1
|
Coras R, Murillo-Saich JD, Singh AG, Kavanaugh A, Guma M. Lipidomic Profiling in Synovial Tissue. Front Med (Lausanne) 2022; 9:857135. [PMID: 35492314 PMCID: PMC9051397 DOI: 10.3389/fmed.2022.857135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The analysis of synovial tissue offers the potential for the comprehensive characterization of cell types involved in arthritis pathogenesis. The studies performed to date in synovial tissue have made it possible to define synovial pathotypes, which relate to disease severity and response to treatment. Lipidomics is the branch of metabolomics that allows the quantification and identification of lipids in different biological samples. Studies in animal models of arthritis and in serum/plasma from patients with arthritis suggest the involvement of different types of lipids (glycerophospholipids, glycerolipids, sphingolipids, oxylipins, fatty acids) in the pathogenesis of arthritis. We reviewed studies that quantified lipids in different types of tissues and their relationship with inflammation. We propose that combining lipidomics with currently used “omics” techniques can improve the information obtained from the analysis of synovial tissue, for a better understanding of pathogenesis and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Roxana Coras
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jessica D. Murillo-Saich
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Abha G. Singh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Arthur Kavanaugh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- San Diego VA Healthcare Service, San Diego, CA, United States
- *Correspondence: Monica Guma
| |
Collapse
|
2
|
Bedoui Y, Septembre-Malaterre A, Giry C, Jaffar-Bandjee MC, Selambarom J, Guiraud P, Gasque P. Robust COX-2-mediated prostaglandin response may drive arthralgia and bone destruction in patients with chronic inflammation post-chikungunya. PLoS Negl Trop Dis 2021; 15:e0009115. [PMID: 33596205 PMCID: PMC7920362 DOI: 10.1371/journal.pntd.0009115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/01/2021] [Accepted: 01/07/2021] [Indexed: 01/09/2023] Open
Abstract
Patients following infection by chikungunya virus (CHIKV) can suffer for months to years from arthralgia and arthritis. Interestingly, methotrexate (MTX) a major immune-regulatory drug has proved to be of clinical benefit. We have previously shown that CHIKV can persist in the joint of one patient 18 months post-infection and plausibly driving chronic joint inflammation but through ill-characterized mechanisms. We have pursued our investigations and report novel histological and in vitro data arguing for a plausible role of a COX-2-mediated inflammatory response post-CHIKV. In the joint, we found a robust COX-2 staining on endothelial cells, synovial fibroblasts and more prominently on multinucleated giant cells identified as CD11c+ osteoclasts known to be involved in bone destruction. The joint tissue was also strongly stained for CD3, CD8, CD45, CD14, CD68, CD31, CD34, MMP2, and VEGF (but not for NO synthase and two B cell markers). Dendritic cells were rarely detected. Primary human synovial fibroblasts were infected with CHIKV or stimulated either by the synthetic molecule polyriboinosinic:polyribocytidylic acid (PIC) to mimic chronic viral infection or cytokines. First, we found that PIC and CHIKV enhanced mRNA expression of COX-2. We further found that PIC but not CHIKV increased the mRNA levels of cPLA2α and of mPGES-1, two other central enzymes in PGE2 production. IFNβ upregulated cPLA2α and COX-2 transcription levels but failed to modulated mPGES-1 mRNA expression. Moreover, PIC, CHIKV and IFNβ decreased mRNA expression of the PGE2 degrading enzyme 15-PGDH. Interestingly, MTX failed to control the expression of all these enzymes. In sharp contrast, dexamethasone was able to control the capacity of pro-inflammatory cytokines, IL-1β as well as TNFα, to stimulate mRNA levels of cPLA2α, COX-2 and mPGES-1. These original data argue for a concerted action of CHIKV (including viral RNA) and cytokines plausibly released from recruited leukocytes to drive a major COX-2-mediated PGE2 proinflammatory responses to induce viral arthritis. It is important to have a better understanding of the immuno-pathogenesis of Chikungunya virus (CHIKV) and particularly focusing on the chronic phase associated to arthralgia and arthritis. Benefiting from our prospective cohort studies, we herein provide novel in vivo data identifying for the first time the implication of COX-2 and several other enzymes involved in prostaglandin biosynthesis and the persistence of the virus on the joint. Prostaglandin has major activities in inflammation and joint destruction. In vitro, we have used a model of human synovial fibroblasts to decipher the regulatory mechanisms of prostaglandin biosynthesis pathway. We have made important observations showing that the virus itself as well as major inflammatory cytokines can dramatically control the expression of all enzymes involved in the metabolism of prostaglandin. Interestingly, pharmacological investigations further revealed that dexamethasone, but not methotrexate (currently used to treat patients with chikungunya) may be of clinical values.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité mixte de recherche sur les processus infectieux en milieu insulaire tropical, INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion—Plateforme Technologique CYROI Sainte-Clotilde, Île de La Réunion, France
- Laboratoire d’immunologie clinique et expérimentale de la zone de l’océan indien CHU La Réunion site Félix Guyon, Allée des Topazes, Saint Denis de La Réunion, France
| | - Axelle Septembre-Malaterre
- Unité de recherche Etudes Pharmaco-Immunologie, Université de la Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, Saint Denis de La Réunion, France
| | - Claude Giry
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, Saint Denis de La Réunion, France
| | - Marie-Christine Jaffar-Bandjee
