol Biotechnol 2018; 102:2269-2278. [PMID: 29356870 DOI: 10.1007/s00253-018-8773-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
The genetic improvement of winemaking yeasts is a virtually infinite process, as the design of new strains must always cope with varied and ever-evolving production contexts. Good wine yeasts must feature both good primary traits, which are related to the overall fermentative fitness of the strain, and secondary traits, which provide accessory features augmenting its technological value. In this context, the superiority of "blind," genetic improvement techniques, as those based on the direct selection of the desired phenotype without prior knowledge of the genotype, was widely proven. Blind techniques such as adaptive evolution strategies were implemented for the enhancement of many traits of interest in the winemaking field. However, these strategies usually focus on single traits: this possibly leads to genetic tradeoff phenomena, where the selection of enhanced secondary traits might lead to sub-optimal primary fermentation traits. To circumvent this phenomenon, we applied a multi-step and strongly directed genetic improvement strategy aimed at combining a strong fermentative aptitude (primary trait) with an enhanced production of glutathione (secondary trait). We exploited the random genetic recombination associated to a library of 69 monosporic clones of strain UMCC 855 (Saccharomyces cerevisiae) to search for new candidates possessing both traits. This was achieved by consecutively applying three directional selective criteria: molybdate resistance (1), fermentative aptitude (2), and glutathione production (3). The strategy brought to the selection of strain 21T2-D58, which produces a high concentration of glutathione, comparable to that of other glutathione high-producers, still with a much greater fermentative aptitude.
Collapse
Affiliation(s)
- Tommaso Bonciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Luciana De Vero
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| | - Francesco Mezzetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Justin C Fay
- Department of Biology, University of Rochester, 319 Hutchison Hall, Rochester, NY, USA
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| |
Collapse
|
7
|
SaccharomycesIDentifier, SID: strain-level analysis of Saccharomyces cerevisiae populations by using microsatellite meta-patterns. Sci Rep 2017; 7:15343. [PMID: 29127392 PMCID: PMC5681646 DOI: 10.1038/s41598-017-15729-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
Saccharomyces cerevisiae is a common yeast with several applications, among which the most ancient is winemaking. Because individuals belonging to this species show a wide genetic and phenotypic variability, the possibility to identify the strains driving fermentation is pivotal when aiming at stable and palatable products. Metagenomic sequencing is increasingly used to decipher the fungal populations present in complex samples such as musts. However, it does not provide information at the strain level. Microsatellites are commonly used to describe the genotype of single strains. Here we developed a population-level microsatellite profiling approach, SID (Saccharomyces cerevisiae IDentifier), to identify the strains present in complex environmental samples. We optimized and assessed the performances of the analytical procedure on patterns generated in silico by computationally pooling Saccharomyces cerevisiae microsatellite profiles, and on samples obtained by pooling DNA of different strains, proving its ability to characterize real samples of grape wine fermentations. SID showed clear differences among S. cerevisiae populations in grape fermentation samples, identifying strains that are likely composing the populations and highlighting the impact of the inoculation of selected exogenous strains on natural strains. This tool can be successfully exploited to identify S. cerevisiae strains in any kind of complex samples.
Collapse
|
8
|
Guillamón JM, Barrio E. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 2017; 8:806. [PMID: 28522998 PMCID: PMC5415627 DOI: 10.3389/fmicb.2017.00806] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties.
