1
|
Seguel Suazo K, Dobbeleers T, Dries J. Bacterial community and filamentous population of industrial wastewater treatment plants in Belgium. Appl Microbiol Biotechnol 2024; 108:43. [PMID: 38180550 DOI: 10.1007/s00253-023-12822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/27/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024]
Abstract
The discharge of industrial water requires the removal of its pollutants, where biological wastewater treatment plants (WWTPs) are the most used systems. Biological WWTPs make use of activated sludge (AS), where bacteria are responsible for the removal of pollutants. However, our knowledge of the microbial communities of industrial plants is limited. Understanding the microbial population is essential to provide solutions to industrial problems such as bulking. The aim of this study was to identify at a high taxonomic resolution the bacterial population of 29 industrial WWTPs using 16S rRNA amplicon sequencing. Our results revealed that the main functional groups were dominated by Thauera and Zoogloea within denitrifiers, Dechloromonas in phosphate-accumulating organisms, and Defluviicoccus in glycogen-accumulating organisms. The activated sludge characterization indicated that 59% of the industrial plants suffered from bulking sludge, with DSVI values of up to 448 mL g-1. From the bulking cases, 72% corresponded to filamentous bulking with Thiothrix as the most abundant filament; meanwhile, the other 28% corresponded to viscous bulking sludge in which Zoogloea was the most abundant genus. Furthermore, the bacterial population did not share a core of taxa across all industrial plants. However, 20 genera were present in at least 50% of the plants comprising the general core, including Thauera, Ca. Competibacter, and several undescribed microorganisms. Moreover, statistical analysis revealed that wastewater salinity strongly affected the microbial richness of the industrial plants. The bacterial population across industrial plants differed considerably from each other, resulting in unique microbial communities that are attributed to the specificity of their wastewaters. KEY POINTS: • The general core taxa of industrial plants were mostly made up of undescribed bacterial genera. • Filamentous bacteria constituted on average 4.1% read abundance of the industrial WWTPs. • Viscous bulking remains a significant type of bulking within industrial WWTPs.
Collapse
Affiliation(s)
- Karina Seguel Suazo
- Biochemical Wastewater Valorization and Engineering (BioWAVE), Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Thomas Dobbeleers
- Biochemical Wastewater Valorization and Engineering (BioWAVE), Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Jan Dries
- Biochemical Wastewater Valorization and Engineering (BioWAVE), Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
| |
Collapse
|
2
|
Nittami T, Batinovic S. Recent advances in understanding the ecology of the filamentous bacteria responsible for activated sludge bulking. Lett Appl Microbiol 2021; 75:759-775. [PMID: 34919734 DOI: 10.1111/lam.13634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023]
Abstract
Activated sludge bulking caused by filamentous bacteria is still a problem in wastewater treatment plants around the world. Bulking is a microbiological problem, and so its solution on species-specific basis is likely to be reached only after their ecology, physiology and metabolism is better understood. Culture-independent molecular methods have provided much useful information about this group of organisms, and in this review, the methods employed and the information they provide are critically assessed. Their application to understanding bulking caused by the most frequently seen filament in Japan, 'Ca. Kouleothrix', is used here as an example of how these techniques might be used to develop control strategies. Whole genome sequences are now available for some of filamentous bacteria responsible for bulking, and so it is possible to understand why these filaments might thrive in activated sludge plants, and provide clues as to how eventually they might be controlled specifically.
Collapse
Affiliation(s)
- T Nittami
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - S Batinovic
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
3
|
Li BB, Peng ZY, Zhi LL, Li HB, Zheng KK, Li J. Distribution and diversity of filamentous bacteria in wastewater treatment plants exhibiting foaming of Taihu Lake Basin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115644. [PMID: 33254706 DOI: 10.1016/j.envpol.2020.115644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Foaming caused by filamentous bacteria in activated sludge (AS) is a common phenomenon in municipal wastewater treatment plants (WWTPs) in Taihu Lake Basin of South China. In this study, total bacterial and filamentous bacterial communities were comprehensively characterized in AS and foams from eight municipal WWTPs by high-throughput sequencing technology. Results showed that alpha diversities of total bacterial communities in foams were obviously lower than those in AS samples. The bacterial community structures were significantly different between WWTPs rather than sample types (AS vs. foam). For most WWTPs, the Actinobacteria phylum was highly enriched in foams and the most abundant genera in foams were common mycolata. Sixteen filamentous bacteria were identified against the improved bulking and foaming bacteria (BFB) database. Abundance and composition of BFB in different WWTPs and different sample types were significantly different. 'Nostocoida limicola' I Trichococcus and Microthrix were generally dominant in AS samples. The dominant BFB in foams were associated with Microthrix, Skermania, Gordonia, and Mycobacterium. A new Defluviicoccus spp. in cluster III was identified in severe and continuous foams. Moreover, dominant BFB in stable and continuous foams with light level in one typical WWTP were diverse, even, and dynamic. Bacterial co-occurrence network analysis implied that the bacterial community of AS was more sensitive to disturbance than that of foam.
Collapse
Affiliation(s)
- Bing-Bing Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi-Ying Peng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li-Ling Zhi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Huai-Bo Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kai-Kai Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
4
|
Chen H, Wang M, Chang S. Disentangling Community Structure of Ecological System in Activated Sludge: Core Communities, Functionality, and Functional Redundancy. MICROBIAL ECOLOGY 2020; 80:296-308. [PMID: 32076744 DOI: 10.1007/s00248-020-01492-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
The microbial ecosystems of the sludge were characterized in terms of the core community structure, functional pathways, and functional redundancy through Illumina MiSeq sequencing and PICRUSt analysis on the activated sludge (AS) samples from an extended activated aeration process. Based on the identified OTU distribution, we identified 125 core community genera, including 3 abundant core genera and 21 intermittent abundant core genera. Putative genera Nitrosomonas, Nitrotoga, Zoogloea, Novosphingobium, Thermomonas, Amaricoccus, Tetrasphaera, Candidatus Microthrix, and Haliscomenobacter, which are associated with functions of nitrifying, denitrifying, phosphorus accumulating, and bulking and foaming, were found to present as the core community organisms in the AS sampled from the conventional extended aeration AS processes. The high-abundant nitrogen metabolic pathways were associated with nitrate reduction to ammonium (DNRA and ANRA), denitrification, and nitrogen fixation, while the ammonia oxidation-related genes (amo) were rarely annotated in the AS samples. Strict functional redundancy was not found with the AS ecosystem as it showed a high correlation between the community composition similarity and function similarity. In addition, the classified dominant core genera community was found to be sufficient to characterize the functionality of AS, which could invigorate applications of 16S rDNA MiSeq sequencing and PICRUSt for the prediction of functions of AS ecosystems.