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, Saint Denis de La Réunion, France
| | - Jimmy Selambarom
- Unité mixte de recherche sur les processus infectieux en milieu insulaire tropical, INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion—Plateforme Technologique CYROI Sainte-Clotilde, Île de La Réunion, France
| | - Pascale Guiraud
- Unité mixte de recherche sur les processus infectieux en milieu insulaire tropical, INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion—Plateforme Technologique CYROI Sainte-Clotilde, Île de La Réunion, France
| | - Philippe Gasque
- Unité mixte de recherche sur les processus infectieux en milieu insulaire tropical, INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion—Plateforme Technologique CYROI Sainte-Clotilde, Île de La Réunion, France
- Laboratoire d’immunologie clinique et expérimentale de la zone de l’océan indien CHU La Réunion site Félix Guyon, Allée des Topazes, Saint Denis de La Réunion, France
- * E-mail: ,
| |
Collapse
|
3
|
Shi X, Zhang H, Hu Y, Li X, Yin S, Xing R, Zhang N, Mao J, Wang P. Mechanism of Salviae Miltiorrhizae Radix et Rhizoma in the Treatment of Knee Osteoarthritis Based on Network Pharmacology. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20983130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective The molecular mechanism of Salviae Miltiorrhizae Radix et Rhizoma (SMRR) in the treatment of knee osteoarthritis (KOA) was analyzed based on network pharmacology. Methods Active components and potential targets of SMRR were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. KOA targets were obtained from the OMIM, DisGeNET, DrugBank, PharmGKB, and GeneCards Databases. The potential targets of SMRR in the treatment of KOA were identified by the Venn diagram. A protein-protein interaction network was generated with the STRING database. Visualization of the interactions in a potential pharmacodynamic component-target network was accomplished with Cytoscape software. The Database for Annotation, Visualization, and Integrated Discovery database and R software were used for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation analyses of common targets. Molecular docking of the potential leading components, as determined by efficacy with the core target molecules, was performed with Discovery Studio. Results Fifty-seven potential pharmacodynamic components and 58 potential targets of SMRR in the treatment of KOA were found. Bioinformatics analyses showed that the interleukin (IL)-17, hypoxia-inducible factor-1 (HIF-1), and tumor necrosis factor (TNF) signaling pathways, as well as the advanced glycation end product-receptor for advanced glycation end product signaling pathway in cases of diabetic complications, are related to the molecular mechanism of SMRR in the treatment of KOA. Molecular docking results showed that luteolin, tanshinone IIA, cryptotanshinone, and other components of SMRR had a strong affinity for MYC, signal transducer and activator of transcription 3, caspase-3 (CASP3), JUN, cyclin D1, prostaglandin endoperoxide synthase 2 (PTGS2), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase 1 (MAPK1), protein kinase B, vascular endothelial growth factor A, and other targets. Conclusion SMRR indirectly regulates IL-17, HIF-1, TNF, and other signal transduction pathways by regulating the expression of proteins, including PTGS2, MAPK1, EGFR, and CASP3, thus playing a role in promoting chondrocyte proliferation, improving microcirculation, eliminating free radicals, and inhibiting inflammatory factors.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Haosheng Zhang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Yue Hu
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, P. R. China
| | - Xiaochen Li
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Songjiang Yin
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Runlin Xing
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Nongshan Zhang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Jun Mao
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Peimin Wang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
4
|
Bülbül B, Küçükgüzel İ. Microsomal Prostaglandin E2 Synthase-1 as a New Macromolecular Drug Target in the Prevention of Inflammation and Cancer. Anticancer Agents Med Chem 2020; 19:1205-1222. [PMID: 30827263 DOI: 10.2174/1871520619666190227174137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer is one of the most life-threatening diseases worldwide. Since inflammation is considered to be one of the known characteristics of cancer, the activity of PGE2 has been paired with different tumorigenic steps such as increased tumor cell proliferation, resistance to apoptosis, increased invasiveness, angiogenesis and immunosuppression. OBJECTIVE It has been successfully demonstrated that inhibition of mPGES-1 prevented inflammation in preclinical studies. However, despite the crucial roles of mPGEs-1 and PGE2 in tumorigenesis, there is not much in vivo study on mPGES-1 inhibition in cancer therapy. The specificity of mPGEs-1 enzyme and its low expression level under normal conditions makes it a promising drug target with a low risk of side effects. METHODS A comprehensive literature search was performed for writing this review. An updated view on PGE2 biosynthesis, PGES isoenzyme family and its pharmacology and the latest information about inhibitors of mPGES-1 have been discussed. RESULTS In this study, it was aimed to highlight the importance of mPGES-1 and its inhibition in inflammationrelated cancer and other inflammatory conditions. Information about PGE2 biosynthesis, its role in inflammationrelated pathologies were also provided. We kept the noncancer-related inflammatory part short and tried to bring together promising molecules or scaffolds. CONCLUSION The information provided in this review might be useful to researchers in designing novel and potent mPGES-1 inhibitors for the treatment of cancer and inflammation.