Collapse
Affiliation(s)
- José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain.,Departamento de Genética, Universidad de ValenciaValencia, Spain
| |
Collapse
|
9
|
González B, Mas A, Beltran G, Cullen PJ, Torija MJ. Role of Mitochondrial Retrograde Pathway in Regulating Ethanol-Inducible Filamentous Growth in Yeast. Front Physiol 2017; 8:148. [PMID: 28424625 PMCID: PMC5372830 DOI: 10.3389/fphys.2017.00148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022] Open
Abstract
In yeast, ethanol is produced as a by-product of fermentation through glycolysis. Ethanol also stimulates a developmental foraging response called filamentous growth and is thought to act as a quorum-sensing molecule. Ethanol-inducible filamentous growth was examined in a small collection of wine/European strains, which validated ethanol as an inducer of filamentous growth. Wine strains also showed variability in their filamentation responses, which illustrates the striking phenotypic differences that can occur among individuals. Ethanol-inducible filamentous growth in Σ1278b strains was independent of several of the major filamentation regulatory pathways [including fMAPK, RAS-cAMP, Snf1, Rpd3(L), and Rim101] but required the mitochondrial retrograde (RTG) pathway, an inter-organellar signaling pathway that controls the nuclear response to defects in mitochondrial function. The RTG pathway regulated ethanol-dependent filamentous growth by maintaining flux through the TCA cycle. The ethanol-dependent invasive growth response required the polarisome and transcriptional induction of the cell adhesion molecule Flo11p. Our results validate established stimuli that trigger filamentous growth and show how stimuli can trigger highly specific responses among individuals. Our results also connect an inter-organellar pathway to a quorum sensing response in fungi.
Collapse
Affiliation(s)
- Beatriz González
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Paul J Cullen
- Department of Biological Sciences, University at BuffaloBuffalo, NY, USA
| | - María Jesús Torija
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| |
Collapse
|
10
|
Wine. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Study of yeast populations and their enological properties in Guijoso Appellation of Origin (Spain). ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Navarrete-Bolaños JL. Improving traditional fermented beverages: How to evolve from spontaneous to directed fermentation. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
Peris D, Belloch C, Lopandić K, Álvarez-Pérez JM, Querol A, Barrio E. The molecular characterization of new types of Saccharomyces cerevisiae × S. kudriavzevii hybrid yeasts unveils a high genetic diversity. Yeast 2012; 29:81-91. [DOI: 10.1002/yea.2891] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/24/2011] [Indexed: 11/09/2022] Open
Affiliation(s)
- David Peris
- Institute Cavanilles of Biodiversity and Evolutionary Biology; University of Valencia; Spain
| | - Carmela Belloch
- Department of Biotecnology; Institute of Agrochemistry and Food Technology (CSIC); Valencia; Spain
| | - Ksenija Lopandić
- Austrian Centre of Biological Resources and Applied Mycology, Institute of Applied Microbiology; University of Natural Resources and Applied Life Sciences; Vienna; Austria
| | | | - Amparo Querol
- Department of Biotecnology; Institute of Agrochemistry and Food Technology (CSIC); Valencia; Spain
| | - Eladio Barrio
- Institute Cavanilles of Biodiversity and Evolutionary Biology; University of Valencia; Spain
| |
Collapse
|
14
|
Abstract
Transcription factors and their binding sites have been proposed as primary targets of evolutionary adaptation because changes to single transcription factors can lead to far-reaching changes in gene expression patterns. Nevertheless, there is very little concrete evidence for such evolutionary changes. Industrial wine yeast strains, of the species Saccharomyces cerevisiae, are a geno- and phenotypically diverse group of organisms that have adapted to the ecological niches of industrial winemaking environments and have been selected to produce specific styles of wine. Variation in transcriptional regulation among wine yeast strains may be responsible for many of the observed differences and specific adaptations to different fermentative conditions in the context of commercial winemaking. We analyzed gene expression profiles of wine yeast strains to assess the impact of transcription factor expression on metabolic networks. The data provide new insights into the molecular basis of variations in gene expression in industrial strains and their consequent effects on metabolic networks important to wine fermentation. We show that the metabolic phenotype of a strain can be shifted in a relatively predictable manner by changing expression levels of individual transcription factors, opening opportunities to modify transcription networks to achieve desirable outcomes.