Collapse
Affiliation(s)
- Huibin Chen
- School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Meiying Wang
- School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sheng Chang
- School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
5
|
Garibay-Valdez E, Martínez-Córdova LR, López-Torres MA, Almendariz-Tapia FJ, Martínez-Porchas M, Calderón K. The implication of metabolically active Vibrio spp. in the digestive tract of Litopenaeus vannamei for its post-larval development. Sci Rep 2020; 10:11428. [PMID: 32651435 PMCID: PMC7351783 DOI: 10.1038/s41598-020-68222-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022] Open
Abstract
This work aimed to evaluate the link between the occurrence/abundance of Vibrio populations and bacterial composition in shrimp’s intestine (Litopenaeus vannamei) during post-larval ontogenetic development and in its culture water, and the correlation of these with environmental parameters. The total and metabolically active populations of Vibrio in the digestive tract of shrimp during its post-larval development were analysed using quantitative PCR (qPCR) and reverse transcription qPCR targeting the 16S rRNA gene sequence. A lab-scale shrimp bioassay was performed for 80 days in a recirculating aquarium under strictly controlled conditions. The results indicate that the Vibrio population from shrimp’s gut is associated with its developmental stage and the environment. Multivariate analyses revealed that the presence of Vibrio spp. drove the studied system, but their metabolically active performance was related to earlier developmental stages in an aqueous environment. Also, the samples taken from water of culture units to compare the influence of the aquatic environment on the intestinal microbial community during shrimp’s ontogenetic development showed significant differences. Finally, our results revealed that Vibrio is an important member of shrimp’s gut microbiota; however, its metabolic activity seems to be highly regulated, possibly by the host and by the rest of the microbiota.
Collapse
Affiliation(s)
- Estefanía Garibay-Valdez
- Centro de Investigación en Alimentos y Desarrollo A.C (CIAD), Carretera a La Victoria S/N, CP. 83304, Hermosillo, Sonora, Mexico
| | - Luis Rafael Martínez-Córdova
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - Marco A López-Torres
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - F Javier Almendariz-Tapia
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentos y Desarrollo A.C (CIAD), Carretera a La Victoria S/N, CP. 83304, Hermosillo, Sonora, Mexico
| | - Kadiya Calderón
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
6
|
Li DC, Gao JF, Zhang SJ, Gao YQ, Sun LX. Enhanced granulation process, a more effective way of aerobic granular sludge cultivation in pilot-scale application comparing to normal granulation process: From the perspective of microbial insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136106. [PMID: 31863990 DOI: 10.1016/j.scitotenv.2019.136106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Aerobic granular sludge (AGS) could be cultivated from only flocs (called normal granulation (NG) process) or mixture of flocs and crushed AGS (called enhanced granulation (EG) process), which might lead to different system performances such as granulation speed and pollutants removal efficiencies. However, the differences of mechanisms between NG and EG processes at microbial community level are still unknown. In this study, the NG and EG processes were implemented successively in a pilot-scale sequencing batch reactor (SBR) with certain amounts of additional carbon sources. Illumina MiSeq sequencing and quantitative PCR were applied to investigate the dynamics of bacterial communities during NG and EG processes and explore the possible explanations for faster EG process. The results showed that significant distinctions in bacterial diversities and community structures were observed between NG and EG processes. The major contributor to NG process was bacterial communities with 32.04% contribution. While EG process was more dependent on the interactions (73.16% contribution) between the bacterial communities and environmental variables (operational parameters and self-adaptive variable). EG process had higher relative abundances of functional bacteria than NG process. Glycogen accumulating organisms (GAOs) related bacteria with a total relative abundance of maximum 65.43% might be mainly responsible for the faster EG process. This study provided microbial insights for practical application of AGS technology that inoculating crushed AGS might be an effective way to cultivate AGS.
Collapse
Affiliation(s)
- Ding-Chang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jing-Feng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Shu-Jun Zhang
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| | - Yong-Qing Gao
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| | - Li-Xin Sun
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| |
Collapse
|
7
|
Nishiguchi K, Winkler MKH. Correlating sludge constituents with digester foaming risk using sludge foam potential and rheology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:949-960. [PMID: 32541113 DOI: 10.2166/wst.2020.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Foam potential and viscometer ramp tests (VRTs) were conducted for three municipal wastewater treatment plants to determine if these methods can relate to mechanisms of foaming to physical and biological constituents in sludge. At all plants, digester volatile solids (VS) concentration correlated (R2 > 0.41) with increases in plastic viscosity, a VRT parameter corresponding to foaming risk. Plastic viscosity also correlated with foam-causing bacteria Gordonia (R2 = 0.38). Foam potential test values increased with Microthrix parvicella (R2> 0.28). For one plant, suspected foam-causing bacteria Mycobacterium negatively correlated with parameters representing foam risk. Microscopic filament counting correlated (R2 = 0.97) with quantitative polymerase chain reaction (qPCR) for Gordonia, suggesting that the more accessible counting method can reliably quantify foam-causing bacteria. Foam potential tests and VRTs resulted in plant-specific correlations with foam-related constituents. Therefore, these tests may provide useful evidence when investigating causes of digester foam events.
Collapse
Affiliation(s)
- Kota Nishiguchi
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA E-mail:
| | - Mari K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA E-mail:
| |
Collapse
|
8
|
Maza-Márquez P, Castellano-Hinojosa A, González-Martínez A, Juárez-Jiménez B, González-López J, Rodelas B. Abundance of total and metabolically active Candidatus Microthrix and fungal populations in three full-scale wastewater treatment plants. CHEMOSPHERE 2019; 232:26-34. [PMID: 31152900 DOI: 10.1016/j.chemosphere.2019.05.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/10/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
The abundances of total and metabolically active populations of Candidatus Microthrix and Fungi were evaluated by quantitative PCR (qPCR) and retrotranscribed qPCR of ribosomal molecular markers in three different full-scale wastewater treatment plants (WWTPs), in absence of bulking/foaming episodes. Significant differences of the abundance of rDNAs and rRNAs of Candidatus Microthrix and Fungi were observed among the three WWTPs. The average relative abundances of 16S rDNA copies of Candidatus Microthrix to those of Bacteria ranged 3.4-8.9%. Biota-environment analysis (BIO-ENV) demonstrated that the number of copies of both 16S rDNA and rRNA of Candidatus Microthrix increased at longer hydraulic and solids' retention times and with higher nitrate concentrations in the activated sludge. The abundance of Candidatus Microthrix correlated strongly and positively with the removal efficiencies of organic matter and total nitrogen in the tested WWTPs, highlighting the role of these particular microbial group in the performance of these engineered systems.