Collapse
Affiliation(s)
- Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
5
|
Role of PGE-2 and Other Inflammatory Mediators in Skin Aging and Their Inhibition by Topical Natural Anti-Inflammatories. COSMETICS 2019. [DOI: 10.3390/cosmetics6010006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human skin aging is due to two types of aging processes, “intrinsic” (chronological) aging and “extrinsic” (external factor mediated) aging. While inflammatory events, triggered mainly by sun exposure, but also by pollutants, smoking and stress, are the principle cause of rapid extrinsic aging, inflammation also plays a key role in intrinsic aging. Inflammatory events in the skin lead to a reduction in collagen gene activity but an increase in activity of the genes for matrix metalloproteinases. Inflammation also alters proliferation rates of cells in all skin layers, causes thinning of the epidermis, a flattening of the dermo-epidermal junction, an increase in irregular pigment production, and, finally, an increased incidence of skin cancer. While a large number of inflammatory mediators, including IL-1, TNF-alpha and PGE-2, are responsible for many of these damaging effects, this review will focus primarily on the role of PGE-2 in aging. Levels of this hormone-like mediator increase quickly when skin is exposed to ultraviolet radiation (UVR), causing changes in genes needed for normal skin structure and function. Further, PGE-2 levels in the skin gradually increase with age, regardless of whether or not the skin is protected from UVR, and this smoldering inflammation causes continuous damage to the dermal matrix. Finally, and perhaps most importantly, PGE-2 is strongly linked to skin cancer. This review will focus on: (1) the role of inflammation, and particularly the role of PGE-2, in accelerating skin aging, and (2) current research on natural compounds that inhibit PGE-2 production and how these can be developed into topical products to retard or even reverse the aging process, and to prevent skin cancer.
Collapse
|
6
|
Zhang L, Yu J, Wang C, Wei W. The effects of total glucosides of paeony (TGP) and paeoniflorin (Pae) on inflammatory-immune responses in rheumatoid arthritis (RA). FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:107-117. [PMID: 32172753 DOI: 10.1071/fp18080] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/02/2018] [Indexed: 06/10/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and systemic autoimmune disease with an unknown aetiology. Accumulative studies suggest that the pathogenesis of RA involves the excessive activation of synoviocytes and immune cells, increasing the secretion of inflammatory mediators and cytokines in synoviocytes, causing dysfunctional E-prostanoid (EP)-G-protein-cyclic adenosine monophosphate (cAMP) and mitogen-associated-protein kinase (MAPK) signalling in synoviocytes. Total glucosides of paeony (TGP) extracted from the roots of Paeonia lactiflora Pall, was approved by the China Food and Drug Administration as an anti-inflammatory and immuno-modulator drug in 1998. Paeoniflorin (Pae), a water-soluble monoterpene glucoside,is the main effective component of TGP. TGP and Pae produce anti-inflammatory and immuno-regulatory effects by suppressing immune cells and synoviocytes activation, decreasing inflammatory substance production and restoring abnormal signalling in synoviocytes. In this review, the regulation of the inflammatory-immune responses and the therapeutic mechanism between RA and TGP and Pae are discussed in detail. The aim of this review was to provide novel insights into the treatment of RA.