Collapse
|
15
|
Viana F, Belloch C, Vallés S, Manzanares P. Monitoring a mixed starter of Hanseniaspora vineae-Saccharomyces cerevisiae in natural must: impact on 2-phenylethyl acetate production. Int J Food Microbiol 2011; 151:235-40. [PMID: 21962939 DOI: 10.1016/j.ijfoodmicro.2011.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/05/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022]
Abstract
The effect of simultaneous or sequential inoculation of Hanseniaspora vineae CECT 1471 and Saccharomyces cerevisiae T73 in non-sterile must on 2-phenylethyl acetate production has been examined. In both treatments tested, no significant differences in Saccharomyces yeast growth were found, whereas non-Saccharomyces yeast growth was significantly different during all days of fermentation. Independently of the type of inoculation, S. cerevisiae was the predominant species from day 3 till the end of the fermentation. The dynamics of indigenous and inoculated yeast populations showed H. vineae to be the predominant non-Saccharomyces species at the beginning of fermentation in sequentially inoculated wines, whereas the simultaneous inoculation of S. cerevisiae did not permit any non-Saccharomyces species to become predominant. Differences found in non-Saccharomyces yeast growth in both fermentations influenced the analytical profiles of final wines and specifically 2-phenylethyl acetate concentration which was two-fold increased in sequentially inoculated wines in comparison to those co-inoculated. In conclusion we have shown that H. vineae inoculated as part of a sequential mixed starter is able to compete with native yeasts present in non-sterile must and modify the wine aroma profile.
Collapse
Affiliation(s)
- Fernando Viana
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-IATA, Consejo Superior de Investigaciones Científicas-CSIC, P.O. Box 73, 46100 Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
16
|
Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0086-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
17
|
Clavijo A, Calderón IL, Paneque P. Yeast assessment during alcoholic fermentation inoculated with a natural “pied de cuve” or a commercial yeast strain. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0609-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Carvalho CM, Rocha A, Estevinho MLF, Choupina A. IDENTIFICATION OF HONEY YEAST SPECIES BASED ON RFLP ANALYSIS OF THE ITS REGION IDENTIFICACIÓN DE ESPECIES DE LEVADURAS DE MIEL BASADA EN ANÁLISIS RFLP DE LA REGION ITS IDENTIFICACIÓN DE ESPECIES DE LEVADURAS DE MEL BASADA EN ANÁLISES RFLP DA REXIÓN ITS. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/11358120509487665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- C. M. Carvalho
- a Departamento de Biologia e Microbiologia , Escola Superior Agrária de Braganç , Apartado 1172, 5301-855, Bragança, Portugal
| | - A. Rocha
- a Departamento de Biologia e Microbiologia , Escola Superior Agrária de Braganç , Apartado 1172, 5301-855, Bragança, Portugal
| | - M. L. F. Estevinho
- a Departamento de Biologia e Microbiologia , Escola Superior Agrária de Braganç , Apartado 1172, 5301-855, Bragança, Portugal
| | - A. Choupina
- a Departamento de Biologia e Microbiologia , Escola Superior Agrária de Braganç , Apartado 1172, 5301-855, Bragança, Portugal
| |
Collapse
|
19
|
Identification of yeast population dynamics of spontaneous fermentation in Beijing wine region, China. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Suárez Valles B, Pando Bedriñana R, González García A, Querol Simón A. A molecular genetic study of natural strains of Saccharomyces isolated from Asturian cider fermentations. J Appl Microbiol 2008; 103:778-86. [PMID: 17897179 DOI: 10.1111/j.1365-2672.2007.03314.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To analyse the genetic diversity and the dynamics of Saccharomyces strains in spontaneous fermentation in ciders. The effect of the cellar, harvest and cider-making technology were evaluated. METHODS AND RESULTS The ecology of spontaneous cider fermentations in the same cellar (Asturias) was studied for two consecutive harvests (2000 and 2001) by using mtDNA restriction analysis. Our results showed that there was a succession of genetically different strains of Saccharomyces during cider production. In general, strains of Saccharomyces bayanus species predominated at the early fermentation steps (begining and/or tumultuous fermentations), while Saccharomyces cerevisiae yeasts were the most abundant at the end of the fermentation. Five S. bayanus strains (patterns III, VII, VIII, XV and XVII) were present at significant frequencies in all the experimental tanks during the two consecutive years. The results of the cluster analysis (unweighted pair group method using average linkage) showed higher similarities for the patterns III, XV, VII and VIII. Therefore, these strains should be considered associated with the microbiota of this cellar. CONCLUSIONS A high polymorphism within populations of Saccharomyces was found throughout the different stages of Asturian production of cider. In all the cider fermentations, a variable number of S. bayanus and S. cerevisiae strains was always present. Our results indicate, over the period of time studied, the existence of the natural microbiota in the cellar. SIGNIFICANCE AND IMPACT OF THE STUDY This study has allowed us to gain a better understanding of the role of wild Saccharomyces yeast in Asturian cider fermentations.