Collapse
Affiliation(s)
- P Maza-Márquez
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain.
| | - A Castellano-Hinojosa
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - A González-Martínez
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - B Juárez-Jiménez
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - J González-López
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - B Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
9
|
Population Structure and Morphotype Analysis of " Candidatus Accumulibacter" Using Fluorescence In Situ Hybridization-Staining-Flow Cytometry. Appl Environ Microbiol 2019; 85:AEM.02943-18. [PMID: 30824450 DOI: 10.1128/aem.02943-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Accumulibacter" is the dominant polyphosphate-accumulating organism (PAO) in denitrifying phosphorus removal (DPR) systems. In order to investigate the community structure and clade morphotypes of "Candidatus Accumulibacter" in DPR systems through flow cytometry (FCM), denitrifying phosphorus removal of almost 100% using nitrite and nitrate as the electron acceptor was achieved in sequencing batch reactors (SBRs). An optimal method of flow cytometry combined with fluorescence in situ hybridization and SYBR green I staining (FISH-staining-flow cytometry) was developed to quantify PAOs in DPR systems. By setting the width value of FCM, bacterial cells in a sludge sample were divided into three groups in different morphotypes, namely, coccus, coccobacillus, and bacillus. Average percentages that the three different PAO populations accounted for among total bacteria from SBR1 (SBR2) were 42% (45%), 14% (13%), and 4% (2%). FCM showed that the ratios of PAOs to total bacteria in the two reactors were 61% and 59%, and the quantitative PCR (qPCR) results indicated that IIC was the dominant "Candidatus Accumulibacter" clade in both denitrifying phosphorus removal systems, reaching 50% of the total "Candidatus Accumulibacter" bacteria. The subdominant clade in the reactor with nitrite as the electron acceptor was IID, accounting for 31% of the total "Candidatus Accumulibacter" bacteria. The FCM and qPCR results suggested that clades IIC and IID were both coccus, clade IIF was coccobacillus, and clade IA was bacillus. FISH analysis also indicated that PAOs were major cocci in the systems. An equivalence test of FCM-based quantification confirmed the accuracy of FISH-staining-flow cytometry, which can meet the quantitative requirements for PAOs in complex activated sludge samples.IMPORTANCE As one group of the most important functional phosphorus removal organisms, "Candidatus Accumulibacter," affiliated with the Rhodocyclus group of the Betaproteobacteria, is a widely recognized and studied PAO in the field of biological wastewater treatment. The morphotypes and population structure of clade-level "Candidatus Accumulibacter" were studied through novel FISH-staining-flow cytometry, which involved denitrifying phosphorus removal (DPR) achieving carbon and energy savings and simultaneous removal of N and P, thus inferring the different denitrifying phosphorus removal abilities of these clades. Additionally, based on this method, in situ quantification for specific polyphosphate-accumulating organisms (PAOs) enables a more efficient process and more accurate result. The establishment of FISH-staining-flow cytometry makes cell sorting of clade-level noncultivated organisms available.
Collapse
|
10
|
Fan N, Yang M, Rossetti S, Levantesi C, Qi R. Monitoring, isolation and characterization of Microthrix parvicella strains from a Chinese wastewater treatment plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1406-1416. [PMID: 31123240 DOI: 10.2166/wst.2019.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microthrix parvicella is a filamentous bacterium that frequently causes severe bulking events in wastewater treatment plants (WWTPs) worldwide. In this study, sludge properties and dynamics of filamentous bacteria in a Beijing WWTP seasonally suffering from M. parvicella bulking were continuously monitored over a duration of 15 months, and the correlations between M. parvicella and operating parameters were evaluated. The predominance of M. parvicella was observed at low temperatures (14-18.8 °C) with the relative abundance of around 30% (estimated by both qPCR and FISH analysis). Using micromanipulation technology, 545 filaments of M. parvicella were micromanipulated from bulking sludge (SVI > 180 mL g-1) on six different media. After 3-month purification and enrichment, six strains, phylogenetically closely related to Candidatus Microthrix parvicella, were successfully acquired on R2A medium (20 °C) in pure cultures. Considering the limitation and extremely slow growth rate of M. parvicella filaments, newly isolated strains represent valuable sources for further investigations on the physiology and behavior of this filamentous bacterium, with the focus on the establishment of bulking control strategy.
Collapse
Affiliation(s)
- Niansi Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail:
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail:
| | - Simona Rossetti
- Water Research Institute, CNR, Via Reno 1, 00198 Rome, Italy
| | | | - Rong Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail:
| |
Collapse
|
11
|
Du B, Wang R, Yang Q, Hu H, Li X, Duan X. Impact of tetracycline on the performance and abundance of functional bacteria of a lab-scale anaerobic-aerobic wastewater treatment system. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Diversity and assembly patterns of activated sludge microbial communities: A review. Biotechnol Adv 2018; 36:1038-1047. [DOI: 10.1016/j.biotechadv.2018.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/11/2018] [Accepted: 03/11/2018] [Indexed: 11/22/2022]
|
13
|
Fan N, Qi R, Rossetti S, Tandoi V, Gao Y, Yang M. Factors affecting the growth of Microthrix parvicella: Batch tests using bulking sludge as seed sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1192-1199. [PMID: 28787793 DOI: 10.1016/j.scitotenv.2017.07.261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/29/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Sludge bulking caused by the overgrowth of filamentous bacteria, particularly Microthrix parvicella, is one of the challenges for the stable operation of municipal wastewater treatment plants (WWTPs). The driving forces for the development of sludge bulking, however, have not been well understood because of the extremely low growth rate of M. parvicella. In this study, batch experiments were performed using bulking sludge (sludge volume index (SVI), around 185mLg-1) from a full-scale WWTP as the seed sludge to investigate the influences of carbon source, anaerobic/aerobic alternation condition and temperature on the growth of M. parvicella. The qPCR results showed that the use of oleic acid as carbon source, anaerobic/aerobic alternation treatment and low temperature (13°C) were favorable conditions for maintaining the dominance of M. parvicella in the tested activated sludge. Under these conditions, the SVI values remained at comparatively high values of 170.5mLg-1, 162.5mLg-1 and 129.5mLg-1 after operation for approximately two months, and the relative abundances of M. parvicella were 36.7%, 9.74% and 34.07%, respectively, in comparison with the initial values of 33.04%, 29.29% and 54.66%. However, the relative abundances of M. parvicella decreased to 0.86-4.44%, 0.7% and 4.94%, respectively, under the conditions of other carbon sources, aerobic-only treatment and a temperature of 20°C. The FISH analysis gave a similar result. This study was performed with mixed sludge under controlled operating conditions, which provided a valuable information for the pure culture of M. parvicella and further investigations on its physiology and metabolism.
Collapse
Affiliation(s)
- Niansi Fan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Simona Rossetti
- CNR, Water Research Institute, Via Reno 1, 00198 Roma, Italy
| | - Valter Tandoi
- CNR, Water Research Institute, Via Reno 1, 00198 Roma, Italy
| | - Yingxin Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Gokal J, Awolusi OO, Enitan AM, Kumari S, Bux F. Chapter 4 Molecular Characterization and Quantification of Microbial Communities in Wastewater Treatment Systems. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Wang P, Yu Z, Qi R, Zhang H. Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant. WATER RESEARCH 2016; 105:157-166. [PMID: 27614036 DOI: 10.1016/j.watres.2016.08.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/16/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
In this study, pyrosequencing combined with clone library analysis, qPCR, and fluorescent in situ hybridization (FISH) were performed to identify detailed changes of bacterial and filamentous bacterial communities in activated sludge (AS) in 3 types of typical AS samples: sludge bulking (B-AS), excessive bulking (EB-AS), and non-bulking (N-AS). Sludge bulking resulted in a decrease in total bacterial numbers from (6.4 ± 0.18) × 108 gene copies/mL in N-AS to (2.4 ± 0.22) × 108 in EB-AS and a decrease in bacterial diversity from 2757 OTUs in N-AS to 2217 OTUs in EB-AS. With the occurrence of sludge bulking, Actinobacteria and Firmicutes increased sharply, whereas Proteobacteria, which was the predominant phylum in N-AS, decreased markedly. In addition, Nitrospirae, a major lineage of the nitrite-oxidizing bacteria, had quite a low abundance in EB-AS (0.15%), while it was relatively high in N-AS (1.17%). On the other hand, filamentous bacteria accounted for 28.77% and 5.72% of total sequences in EB-AS and N-AS, respectively. More interestingly, 11 types of filamentous bacteria were always present in 3 types of typical AS samples from different stages of sludge bulking, and most of them enriched in EB-AS compared to N-AS. It is noteworthy that, in addition to the frequently reported filamentous bacteria such as Candidatus M. parvicella and Tetrasphaera, novel filamentous species of Trichococcus might exist in this bulking WWTP. Our results reveal that sludge bulking are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the bulking phenomenon in AS.