Collapse
Affiliation(s)
- Lei Zhang
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| | - Jun Yu
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
7
|
Attiq A, Jalil J, Husain K, Ahmad W. Raging the War Against Inflammation With Natural Products. Front Pharmacol 2018; 9:976. [PMID: 30245627 PMCID: PMC6137277 DOI: 10.3389/fphar.2018.00976] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Over the last few decade Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are the drugs of choice for treating numerous inflammatory diseases including rheumatoid arthritis. The NSAIDs produces anti-inflammatory activity via inhibiting cyclooxygenase enzyme, responsible for the conversation of arachidonic acid to prostaglandins. Likewise, cyclooxegenase-2 inhibitors (COX-2) selectively inhibit the COX-2 enzyme and produces significant anti-inflammatory, analgesic, and anti-pyretic activity without producing COX-1 associated gastrointestinal and renal side effects. In last two decades numerous selective COX-2 inhibitors (COXIBs) have been developed and approved for various inflammatory conditions. However, data from clinical trials have suggested that the prolong use of COX-2 inhibitors are also associated with life threatening cardiovascular side effects including ischemic heart failure and myocardial infection. In these scenario secondary metabolites from natural product offers a great hope for the development of novel anti-inflammatory compounds. Although majority of the natural product based compounds exhibit more selectively toward COX-1. However, the data suggest that slight structural modification can be helpful in developing COX-2 selective secondary metabolites with comparative efficacy and limited side effects. This review is an effort to highlight the secondary metabolites from terrestrial and marine source with significant COX-2 and COX-2 mediated PGE2 inhibitory activity, since it is anticipated that isolates with ability to inhibit COX-2 mediated PGE2 production would be useful in suppressing the inflammation and its classical sign and symptoms. Moreover, this review has highlighted the potential lead compounds including berberine, kaurenoic acid, α-cyperone, curcumin, and zedoarondiol for further development with the help of structure-activity relationship (SAR) studies and their current status.
Collapse
Affiliation(s)
- Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
8
|
Muthukaman N, Tambe M, Deshmukh S, Pisal D, Tondlekar S, Shaikh M, Sarode N, Kattige VG, Pisat M, Sawant P, Honnegowda S, Karande V, Kulkarni A, Behera D, Jadhav SB, Sangana RR, Gudi GS, Khairatkar-Joshi N, Gharat LA. Discovery of furan and dihydrofuran-fused tricyclic benzo[d]imidazole derivatives as potent and orally efficacious microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors: Part-1. Bioorg Med Chem Lett 2017; 27:5131-5138. [PMID: 29100801 DOI: 10.1016/j.bmcl.2017.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 01/28/2023]
Abstract
This letter describes the synthesis and biological evaluation of furan and dihydrofuran-fused tricyclic benzo[d]imidazole derivatives as novel mPGES-1 inhibitors, capable of inhibiting an increased PGE2 production in the disease state. Structure-activity optimization afforded many potent mPGES-1 inhibitors having <50 nM potencies in the A549 cellular assay and adequate metabolic stability in liver microsomes. Lead compounds 8l and 8m demonstrated reasonable in vitro pharmacology and pharmacokinetic properties over other compounds. In particular, 8m revealed satisfactory oral pharmacokinetics and bioavailability in multiple species like rat, guinea pig, dog and cynomolgus monkey. In addition, the representative compound 8m showed in vivo efficacy by inhibiting LPS-induced thermal hyperalgesia with an ED50 of 14.3 mg/kg in guinea pig.
Collapse
Affiliation(s)
- Nagarajan Muthukaman
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Macchindra Tambe
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Sanjay Deshmukh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dnyandeo Pisal
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Shital Tondlekar
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Mahamadhanif Shaikh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelam Sarode
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vidya G Kattige
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Monali Pisat
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Pooja Sawant
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Srinivasa Honnegowda
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vikas Karande
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Abhay Kulkarni
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dayanidhi Behera
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Satyawan B Jadhav
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Ramchandra R Sangana
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Girish S Gudi
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelima Khairatkar-Joshi
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Laxmikant A Gharat
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India.
| |
Collapse
|
9
|
Khurana P, Jachak SM. Chemistry and biology of microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibitors as novel anti-inflammatory agents: recent developments and current status. RSC Adv 2016. [DOI: 10.1039/c5ra25186a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Prostaglandin (PG) E2, a key mediator of inflammatory pain and fever, is biosynthesized from PGH2 by mPGES-1.