Collapse
Affiliation(s)
- B Suárez Valles
- Area de Tecnología de los Alimentos, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|
21
|
Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl Environ Microbiol 2008; 74:2314-20. [PMID: 18296532 DOI: 10.1128/aem.01867-07] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed 24 beer strains from different origins by using PCR-restriction fragment length polymorphism analysis of different gene regions, and six new Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrid strains were found. This is the first time that the presence in brewing of this new type of hybrid has been demonstrated. From the comparative molecular analysis of these natural hybrids with respect to those described in wines, it can be concluded that these originated from at least two hybridization events and that some brewing hybrids share a common origin with wine hybrids. Finally, a reduction of the S. kudriavzevii fraction of the hybrid genomes was observed, but this reduction was found to vary among hybrids regardless of the source of isolation. The fact that 25% of the strains analyzed were discovered to be S. cerevisiae x S. kudriavzevii hybrids suggests that an important fraction of brewing strains classified as S. cerevisiae may correspond to hybrids, contributing to the complexity of Saccharomyces diversity in brewing environments. The present study raises new questions about the prevalence of these new hybrids in brewing as well as their contribution to the properties of the final product.
Collapse
|
22
|
Raspor P, Milek DM, Polanc J, Mozina SS, Cadez N. Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine-growing region, Slovenia. Int J Food Microbiol 2006; 109:97-102. [PMID: 16626833 DOI: 10.1016/j.ijfoodmicro.2006.01.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 11/30/2005] [Accepted: 01/04/2006] [Indexed: 11/29/2022]
Abstract
The number and diversity of yeasts on grape berry surfaces are influenced by several factors, such as grape variety, degree of grape maturity at harvest, climatological conditions, geographic location, physical damage of grapes, the intensity of pest management etc. Cvicek is a typical Slovene wine, which has obtained a special protection under the Slovene Wine Law for its geographical origin. This blended red wine is produced from different grape varieties (Vitis vinifera L.), mostly from red grapes of Zametovka and Modra frankinja and from white grapes of Kraljevina. The aim of this study was to evaluate the impact of geographical locations in the Dolenjska vine-growing region and to obtain precise information about the influence of different grape varieties on the composition of yeast community on grape berries. The restriction fragment length polymorphism of PCR-amplified fragments from the rDNA gene cluster (PCR RFLP of rDNA) has been used for the differentiation of yeast species. The standard identification procedure has been performed on representative strains that shared identical RFLP profiles. The number of yeasts and yeast species isolated varied according to different grape varieties, Zametovka, Modra frankinja and Kraljevina (V. vinifera L.) and according to different sampling location. On the surface of grape berries 13 different yeast species have been identified. Saccharomyces cerevisiae has not been found.
Collapse
Affiliation(s)
- Peter Raspor
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
23
|
Landry CR, Townsend JP, Hartl DL, Cavalieri D. Ecological and evolutionary genomics of Saccharomyces cerevisiae. Mol Ecol 2006; 15:575-91. [PMID: 16499686 DOI: 10.1111/j.1365-294x.2006.02778.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Saccharomyces cerevisiae, the budding yeast, is the most thoroughly studied eukaryote at the cellular, molecular, and genetic levels. Yet, until recently, we knew very little about its ecology or population and evolutionary genetics. In recent years, it has been recognized that S. cerevisiae occupies numerous habitats and that populations harbour important genetic variation. There is therefore an increasing interest in understanding the evolutionary forces acting on the yeast genome. Several researchers have used the tools of functional genomics to study natural isolates of this unicellular fungus. Here, we review some of these studies, and show not only that budding yeast is a prime model system to address fundamental molecular and cellular biology questions, but also that it is becoming a powerful model species for ecological and evolutionary genomics studies as well.