Collapse
Affiliation(s)
- Ping Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China.
| | - Rong Qi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, PR China
| | - Hongxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| |
Collapse
|
16
|
Nguyen VL, He X, de Los Reyes FL. Quantifying in situ growth rate of a filamentous bacterial species in activated sludge using rRNA:rDNA ratio. FEMS Microbiol Lett 2016; 363:fnw255. [PMID: 27974391 DOI: 10.1093/femsle/fnw255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/28/2016] [Accepted: 11/08/2016] [Indexed: 11/14/2022] Open
Abstract
If the in situ growth rate of filamentous bacteria in activated sludge can be quantified, researchers can more accurately assess the effect of operating conditions on the growth of filaments and improve the mathematical modeling of filamentous bulking. We developed a method to quantify the in situ specific growth rate of Sphaerotilus natans (a model filament) in activated sludge using the species-specific 16S rRNA:rDNA ratio. Primers targeting the 16S rRNA of S. natans were designed, and real-time PCR and RT-PCR were used to quantify DNA and RNA levels of S. natans, respectively. A positive linear relationship was found between the rRNA:rDNA ratio (from 440 to 4500) and the specific growth rate of S. natans (from 0.036 to 0.172 h-1) using chemostat experiments. The in situ growth rates of S. natans in activated sludge samples from three water reclamation facilities were quantified, illustrating how the approach can be applied in a complex environment such as activated sludge.
Collapse
Affiliation(s)
| | - Xia He
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27695-7908, USA
| | - Francis L de Los Reyes
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27695-7908, USA
| |
Collapse
|
17
|
Camejo PY, Owen BR, Martirano J, Ma J, Kapoor V, Santo Domingo J, McMahon KD, Noguera DR. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors. WATER RESEARCH 2016; 102:125-137. [PMID: 27340814 PMCID: PMC7323474 DOI: 10.1016/j.watres.2016.06.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 05/05/2023]
Abstract
Lab- and pilot-scale simultaneous nitrification, denitrification and phosphorus removal-sequencing batch reactors were operated under cyclic anaerobic and micro-aerobic conditions. The use of oxygen, nitrite, and nitrate as electron acceptors by Candidatus Accumulibacter phosphatis during the micro-aerobic stage was investigated. A complete clade-level characterization of Accumulibacter in both reactors was performed using newly designed qPCR primers targeting the polyphosphate kinase gene (ppk1). In the lab-scale reactor, limited-oxygen conditions led to an alternated dominance of Clade IID and IC over the other clades. Results from batch tests when Clade IC was dominant (i.e., >92% of Accumulibacter) showed that this clade was capable of using oxygen, nitrite and nitrate as electron acceptors for P uptake. A more heterogeneous distribution of clades was found in the pilot-scale system (Clades IIA, IIB, IIC, IID, IA, and IC), and in this reactor, oxygen, nitrite and nitrate were also used as electron acceptors coupled to phosphorus uptake. However, nitrite was not an efficient electron acceptor in either reactor, and nitrate allowed only partial P removal. The results from the Clade IC dominated reactor indicated that either organisms in this clade can simultaneously use multiple electron acceptors under micro-aerobic conditions, or that the use of multiple electron acceptors by Clade IC is due to significant microdiversity within the Accumulibacter clades defined using the ppk1 gene.
Collapse
Affiliation(s)
- Pamela Y Camejo
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| | - Brian R Owen
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| | - Joseph Martirano
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| | - Juan Ma
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, China.
| | - Vikram Kapoor
- Environmental Protection Agency, Cincinnati, OH, USA.
| | | | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA; Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.
| | - Daniel R Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
18
|
Jiang XT, Guo F, Zhang T. Population Dynamics of Bulking and Foaming Bacteria in a Full-scale Wastewater Treatment Plant over Five Years. Sci Rep 2016; 6:24180. [PMID: 27064107 PMCID: PMC4827064 DOI: 10.1038/srep24180] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/21/2016] [Indexed: 11/17/2022] Open
Abstract
Bulking and foaming are two notorious problems in activated sludge wastewater treatment plants (WWTPs), which are mainly associated with the excessive growth of bulking and foaming bacteria (BFB). However, studies on affecting factors of BFB in full-scale WWTPs are still limited. In this study, data sets of high-throughput sequencing (HTS) of 16S V3–V4 amplicons of 58 monthly activated sludge samples from a municipal WWTP was re-analyzed to investigate the BFB dynamics and further to study the determinative factors. The population of BFB occupied 0.6~36% (averagely 8.5% ± 7.3%) of the total bacteria and showed seasonal variations with higher abundance in winter-spring than summer-autumn. Pair-wise correlation analysis and canonical correlation analysis (CCA) showed that Gordonia sp. was positively correlated with NO2-N and negatively correlated with NO3-N, and Nostocodia limicola II Tetraspharea sp. was negatively correlated with temperature and positively correlated with NH3-N in activated sludge. Bacteria species correlated with BFB could be clustered into two negatively related modules. Moreover, with intensive time series sampling, the dominant BFB could be accurately modeled with environmental interaction network, i.e. environmental parameters and biotic interactions between BFB and related bacteria, indicating that abiotic and biotic factors were both crucial to the dynamics of BFB.
Collapse
Affiliation(s)
- Xiao-Tao Jiang
- Environmental Biotechnology Lab, The University of Hong Kong SAR China
| | - Feng Guo
- Environmental Biotechnology Lab, The University of Hong Kong SAR China
| | - Tong Zhang
- Environmental Biotechnology Lab, The University of Hong Kong SAR China
| |
Collapse
|
19
|
Wang P, Yu Z, Zhao J, Zhang H. Seasonal Changes in Bacterial Communities Cause Foaming in a Wastewater Treatment Plant. MICROBIAL ECOLOGY 2016; 71:660-671. [PMID: 26577577 DOI: 10.1007/s00248-015-0700-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Bio-foaming is a major problem in solid separation in activated sludge (AS) wastewater treatment systems. Understanding the changes in bacterial communities during sludge foaming is vital for explaining foam formation. Changes in bacterial communities in the foam, corresponding foaming AS, and non-foaming AS in a seasonal foaming wastewater treatment plant (WWTP) in Northern China were investigated by high-throughput pyrosequencing and molecular quantification-based approaches. We found that bacterial communities of the foam and the corresponding foaming AS were similar but markedly different from those of the non-foaming AS. Actinobacteria was the predominant phylum in the foam and the corresponding foaming AS, whereas Proteobacteria was predominant in the non-foaming AS. Similar to the results of most previous studies, our results showed that Candidatus "Microthrix parvicella" was the predominant filamentous bacteria in the foam and the corresponding foaming AS and was significantly enriched in the foam compared to the corresponding foaming AS. Its abundance decreased gradually with a slow disappearance of sludge foaming, indicating that its overgrowth had a direct relationship with sludge foaming. In addition to Candidatus M. parvicella, Tetrasphaera and Trichococcus might play a role in sludge foaming, because they supported the changes in AS microbial ecology for foam formation. The effluent water quality of the surveyed plant remained stable during the period of sludge foaming, but the microbial consortia responsible for nitrogen and phosphorus transformation and removal markedly changed compared to that in the non-foaming AS. This study adds to the previous understanding of bacterial communities causing foaming in WWTPs.