Collapse
Affiliation(s)
- Puneet Khurana
- Department of Natural Products
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali-160062
- India
| | - Sanjay M. Jachak
- Department of Natural Products
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali-160062
- India
| |
Collapse
|
10
|
Cunha LL, Marcello MA, Nonogaki S, Morari EC, Soares FA, Vassallo J, Ward LS. CD8+ tumour-infiltrating lymphocytes and COX2 expression may predict relapse in differentiated thyroid cancer. Clin Endocrinol (Oxf) 2015; 83:246-53. [PMID: 25130519 DOI: 10.1111/cen.12586] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/01/2014] [Accepted: 08/11/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVE There is an increasing rate of papillary thyroid carcinomas that may never progress to cause symptoms or death. Predicting outcome and determining tumour aggressiveness could help diminish the number of patients submitted to aggressive treatments. We aimed to evaluate whether markers of the immune system response and of tumour-associated inflammation could predict outcome of differentiated thyroid cancer (DTC) patients. DESIGN Retrospective cohort study. PATIENTS We studied 399 consecutive patients, including 325 papillary and 74 follicular thyroid carcinomas. MEASUREMENTS Immune cell markers were evaluated using immunohistochemistry, including tumour-associated macrophages (CD68) and subsets of tumour-infiltrating lymphocytes (TIL), such as CD3, CD4, CD8, CD16, CD20, CD45RO, GRANZYME B, CD69 and CD25. We also investigated the expression of cyclooxygenase 2 (COX2) in tumour cells and the presence of concurrent lymphocytic infiltration characterizing chronic thyroiditis. RESULTS Concurrent lymphocytic infiltration characterizing chronic thyroiditis was observed in 29% of the cases. Among all the immunological parameters evaluated, only the enrichment of CD8+ lymphocytes (P = 0·001) and expression of COX2 (P =0·01) were associated with recurrence. A multivariate model analysis identified CD8+ TIL/COX2 as independent risk factor for recurrence. A multivariate analysis using Cox's proportional-hazards model adjusted for the presence of concurrent chronic thyroiditis demonstrated that the presence of concurrent chronic thyroiditis had no effect on prognostic prediction mediated by CD8+ TIL and COX2. CONCLUSION In conclusion, we suggest the use of a relatively simple pathology tool to help select cases that may benefit of a more aggressive approach sparing the majority of patients from unnecessary procedures.
Collapse
Affiliation(s)
- Lucas Leite Cunha
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences - University of Campinas (Unicamp), Campinas, Brazil
| | - Marjory Alana Marcello
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences - University of Campinas (Unicamp), Campinas, Brazil
| | | | - Elaine Cristina Morari
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences - University of Campinas (Unicamp), Campinas, Brazil
- Department of Biological and Health Sciences, State University of Roraima, Boa Vista, Brazil
| | | | - José Vassallo
- Department of Pathology, AC Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Investigative and Molecular Pathology (Ciped), Faculty of Medical Sciences - University of Campinas (Unicamp), Campinas, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences - University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
11
|
Zhang C, Yu H, Ni X, Shen S, Das UN. Growth inhibitory effect of polyunsaturated fatty acids (PUFAs) on colon cancer cells via their growth inhibitory metabolites and fatty acid composition changes. PLoS One 2015; 10:e0123256. [PMID: 25886460 PMCID: PMC4401647 DOI: 10.1371/journal.pone.0123256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/21/2015] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer is common. Polyunsaturated fatty acids (PUFAs) exert growth-inhibitory and pro-apoptotic effects on colon cancer cells. Metabolites of PUFAs such as prostaglandins (PGs), leukotrienes (LTs) and lipoxins (LXs) play a significant role in colon cancer. Methods Human colon cancer LoVo and RKO cells were cultured with different concentration of PUFAs and 5-fluorouracil (5-FU) in vitro. Cell morphological changes, fatty acid composition, formation of PGE2, LTB4 and LXA4 and expression of COX-2, ALOX5, PGD synthase (PGDS), microsomal prostaglandin E synthase (mPGES) were assessed in LoVo and RKO cells when supplemented with PUFAs and 5-FU. Results PUFAs and 5-FU inhibited growth of LoVo and RKO cells to the same extent at the doses used and produced significant alterations in their shape. As expected, higher concentrations of supplemented PUFAs were noted in the cells compared to control. LA, GLA, AA, ALA and EPA supplementation to LoVo cells suppressed production of PGE2, LTB4,and ALOX5, mPGES expression, but enhanced that of LXA4; whereas DHA enhanced PGE2 and LXA4 synthesis but decreased LTB4 formation and COX-2, ALOX5, mPGES expression. In contrast, 5-FU enhanced formation of PGE2, LTB4 and mPGES expression, but suppressed LXA4 synthesis and COX-2 expression. PGE2, LTB4 synthesis and ALOX5 expression was suppressed by LA, GLA, ALA and DHA; whereas AA, EPA and 5-FU enhanced PGE2 but paradoxically AA decreased and EPA and 5-FU enhanced LTB4 synthesis in RKO cells. All the PUFAs tested enhanced, while 5-FU decreased LXA4 formation in RKO cells; whereas GLA, AA, and 5-FU augmented while LA, ALA, EPA and DHA enhanced COX-2 expression in RKO cells. Conclusions Tumoricidal action of PUFAs on colorectal LoVo and RKO cancer cells in vitro was associated with increased formation of LXA4, decreased synthesis of PGE2 and LTB4 and suppressed expression of COX-2, ALOX5, mPGES, whereas 5-FU produced contrasting actions on these indices.