Collapse
Affiliation(s)
- Christian R Landry
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
24
|
Silva-Filho EAD, Santos SKBD, Resende ADM, de Morais JOF, de Morais MA, Simões DA. Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting. Antonie van Leeuwenhoek 2005. [DOI: 10.1007/s10482-005-7283-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
da Silva-Filho EA, Brito dos Santos SK, Resende ADM, de Morais JOF, de Morais MA, Ardaillon Simões D. Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting. Antonie Van Leeuwenhoek 2005; 88:13-23. [PMID: 15928973 DOI: 10.1007/s10482-004-7283-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 12/07/2004] [Indexed: 10/25/2022]
Abstract
Yeast population used in industrial production of fuel-ethanol may vary according to the plant process condition and to the environmental stresses imposed to yeast cells. Therefore, yeast strains isolated from a particular industrial process may be adapted to such conditions and should be used as starter strain instead of less adapted commercial strains. This work reports the use of PCR-fingerprinting method based on microsatellite primer (GTG)5 to characterize the yeast population dynamics along the fermentation period in six distilleries. The results show that indigenous fermenting strains present in the crude substrate can be more adapted to the industrial process than commercial strains. We also identified new strains that dominate the yeast population and were more present either in molasses or sugar cane fermenting distilleries. Those strains were proposed to be used as starters in those industrial processes. This is the first report on the use of molecular markers to discriminate Saccharomyces cerevisiae strains from fuel-ethanol producing process.
Collapse
|
26
|
Capece A, Salzano G, Romano P. Molecular typing techniques as a tool to differentiate non-Saccharomyces wine species. Int J Food Microbiol 2003; 84:33-9. [PMID: 12781952 DOI: 10.1016/s0168-1605(02)00392-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A total of 32 yeast strains belonging to four non-Saccharomyces species associated with winemaking was characterized by different molecular techniques. The PCR amplification of 18S rRNA-coding DNA and nontranscribed spacer, followed by restriction analysis with the endonucleases HaeIII and MspI, and PCR fingerprinting with microsatellite primers (GAC)(5) and (GTG)(5) were used. The methods used provided species-specific profiles and proved to be fast and reliable for monitoring the evolution of the four non-Saccharomyces yeast populations throughout wine fermentation.
Collapse
Affiliation(s)
- A Capece
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università degli Studi della Basilicata, Campus Macchia Romana, 85100 Potenza, Italy
| | | | | |
Collapse
|
27
|
Sabate J, Cano J, Esteve-Zarzoso B, Guillamón JM. Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol Res 2003; 157:267-74. [PMID: 12501990 DOI: 10.1078/0944-5013-00163] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Yeast colonies isolated from vineyard and cellar substrates were analysed in the present study. Yeast species assessment was carried out by amplification and digestion of a region of the ribosomal RNA gene repeat unit. Saccharomyces strains were also characterised using mitochondrial DNA restriction analysis. Oxidative basidiomycetous yeasts without enological potential were predominant in the vineyard environment. Yeasts associated with grape skin depend on grape variety, vintage and degree of grape maturation. These species from grape surface constituted the predominant microbiota in must and they developed during the first stages of the process. Yeasts colonies were also isolated and identified from the walls of a fermentation vat some days before the harvest. Contray to what was expected, Saccharomyces cerevisiae was not the major species isolated as Candida sorbosa represented 76% of the species isolated. Saccharomyces strains isolated from the fermentation vat had been previously isolated in wine fermentations in this cellar. Therefore, these strains should be considered as constant residents of this winery.