Collapse
Affiliation(s)
- Ping Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China.
| | - Jihong Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, No. 166, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Hongxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
| |
Collapse
|
20
|
Dunkel T, de León Gallegos EL, Schönsee CD, Hesse T, Jochmann M, Wingender J, Denecke M. Evaluating the influence of wastewater composition on the growth of Microthrix parvicella by GCxGC/qMS and real-time PCR. WATER RESEARCH 2016; 88:510-523. [PMID: 26524656 DOI: 10.1016/j.watres.2015.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/05/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
This study underlines the significance of long chain fatty acid (LCFA) content in wastewater influents as an influencing factor promoting the growth of Candidatus 'Microthrix parvicella' (M. parvicella), the most common filamentous bacteria causing foam in activated sludge systems worldwide. Quantification of M. parvicella by real-time polymerase chain reaction (real-time PCR) and analysis of LCFAs by means of two-dimensional gas chromatography coupled with mass spectrometry (GCxGC/qMS), involving solid phase micro-extraction (SPME) to enhance sensitivity, were combined for the first time as a monitoring tool. The results indicate a highly significant correlation between the abundance of M. parvicella and the total LCFA loading (r = 0.96) and linolenic acid C18:3 (r = 0.98) in particular. Additionally, comparison of slope values for the direct correlations of all significant LCFAs found in the analyses showed that the influence of LCFAs on M. parvicella growth increases with an increasing degree of unsaturation of carbon chains. These findings suggest that by removing lipid compounds from the incoming waters, substrate availability would be limited for M. parvicella.
Collapse
Affiliation(s)
- Thiemo Dunkel
- Department of Urban Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany.
| | | | - Carina D Schönsee
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Tobias Hesse
- Department of Urban Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
| | - Maik Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Jost Wingender
- Biofilm Centre, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Martin Denecke
- Department of Urban Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
| |
Collapse
|
21
|
Durban N, Juzan L, Krier J, Gillot S. Control of Microthrix parvicella by aluminium salts addition. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:414-422. [PMID: 26819398 DOI: 10.2166/wst.2015.456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aluminium and iron chloride were added to a biological nutrient removal pilot plant (1,500 population equivalent) treating urban wastewater to investigate the control of Microthrix parvicella bulking and foaming by metallic salts. Monitoring plant performance over two 6-month periods showed a slight impact on the removal efficiencies. Addition of metallic salts (Me; aluminium or aluminium + iron) at a concentration of 41 mmol Me(kg MLSS·d) (MLSS: mixed liquor suspended solids) over 70 days allowed a stabilization of the diluted sludge volume index (DSVI), whereas higher dosages (94 mmol Me(kg MLSS·d) over 35 days or 137 mmol Me(kg MLSS·d) over 14 days induced a significant improvement of the settling conditions. Microscopic observations showed a compaction of biological aggregates with an embedding of filamentous bacteria into the flocs that is not specific to M. parvicella as bacteria from phylum Chloroflexi are embedded too. The quantitative polymerase chain reaction targeting M. parvicella further indicated a possible growth limitation in addition to the flocculation impact at the high dosages of metallic salts investigated. DSVI appeared to be correlated with the relative abundance of M. parvicella.
Collapse
Affiliation(s)
- N Durban
- Irstea, UR HBAN, centre d'Antony, 1 rue Pierre-Gilles de Gennes, F-92761 Antony cedex, France
| | - L Juzan
- Irstea, UR HBAN, centre d'Antony, 1 rue Pierre-Gilles de Gennes, F-92761 Antony cedex, France
| | - J Krier
- Siaap, D.D.P, 82 av. Kleber, F-92700 Colombes, France
| | - S Gillot
- Irstea, UR MALY, centre de Lyon-Villeurbanne, F-69926 Villeurbanne cedex, France E-mail:
| |
Collapse
|
22
|
Dunkel T, Dias PA, de León Gallegos EL, Tacke V, Schielke A, Hesse T, Fajado DAS, Suhr H, Wiedemann P, Denecke M. In situ microscopy as a tool for the monitoring of filamentous bacteria: a case study in an industrial activated sludge system dominated by M. parvicella. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:1333-1340. [PMID: 27003073 DOI: 10.2166/wst.2015.612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The present study demonstrates the application of in situ microscopy for monitoring the growth of filamentous bacteria which can induce disturbances in an industrial activated sludge process. An in situ microscope (ISM) is immersed directly into samples of activated sludge with Microthrix parvicella as dominating species. Without needing further preparatory steps, the automatic evaluation of the ISM-images generates two signals: the number of individual filaments per image (ISM-filament counting) and the total extended filament length (TEFL) per image (ISM-online TEFL). In this first version of the image-processing algorithm, closely spaced crossing filament-segments or filaments within bulk material are not detected. The signals show highly linear correlation both with the standard filament index and the TEFL. Correlations were further substantiated by comparison with real-time polymerase chain reaction (real-time PCR) measurements of M. parvicella and of the diluted sludge volume index. In this case study, in situ microscopy proved to be a suitable tool for straightforward online-monitoring of filamentous bacteria in activated sludge systems. With future adaptation of the system to different filament morphologies, including cross-linking filaments, bundles, and attached growth, the system will be applicable to other wastewater treatment plants.
Collapse
Affiliation(s)
- Thiemo Dunkel
- Institute for Urban Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany E-mail:
| | - Philipe Ambrozio Dias
- Graduate Program in Electrical and Computer Engineering, Federal University of Technology - Paraná in Brazil, Av. Sete de Setembro 3165, 80230-901 Curitiba, Brazil; Department of Information Technology, Mannheim University of Applied Sciences in Germany, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Erika Lizette de León Gallegos
- Institute for Urban Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany E-mail:
| | - Viola Tacke
- Institute for Urban Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany E-mail:
| | - Andreas Schielke
- Institute for Urban Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany E-mail:
| | - Tobias Hesse
- Institute for Urban Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany E-mail:
| | - Diego Andrés Sierra Fajado
- Department of Information Technology, Mannheim University of Applied Sciences in Germany, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Hajo Suhr
- Department of Information Technology, Mannheim University of Applied Sciences in Germany, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Philipp Wiedemann
- Department of Biotechnology, Mannheim University of Applied Sciences in Germany, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Martin Denecke
- Institute for Urban Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany E-mail:
| |
Collapse
|
23
|
Lienen T, Kleyböcker A, Verstraete W, Würdemann H. Moderate temperature increase leads to disintegration of floating sludge and lower abundance of the filamentous bacterium Microthrix parvicella in anaerobic digesters. WATER RESEARCH 2014; 65:203-212. [PMID: 25117937 DOI: 10.1016/j.watres.2014.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/21/2014] [Accepted: 07/12/2014] [Indexed: 06/03/2023]
Abstract
Filamentous bacteria such as Microthrix parvicella can cause serious foaming and floating sludge problems in anaerobic digesters fed with sewage sludge. The sewage sludge and oil co-fermenting laboratory-scale biogas digesters in this study were fed with substrates from a foaming-prone full-scale biogas plant containing the filamentous bacterium M. parvicella. At 37 °C, in both pneumatically mixed digesters a highly viscous and approximately 3 cm thick floating sludge was observed. A gradual increase of the temperature from 37 °C to 56 °C led to a significant decrease in the floating sludge thickness, which correlated with a strong decrease in the abundance of M. parvicella in the digestate. Furthermore, the stepwise temperature increase allowed for an adaption of the microbial community and prevented process failure. The study indicates that already a moderate temperature increase from 37 °C to 41 °C might help to control the M. parvicella abundance in full-scale biogas plants.