Collapse
Affiliation(s)
- Chengcheng Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Haining Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaofeng Ni
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Shengrong Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China
- * E-mail: (SS);
| | - Undurti N. Das
- UND Life Sciences, 2020 S 360 St, #K-202, Federal Way, WA, 98003, United States of America
- Department of Medicine and BioScience Research Centre, GVP Hospital, GVP College of Engineering campus, Visakhapatnam-530 048, India
- * E-mail: (SS);
| |
Collapse
|
12
|
Zhang X, Wang J, Zhang M, Qin G, Li D, Zhu KY, Ma E, Zhang J. Molecular cloning, characterization and positively selected sites of the glutathione S-transferase family from Locusta migratoria. PLoS One 2014; 9:e114776. [PMID: 25486043 PMCID: PMC4259467 DOI: 10.1371/journal.pone.0114776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 11/13/2014] [Indexed: 11/24/2022] Open
Abstract
Glutathione S-transferases (GSTs) are multifunctional enzymes that are involved in the metabolism of endogenous and exogenous compounds and are related to insecticide resistance. The purpose of this study was to provide new information on the molecular characteristics and the positive selection of locust GSTs. Based on the transcriptome database, we sequenced 28 cytosolic GSTs and 4 microsomal GSTs from the migratory locust (Locusta migratoria). We assigned the 28 cytosolic GSTs into 6 classes—sigma, epsilon, delta, theta, omega and zeta, and the 4 microsomal GSTs into 2 subclasses—insect and MGST3. The tissue- and stage-expression patterns of the GSTs differed at the mRNA level. Further, the substrate specificities and kinetic constants of the cytosolic GSTs differed markedly at the protein level. The results of likelihood ratio tests provided strong evidence for positive selection in the delta class. The result of Bayes Empirical Bayes analysis identified 4 amino acid sites in the delta class as positive selection sites. These sites were located on the protein surface. Our findings will facilitate the elucidation of the molecular characteristics and evolutionary aspects of insect GST superfamily.
Collapse
Affiliation(s)
- Xueyao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jianxin Wang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Guohua Qin
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Daqi Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- * E-mail: (EM); (JZ)
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- * E-mail: (EM); (JZ)
| |
Collapse
|
13
|
Labens R, Lascelles BDX, Charlton AN, Ferrero NR, Van Wettere AJ, Xia XR, Blikslager AT. Ex vivo effect of gold nanoparticles on porcine synovial membrane. Tissue Barriers 2014; 1:e24314. [PMID: 24665389 PMCID: PMC3879126 DOI: 10.4161/tisb.24314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) have great potential as carriers for local drug delivery and as a primary therapeutic for treatment of inflammation. Here we report on the AuNP-synovium interaction in an ex vivo model of intra-articular application for treatment of joint inflammation. Sheets of porcine femoropatellar synovium were obtained post mortem and each side of the tissue samples was maintained in a separate fluid environment. Permeability to AuNPs of different sizes (5-52 nm) and biomarker levels of inflammation were determined to characterize the ex vivo particle interaction with the synovium. Lipopolysaccharide or recombinant human interleukin-1β were added to fluid environments to assess the ex vivo effect of pro-inflammatory factors on permeability and biomarker levels. The synovium showed size selective permeability with only 5 nm AuNPs effectively permeating the entire tissues' width. This process was further governed by particle stability in the fluid environment. AuNPs reduced matrix metalloproteinase and lactate dehydrogenase activity and hyaluronic acid concentrations but had no effect on prostaglandin E2 levels. Exposure to pro-inflammatory factors did not significantly affect AuNP permeation or biomarker levels in this model. Results with ex vivo tissue modeling of porcine synovium support an anti-inflammatory effect of AuNPs warranting further investigation.