Collapse
Affiliation(s)
- Josepa Sabate
- Unidad de Microbiologia, Facultad de Medicina, Universidad Rovira i Virgili, Institut d'Estudis Avançats, 43201-Reus, Tarragona, Spain
| | | | | | | |
Collapse
|
28
|
Beltran G, Torija MJ, Novo M, Ferrer N, Poblet M, Guillamón JM, Rozès N, Mas A. Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. Syst Appl Microbiol 2002; 25:287-93. [PMID: 12353885 DOI: 10.1078/0723-2020-00097] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Wine yeasts were isolated from fermenting Garnatxa and Xarel.lo musts fermented in a newly built and operated winery between 1995 and 2000. The species of non-Saccharomyces yeasts and the Saccharomyces cerevisiae strains were identified by ribosomal DNA and mitochondrial DNA RFLP analysis respectively. Non-Saccharomyces yeasts, particularly Hanseniaspora uvarum and Candida stellata, dominated the first stages of fermentation. However Saccharomyces cerevisiae was present at the beginning of the fermentation and was the main yeast in the musts in one vintage (1999). In all the cases, S. cerevisiae took over the process in the middle and final stages of fermentation. The analysis of the S. cerevisiae strains showed that indigenous strains competed with commercial strains inoculated in other fermentation tanks of the cellar. The continuous use of commercial yeasts reduced the diversity and importance of the indigenous S. cerevisiae strains.
Collapse
Affiliation(s)
- Gemma Beltran
- Unitat d'Enologia del Centre de Referència de Tecnologia d'Aliments, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, Ramón y Cajal, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Caruso M, Capece A, Salzano G, Romano P. Typing of Saccharomyces cerevisiae and Kloeckera apiculata strains from Aglianico wine. Lett Appl Microbiol 2002; 34:323-8. [PMID: 11967053 DOI: 10.1046/j.1472-765x.2002.01090.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Kloeckera apiculata and Saccharomyces cerevisiae yeast species are dominant, respectively, at the early and at the following stages of wine fermentation. In the present study, PCR fingerprinting and NTS region amplification and restriction were applied as techniques for monitoring yeast population performing Aglianico of Vulture grape must fermentation. METHODS AND RESULTS Thirty S. cerevisiae and 30 K. apiculata strains were typed by PCR fingerprinting with (GAC)5 and (GTG)5 primers and by complete NTS region amplification followed by restriction with HaeIII and MspI enzymes. S. cerevisiae strains generated two patterns with (GAC)5 primer, while (GTG)5 primer yielded a higher genetic polymorphism. Conversely, in K. apiculata Aglianico wine strains (GAC)5 and (GTG)5 primers generated the same profile for all strains. Restriction analysis of the amplified NTS region gave the same profile for all strains within the same species, except for one strain of S. cerevisiae. CONCLUSIONS The PCR fingerprinting technique was useful in discriminating at strain level S. cerevisiae, particularly with the primer (GTG)5. RFLP patterns generated from the NTS region of the two species can be more easily compared than the patterns resulting from PCR fingerprinting, thus RFLP is more suitable for the rapid monitoring of the species involved in different stages of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY The molecular techniques used allow discrimination of S. cerevisiae at strain level and monitoring of the ratio of S. cerevisiae/K. apiculata during the fermentation process. Thus, their application can assure technological adjustments in a suitable time.
Collapse
Affiliation(s)
- M Caruso
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università degli Studi della Basilicata, Campus Macchia Romana, 85100 Potenza, Italy.