Collapse
Affiliation(s)
- T Lienen
- GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, 14473 Potsdam, Germany.
| | - A Kleyböcker
- GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, 14473 Potsdam, Germany.
| | - W Verstraete
- LabMET, Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| | - H Würdemann
- GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, 14473 Potsdam, Germany.
| |
Collapse
|
24
|
Ong YH, Chua ASM, Fukushima T, Ngoh GC, Shoji T, Michinaka A. High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis". WATER RESEARCH 2014; 64:102-112. [PMID: 25046374 DOI: 10.1016/j.watres.2014.06.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
The applicability of the enhanced biological phosphorus removal (EBPR) process for the removal of phosphorus in warm climates is uncertain due to frequent reports of EBPR deterioration at temperature higher than 25 °C. Nevertheless, a recent report on a stable and efficient EBPR process at 28 °C has inspired the present study to examine the performance of EBPR at 24 °C-32 °C, as well as the PAOs and GAOs involved, in greater detail. Two sequencing batch reactors (SBRs) were operated for EBPR in parallel at different temperatures, i.e., SBR-1 at 28 °C and SBR-2 first at 24 °C and subsequently at 32 °C. Both SBRs exhibited high phosphorus removal efficiencies at all three temperatures and produced effluents with phosphorus concentrations less than 1.0 mg/L during the steady state of reactor operation. Real-time quantitative polymerase chain reaction (qPCR) revealed Accumulibacter-PAOs comprised 64% of the total bacterial population at 24 °C, 43% at 28 °C and 19% at 32 °C. Based on fluorescent in situ hybridisation (FISH), the abundance of Competibacter-GAOs at both 24 °C and 28 °C was rather low (<10%), while it accounted for 40% of the total bacterial population at 32 °C. However, the smaller Accumulibacter population and larger population of Competibacter at 32 °C did not deteriorate the phosphorus removal performance. A polyphosphate kinase 1 (ppk1)-based qPCR analysis on all studied EBPR processes detected only Accumulibacter clade IIF. The Accumulibacter population shown by 16S rRNA and ppk1 was not significantly different. This finding confirmed the existence of single clade IIF in the processes and the specificity of the clade IIF primer sets designed in this study. Habitat filtering related to temperature could have contributed to the presence of a unique clade. The clade IIF was hypothesised to be able to perform the EBPR activity at high temperatures. The clade's robustness most likely helps it to fit the high-temperature EBPR sludge best and allows it not only to outcompete other Accumulibacter clades but coexist with GAOs without compromising EBPR activity.
Collapse
Affiliation(s)
- Ying Hui Ong
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adeline Seak May Chua
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Toshikazu Fukushima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Japan
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tadashi Shoji
- Department of Socio-Cultural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Atsuko Michinaka
- Wastewater and Sludge Management Division, Water Quality Control Department, National Institute for Land and Infrastructure Management, Asahi 1, Tsukuba, Ibaraki 305-0804, Japan
| |
Collapse
|
25
|
Lienen T, Kleyböcker A, Verstraete W, Würdemann H. Foam formation in a downstream digester of a cascade running full-scale biogas plant: Influence of fat, oil and grease addition and abundance of the filamentous bacterium Microthrix parvicella. BIORESOURCE TECHNOLOGY 2014; 153:1-7. [PMID: 24321688 DOI: 10.1016/j.biortech.2013.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 06/03/2023]
Abstract
The microbial community composition in a full-scale biogas plant fed with sewage sludge and fat, oil and grease (FOG) was investigated over a 15-month period, including two foam formation events. Addition of FOG as a substrate in the biogas plant together with high abundances of Microthrix parvicella were found to promote foam formation in the downstream digester of a cascade of two biogas digesters. Genetic fingerprinting and quantitative PCR (qPCR) indicated a higher abundance of M. parvicella in the digester, when the digestion process was accompanied by excessive foaming relative to the reference digesters without disturbance. The creation of foam depended on the introduced proportion of FOG and the abundance of M. parvicella. Furthermore, shifts in the abundance of M. parvicella in the biogas plant were observed within the 15-month monitoring period corresponding to its seasonal abundance in the sludge of the wastewater treatment plant (WWTP).
Collapse
Affiliation(s)
- T Lienen
- GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, 14473 Potsdam, Germany.
| | - A Kleyböcker
- GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, 14473 Potsdam, Germany.
| | - W Verstraete
- LabMET, Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| | - H Würdemann
- GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, 14473 Potsdam, Germany.
| |
Collapse
|
26
|
Vanysacker L, Denis C, Roels J, Verhaeghe K, Vankelecom IFJ. Development and evaluation of a TaqMan duplex real-time PCR quantification method for reliable enumeration of Candidatus Microthrix. J Microbiol Methods 2013; 97:6-14. [PMID: 24333912 DOI: 10.1016/j.mimet.2013.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 11/26/2022]
Abstract
Candidatus Microtrhix parvicella is one of the most common filamentous bacteria reported to be involved in bulking and foaming problems in activated sludge plants worldwide. In order to detect and quantify both M. parvicella and Microthrix calida by quantitative PCR (qPCR), primers targeting 16S rDNA genes were designed. The qPCR reaction was optimized by using the TaqMan technology and an internal positive control was included to ensure the absence of PCR inhibitors. A total of 29 samples originating from different wastewater treatment plants were analyzed and the results were compared by using conventional microscopy, fluorescent in situ hybridization and an existing SYBR Green-based assay. Our assay showed a 100% specificity for both M. parvicella and M. calida, a sensitivity of 2.93×10(9) to 29 copy numbers/reaction, an amplification efficiency of 93% and no PCR inhibition. By performing a spiking experiment including different Microthrix concentrations, recovery rates ranging from 65 to 98% were obtained. A positive correlation with the SYBR Green assay (R(2)=0.85) was found and most of the samples were in accordance with the microscopical observation. In comparison with SYBR Green assay, the probe-based TaqMan assay had a much lower detection limit. Compared with microscopy, some samples had a lower or higher enumeration when using qPCR. In conclusion, a qPCR method is forwarded here that could be useful as an early warning tool for fast and reliable detection of Microthrix in for instance sludge bulking events.