Collapse
Affiliation(s)
- Raphael Labens
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - B Duncan X Lascelles
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Anna N Charlton
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Nicole R Ferrero
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Arnaud J Van Wettere
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Xin-Riu Xia
- Department of Biology; College of Agriculture and Life Sciences; North Carolina State University; Raleigh, NC USA
| | - Anthony T Blikslager
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| |
Collapse
|
14
|
Korotkova M, Jakobsson PJ. Persisting eicosanoid pathways in rheumatic diseases. Nat Rev Rheumatol 2014; 10:229-41. [DOI: 10.1038/nrrheum.2014.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Kojima F, Kapoor M, Kawai S, Crofford LJ. New insights into eicosanoid biosynthetic pathways: implications for arthritis. Expert Rev Clin Immunol 2014; 2:277-91. [DOI: 10.1586/1744666x.2.2.277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat 2013; 104-105:58-66. [DOI: 10.1016/j.prostaglandins.2012.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 01/16/2023]
|
17
|
Kablaoui N, Patel S, Shao J, Demian D, Hoffmaster K, Berlioz F, Vazquez ML, Moore WM, Nugent RA. Novel benzoxazole inhibitors of mPGES-1. Bioorg Med Chem Lett 2013; 23:907-11. [DOI: 10.1016/j.bmcl.2012.10.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 02/04/2023]
|
18
|
Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C. Health implications of high dietary omega-6 polyunsaturated Fatty acids. J Nutr Metab 2012; 2012:539426. [PMID: 22570770 PMCID: PMC3335257 DOI: 10.1155/2012/539426] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/17/2011] [Accepted: 11/20/2011] [Indexed: 12/17/2022] Open
Abstract
Omega-6 (n-6) polyunsaturated fatty acids (PUFA) (e.g., arachidonic acid (AA)) and omega-3 (n-3) PUFA (e.g., eicosapentaenoic acid (EPA)) are precursors to potent lipid mediator signalling molecules, termed "eicosanoids," which have important roles in the regulation of inflammation. In general, eicosanoids derived from n-6 PUFA are proinflammatory while eicosanoids derived from n-3 PUFA are anti-inflammatory. Dietary changes over the past few decades in the intake of n-6 and n-3 PUFA show striking increases in the (n-6) to (n-3) ratio (~15 : 1), which are associated with greater metabolism of the n-6 PUFA compared with n-3 PUFA. Coinciding with this increase in the ratio of (n-6) : (n-3) PUFA are increases in chronic inflammatory diseases such as nonalcoholic fatty liver disease (NAFLD), cardiovascular disease, obesity, inflammatory bowel disease (IBD), rheumatoid arthritis, and Alzheimer's disease (AD). By increasing the ratio of (n-3) : (n-6) PUFA in the Western diet, reductions may be achieved in the incidence of these chronic inflammatory diseases.
Collapse
Affiliation(s)
- E. Patterson
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| | - R. Wall
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| | - G. F. Fitzgerald
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Department of Microbiology, University College Cork, County Cork, Ireland
| | - R. P. Ross
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| | - C. Stanton
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
19
|
Maicas N, Ibáñez L, Alcaraz MJ, Úbeda A, Ferrándiz ML. Prostaglandin D2 regulates joint inflammation and destruction in murine collagen-induced arthritis. ACTA ACUST UNITED AC 2012; 64:130-40. [PMID: 21898357 DOI: 10.1002/art.30656] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Prostaglandin D2 (PGD2) may exert proinflammatory or antiinflammatory effects in different biologic systems. Although this prostanoid and the enzymes responsible for its synthesis are up-regulated by interleukin-1β (IL-1β) in human chondrocytes in vitro, the role of PGD2 in arthritis remains unclear. This study was undertaken to investigate the role of PGD2 in the inflammatory response and in joint destruction during the development of collagen-induced arthritis (CIA) in mice. METHODS PGD2 and cytokine levels in mice with CIA were determined by enzyme-linked immunosorbent assay. Expression of hematopoietic PGD synthase (h-PGDS), lipocalin-type PGD synthase (l-PGDS), and DP1 and DP2 receptors was analyzed by immunohistochemical methods. PGE2 levels were determined by radioimmunoassay. RESULTS The arthritic process up-regulated the expression of h-PGDS, l-PGDS, DP1, and DP2 in articular tissue. PGD2 was produced in the joint during the early phase of arthritis, and serum PGD2 levels increased progressively throughout the arthritic process, reaching a maximum during the late stages of CIA. Treatment of arthritic mice with the DP1 antagonist MK0524 soon after the onset of disease increased the incidence and severity of CIA as well as the local levels of IL-1β, CXCL-1, and PGE2, whereas IL-10 levels were reduced. The administration of the DP2 antagonist CAY10595 did not modify the severity of arthritis. The injection of PGD2 into the paw, as well as the administration of the DP1 agonist BW245C, significantly lowered the incidence of CIA, the inflammatory response, and joint damage. CONCLUSION Our findings indicate that PGD2 is produced in articular tissue during the development of CIA and plays an antiinflammatory role, acting through the DP1 receptor.