| | | | | | | |
Collapse
|
30
|
Guerra JB, Araújo RA, Pataro C, Franco GR, Moreira ES, Mendonça-Hagler LC, Rosa CA. Genetic diversity of Saccharomyces cerevisiae strains during the 24 h fermentative cycle for the production of the artisanal Brazilian cachaça. Lett Appl Microbiol 2001; 33:106-11. [PMID: 11472516 DOI: 10.1046/j.1472-765x.2001.00959.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Characterization of yeast populations and genetic polymorphism of Saccharomyces cerevisiae strains collected during the short fermentative cycles from the spontaneous fermentations during the artisanal cachaça production. METHODS AND RESULTS The prevalent S. cerevisiae strains were analysed by PFG and RAPD-PCR using primers EI1 and M13. The molecular analysis have showed a high degree of genetic polymorphism among the strains within a 24 h fermentative cycle. CONCLUSION The genetic diversity observed in the S. cerevisiae strains may be occurring due to the existence of a large number of individual genotypes within the species. The unique characteristics of the cachaça fermentation process probably allows for a faster detection of molecular polymorphisms of yeast strains than other types of fermentations. SIGNIFICANCE AND IMPACT OF THE STUDY Spontaneous fermentations to produce cachaça, due to their characteristics, are an excellent model for the study of molecular diversity of S. cerevisiae strains during the production of fermented beverages.
Collapse
Affiliation(s)
- J B Guerra
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Selection and molecular characterization of wine yeasts isolated from the ‘El Penedès’ area (Spain). Food Microbiol 2000. [DOI: 10.1006/fmic.2000.0347] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Abstract
We present a method to directly characterize the yeast diversity present in wine fermentations by employing denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 26S ribosomal RNA (rRNA) genes. PCR-DGGE of a portion of the 26S rRNA gene was shown to distinguish most yeast genera associated with the production of wine. With this method the microbial dynamics in several model wine fermentations were profiled. PCR-DGGE provided a qualitative assessment of the yeast diversity in these fermentations accurately identifying populations as low as 1000 cells ml(-1). PCR-DGGE represents an attractive alternative to traditional plating schemes for analysis of the microbial successions inherent in the fermentation of wine.
Collapse
Affiliation(s)
- L Cocolin
- Department of Viticulture and Enology, University of California, Davis, One Shields Ave., Davis, CA 95616-8749, USA
| | | | | |
Collapse
|
34
|
Abstract
In this review we describe the role of the yeast Saccharomyces in the development of human societies including the use of this organism in the making of wine, bread, beer, and distilled beverages. We also discuss the tremendous diversity of yeast found in natural (i.e., noninoculated) wine fermentations and the scientific uses of yeast over the past 60 years. In conclusion, we present ideas on the model of "genome renewal" and the use of this model to explain the mode by which yeast has evolved and how diversity can be generated.
Collapse
Affiliation(s)
- R K Mortimer
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
35
|
Gutierrez AR, Santamaria P, Epifanio S, Garijo P, opez RL. Ecology of spontaneous fermentation in one winery during 5 consecutive years. Lett Appl Microbiol 1999. [DOI: 10.1046/j.1472-765x.1999.00657.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Dlauchy D, Tornai-Lehoczki J, Péter G. Restriction enzyme analysis of PCR amplified rDNA as a taxonomic tool in yeast identification. Syst Appl Microbiol 1999; 22:445-53. [PMID: 10553297 DOI: 10.1016/s0723-2020(99)80054-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A method has been developed to simplify the identification of yeast strains. We used the restriction fragment patterns of PCR-amplified 18S rRNA-coding DNA with the neighbouring ITS1 region for differentiation and identification of 169 yeast strains representing 128 species associated mainly with food, wine, beer, and soft drinks. The amplicons were digested with four different four-base-cutting restriction enzymes. To construct a database of restriction fragment patterns, the gels have been scanned and analyzed using the Molecular Analyst Fingerprint 2.0 software. The use of four enzymes proved to be sufficient for strain identification.
Collapse
Affiliation(s)
- D Dlauchy
- University of Horticulture and Food Science, Budapest, Hungary.
| | | | | |
Collapse
|
37
|
|
38
|
Guillamón JM, Barrio E, Querol A. Characterization of Wine Yeast Strains of the Saccharomyces Genus on the Basis of Molecular Markers: Relationships Between Genetic Distance and Geographic or Ecological Origin. Syst Appl Microbiol 1996. [DOI: 10.1016/s0723-2020(96)80019-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|