Collapse
Affiliation(s)
- Louise Vanysacker
- Centre for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23, P.O. Box 2461, 3001 Heverlee, Belgium.
| | - Carla Denis
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| | - Joris Roels
- Research and Product Development Department, Aquafin NV, Dijkstraat 8, Aartselaar 2630, Belgium
| | - Kirke Verhaeghe
- Research and Product Development Department, Aquafin NV, Dijkstraat 8, Aartselaar 2630, Belgium
| | - Ivo F J Vankelecom
- Centre for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23, P.O. Box 2461, 3001 Heverlee, Belgium
| |
Collapse
|
27
|
Kim J, Lim J, Lee C. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: Applications and considerations. Biotechnol Adv 2013; 31:1358-73. [DOI: 10.1016/j.biotechadv.2013.05.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/02/2013] [Accepted: 05/28/2013] [Indexed: 02/08/2023]
|
28
|
Interaction of operational and physicochemical factors leading to Gordonia amarae-like foaming in an incompletely nitrifying activated sludge plant. Appl Environ Microbiol 2012; 78:8165-75. [PMID: 22983974 DOI: 10.1128/aem.00404-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The overgrowth of Gordonia amarae-like bacteria in the mixed liquor of an incompletely nitrifying water reclamation plant was inversely correlated with temperature (r = -0.78; P < 0.005) and positively correlated with the solids retention time (SRT) obtained a week prior to sampling (r = 0.67; P < 0.005). Drops followed by spikes in the food-to-mass ratio (0.18 to 0.52) and biochemical oxygen demand concentrations in primary effluent (94 to 298 mg liter(-1)) occurred at the initiation of G. amarae-like bacterial growth. The total bacterial concentration did not increase as concentrations of G. amarae-like cells increased, but total bacterial cell concentrations fluctuated in a manner similar to that of G. amarae-like bacteria in the pseudo-steady state. The ammonium ion removal rate (percent) was inversely related to G. amarae-like cell concentrations during accelerated growth and washout phases. The dissolved oxygen concentration decreased as the G. amarae-like cell concentration decreased. The concentrations of G. amarae-like cells peaked (2.47 × 10(9) cells liter(-1)) approximately 1.5 months prior to foaming. Foaming occurred during the late pseudo-steady-state phase, when temperature declines reversed. These findings suggested that temperature changes triggered operational and physicochemical changes favorable to the growth of G. amarae-like bacteria. Fine-scale quantitative PCR (qPCR) monitoring at weekly intervals allowed a better understanding of the factors affecting this organism and indicated that frequent sampling was required to obtain statistical significance with factors changing as the concentrations of this organism increased. Furthermore, the early identification of G. amarae-like cells when they are confined to mixed liquor (10(7) cells liter(-1)) allows management strategies to prevent foaming.
Collapse
|
29
|
Coats ER, Watkins DL, Brinkman CK, Loge FJ. Effect of anaerobic HRT on biological phosphorus removal and the enrichment of phosphorus accumulating organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2011; 83:461-469. [PMID: 21657197 DOI: 10.2175/106143010x12851009156402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The purpose of this research was to develop a better understanding of the dynamic effects of anaerobic hydraulic retention time (HRT) on both enhanced biological phosphorus removal (EBPR) performance and enrichment of phosphorus accumulating organisms (PAOs). The research was conducted using laboratory-scale sequencing batch reactors inoculated with mixed microbial consortia and fed real wastewater. Exposing microorganisms to extended anaerobic HRTs is not recommended for EBPR configured systems. In this research, however, longer anaerobic exposure did not negatively affect performance even if volatile fatty acids were depleted. Further, extended anaerobic HRTs may positively affect phosphorus removal through enhanced aerobic uptake. The EBPR consortia also appear to maintain reserve energetic capacity in the form of polyphosphate that can be used to survive and grow under variable operational and environmental conditions. Finally, the tested EBPR systems yield mixed microbial consortia enriched with PAOs (specifically Candidatus Accumulibacter phosphatis) at approximately 7.1 to 21.6% of the total population.
Collapse
Affiliation(s)
- Erik R Coats
- Department of Civil Engineering, University of Idaho, BEL 129, Moscow, ID 83844-1022, USA.
| | | | | | | |
Collapse
|
30
|
Marrengane Z, Kumar SKS, Pillay L, Bux F. Rapid quantification and analysis of genetic diversity among Gordonia populations in foaming activated sludge plants. J Basic Microbiol 2011; 51:415-23. [DOI: 10.1002/jobm.201000213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/21/2010] [Indexed: 11/11/2022]
|
31
|
Hesham AEL, Qi R, Yang M. Comparison of bacterial community structures in two systems of a sewage treatment plant using PCR-DGGE analysis. J Environ Sci (China) 2011; 23:2049-2054. [PMID: 22432337 DOI: 10.1016/s1001-0742(10)60647-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The combination of PCR amplification of 16S rRNA genes with denaturing gradient gel electrophoresis (DGGE) analysis was used to reveal the compositions and dynamics of bacterial communities in a sewage treatment plant with two systems, i.e., an anoxic-anaerobic-aerobic system (inverted A20) and an anaerobic-anoxic-aerobic one (conventional A20) over a period from February to July 2009, during which both systems experienced serious sludge bulking problems. The DGGE patterns showed that there were many common bands in both systems, suggesting the high similarity of bacterial communities of the two systems. Meanwhile, the moving window correlation analysis showed that the two systems experienced different microbial community structure changes during the period, which might be related with the different situations of the occurrence and disappearance of sludge bulking, as being reflected by sludge volume index (SVI) values. Major bands of DGGE patterns of sludge samples were further sequenced. Phylogenetic affiliation indicated that the majority of the sequences obtained were affiliated with Actinobacteria, Firmicutes, Bacteroidetes/Chlorobi group and alpha- and beta-Proteobacteria. Two sequences showed high similarities to typical filamentous bacteria Microthrix parvicella and Nostocoida limicola I, indicating that these bacterial species have been involved in the sludge bulking problems.
Collapse
Affiliation(s)
- Abd El-latif Hesham
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | |
Collapse
|
32
|
Bacterial community and "Candidatus Accumulibacter" population dynamics in laboratory-scale enhanced biological phosphorus removal reactors. Appl Environ Microbiol 2010; 76:5479-87. [PMID: 20601516 DOI: 10.1128/aem.00370-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Accumulibacter" and total bacterial community dynamics were studied in two lab-scale enhanced biological phosphorus removal (EBPR) reactors by using a community fingerprint technique, automated ribosomal intergenic spacer analysis (ARISA). We first evaluated the quantitative capability of ARISA compared to quantitative real-time PCR (qPCR). ARISA and qPCR provided comparable relative quantification of the two dominant "Ca. Accumulibacter" clades (IA and IIA) detected in our reactors. The quantification of total "Ca. Accumulibacter" 16S rRNA genes relative to that from the total bacterial community was highly correlated, with ARISA systematically underestimating "Ca. Accumulibacter" abundance, probably due to the different normalization techniques applied. During 6 months of normal (undisturbed) operation, the distribution of the two clades within the total "Ca. Accumulibacter" population was quite stable in one reactor while comparatively dynamic in the other reactor. However, the variance in the clade distribution did not appear to affect reactor performance. Instead, good EBPR activity was positively associated with the abundance of total "Ca. Accumulibacter." Therefore, we concluded that the different clades in the system provided functional redundancy. We disturbed the reactor operation by adding nitrate together with acetate feeding in the anaerobic phase to reach initial reactor concentrations of 10 mg/liter NO(3)-N for 35 days. The reactor performance deteriorated with a concomitant decrease in the total "Ca. Accumulibacter" population, suggesting that a population shift was the cause of performance upset after a long exposure to nitrate in the anaerobic phase.
Collapse
|
33
|
Wojnowska-Baryła I, Cydzik-Kwiatkowska A, Zielińska M. The application of molecular techniques to the study of wastewater treatment systems. Methods Mol Biol 2010; 599:157-183. [PMID: 19882286 DOI: 10.1007/978-1-60761-439-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wastewater treatment systems tend to be engineered to select for a few functional microbial groups that may be organized in various spatial structures such as activated sludge flocs, biofilm or granules and represented by single coherent phylogenic groups such as ammonia-oxidizing bacteria (AOB) and polyphosphate-accumulating organisms (PAO). In order to monitor and control engineered microbial structure in wastewater treatment systems, it is necessary to understand the relationships between the microbial community structure and the process performance. This review focuses on bacterial communities in wastewater treatment processes, the quantity of microorganisms and structure of microbial consortia in wastewater treatment bioreactors. The review shows that the application of molecular techniques in studies of engineered environmental systems has increased our insight into the vast diversity and interaction of microorganisms present in wastewater treatment systems.
Collapse
Affiliation(s)
- Irena Wojnowska-Baryła
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Sloneczna, Poland
| | | | | |
Collapse
|
34
|
Application of quantitative RT-PCR to determine the distribution of Microthrix parvicella in full-scale activated sludge treatment systems. Appl Microbiol Biotechnol 2009; 83:1135-41. [DOI: 10.1007/s00253-009-2013-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 11/25/2022]
|
35
|
Hoshino Y, Tajima M, Takagi S, Osaki T, Okumura M, Fujinaga T. Relative quantification of canine CD56 mRNA expression by real-time polymerase chain reaction method in normal tissues and activated lymphocytes. J Vet Med Sci 2008; 70:309-12. [PMID: 18388435 DOI: 10.1292/jvms.70.309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Real-time PCR was optimized for the quantification of canine CD56 mRNA expression. This study was conducted to easily quantify canine CD56 expression and to identify its expression in normal tissues, peripheral blood mononuclear cells and activated lymphocytes in dogs. This assay revealed the highest level of CD56 mRNA expression in the normal canine brain, followed by the lung, kidney and liver. CD56 mRNA expression level in peripheral blood mononuclear cells was considerably lower; among activated lymphocytes in vitro, CD56 mRNA expression was increased.
Collapse
Affiliation(s)
- Yuki Hoshino
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
He S, Gall DL, McMahon KD. "Candidatus Accumulibacter" population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes. Appl Environ Microbiol 2007; 73:5865-74. [PMID: 17675445 PMCID: PMC2074919 DOI: 10.1128/aem.01207-07] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the fine-scale population structure of the "Candidatus Accumulibacter" lineage in enhanced biological phosphorus removal (EBPR) systems using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. We retrieved fragments of "Candidatus Accumulibacter" 16S rRNA and ppk1 genes from one laboratory-scale and several full-scale EBPR systems. Phylogenies reconstructed using 16S rRNA genes and ppk1 were largely congruent, with ppk1 granting higher phylogenetic resolution and clearer tree topology and thus serving as a better genetic marker than 16S rRNA for revealing population structure within the "Candidatus Accumulibacter" lineage. Sequences from at least five clades of "Candidatus Accumulibacter" were recovered by ppk1-targeted PCR, and subsequently, specific primer sets were designed to target the ppk1 gene for each clade. Quantitative real-time PCR (qPCR) assays using "Candidatus Accumulibacter"-specific 16S rRNA and "Candidatus Accumulibacter" clade-specific ppk1 primers were developed and conducted on three laboratory-scale and nine full-scale EBPR samples and two full-scale non-EBPR samples to determine the abundance of the total "Candidatus Accumulibacter" lineage and the relative distributions and abundances of the five "Candidatus Accumulibacter" clades. The qPCR-based estimation of the total "Candidatus Accumulibacter" fraction as a proportion of the bacterial community as measured using 16S rRNA genes was not significantly different from the estimation measured using ppk1, demonstrating the power of ppk1 as a genetic marker for detection of all currently defined "Candidatus Accumulibacter" clades. The relative distributions of "Candidatus Accumulibacter" clades varied among different EBPR systems and also temporally within a system. Our results suggest that the "Candidatus Accumulibacter" lineage is more diverse than previously realized and that different clades within the lineage are ecologically distinct.
Collapse
Affiliation(s)
- Shaomei He
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
37
|
|
38
|
Sercu B, Boon N, Beken SV, Verstraete W, Van Langenhove H. Performance and microbial analysis of defined and non-defined inocula for the removal of dimethyl sulfide in a biotrickling filter. Biotechnol Bioeng 2007; 96:661-72. [PMID: 16921530 DOI: 10.1002/bit.21059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The performance and microbial communities of three differently inoculated biotrickling filters removing dimethyl sulfide (DMS) were compared. The biotrickling filters were inoculated with Thiobacillus thioparus TK-m (THIO), sludge (HANDS) and sludge + T. thioparus TK-m + Hyphomicrobium VS (HANDS++), respectively. The criteria investigated were length of the start-up period, the maximum elimination capacity, and the effects of intermittent loading rates, low pH, peak loading and very low loading rate on the DMS removal efficiency. The HANDS++ reactor exhibited the best performance considering all treatments. HANDS performed almost equally well as HANDS++, except during the determination of the EC(max), while THIO was generally the least efficient. During stable DMS loading at concentrations of 20 ppmv or lower, all reactors exhibited similar and high removal efficiencies (>99%). Denaturing gradient gel electrophoresis (DGGE) analysis showed the establishment of T. thioparus in the biofilm of all reactors, but not of Hyphomicrobium VS. Quantitative monitoring of the introduced bacterial strains was performed with a newly developed real-time PCR protocol. Initially, the inoculated strains were exclusively found in the reactors in which they were added. Afterwards, however, both strains developed in the biofilm of all three reactors, although T. thioparus attained higher cell densities than Hyphomicrobium. The presence of T. thioparus in THIO was related with the DMS loading rates that were applied, in the sense that intermittent DMS loading and very low DMS loading rates (0.5 ppmv) induced a decrease in gene copy numbers. Real-time PCR and DGGE both gave consistent results regarding the presence of Hyphomicrobium VS and Thiobacillus thioparus TK-m in the reactors. Only real-time PCR could be used to detect bacteria comprising of less than 1.4% of the total bacterial community ( approximately 10(5) copies ring(-1)).
Collapse
Affiliation(s)
- B Sercu
- Environmental Organic Chemistry and Technology Research Group (EnVOC), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|