Collapse
Affiliation(s)
- Nuria Maicas
- Department of Pharmacology and Molecular Recognition and Technologic Development ERI, University of Valencia, Valencia, Spain
| | | | | | | | | |
Collapse
|
20
|
Jin H, Zhu ZG, Yu PJ, Wang GF, Zhang JY, Li JR, Ai RT, Li ZH, Tian YX, Zhang WXJJ, Wu SG. Myrislignan attenuates lipopolysaccharide-induced inflammation reaction in murine macrophage cells through inhibition of NF-κB signalling pathway activation. Phytother Res 2012; 26:1320-6. [PMID: 22294521 DOI: 10.1002/ptr.3707] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 09/19/2011] [Accepted: 10/07/2011] [Indexed: 11/07/2022]
Abstract
Myrislignan is a new kind of lignan isolated from Myristica fragrans Houtt. Its antiinflammatory effects have not yet been reported. In the present study, the antiinflammatory effects and the underlying mechanisms of myrislignan in lipopolysaccharide (LPS)-induced inflammation in murine RAW 264.7 macrophage cells were investigated. Myrislignan significantly inhibited LPS-induced production of nitric oxide (NO) in a dose-dependent manner. It inhibited mRNA expression and release of interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α). This compound significantly inhibited mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) dose-dependently in LPS-stimulated macrophage cells. Further study showed that myrislignan decreased the cytoplasmic loss of inhibitor κB-α (IκB-α) protein and the translocation of NF-κB from cytoplasm to the nucleus. Our results suggest that myrislignan may exert its antiinflammatory effects in LPS-stimulated macrophages cells by inhibiting the NF-κB signalling pathway activation.
Collapse
Affiliation(s)
- Hong Jin
- Southern Medical University, Guangdong International Cooperation Base of Science and Technology, Guangdong Key Laboratory for New Drug-Screening, Guangzhou 510515, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abdel-Tawab M, Werz O, Schubert-Zsilavecz M. Boswellia serrata: an overall assessment of in vitro, preclinical, pharmacokinetic and clinical data. Clin Pharmacokinet 2011; 50:349-69. [PMID: 21553931 DOI: 10.2165/11586800-000000000-00000] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Non-steroidal anti-inflammatory drug (NSAID) intake is associated with high prevalence of gastrointestinal or cardiovascular adverse effects. All efforts to develop NSAIDs that spare the gastrointestinal tract and the cardiovasculature are still far from achieving a breakthrough. In the last two decades, preparations of the gum resin of Boswellia serrata (a traditional ayurvedic medicine) and of other Boswellia species have experienced increasing popularity in Western countries. Animal studies and pilot clinical trials support the potential of B. serrata gum resin extract (BSE) for the treatment of a variety of inflammatory diseases like inflammatory bowel disease, rheumatoid arthritis, osteoarthritis and asthma. Moreover, in 2002 the European Medicines Agency classified BSE as an 'orphan drug' for the treatment of peritumoral brain oedema. Compared to NSAIDs, it is expected that the administration of BSE is associated with better tolerability, which needs to be confirmed in further clinical trials. Until recently, the pharmacological effects of BSE were mainly attributed to suppression of leukotriene formation via inhibition of 5-lipoxygenase (5-LO) by two boswellic acids, 11-keto-β-boswellic acid (KBA) and acetyl-11-keto-β-boswellic acid (AKBA). These two boswellic acids have also been chosen in the monograph of Indian frankincense in European Pharmacopoiea 6.0 as markers to ensure the quality of the air-dried gum resin exudate of B. serrata. Furthermore, several dietary supplements advertise the enriched content of KBA and AKBA. However, boswellic acids failed to inhibit leukotriene formation in human whole blood, and pharmacokinetic data revealed very low concentrations of AKBA and KBA in plasma, being far below the effective concentrations for bioactivity in vitro. Moreover, permeability studies suggest poor absorption of AKBA following oral administration. In view of these results, the previously assumed mode of action - that is, 5-LO inhibition - is questionable. On the other hand, 100-fold higher plasma concentrations have been determined for β-boswellic acid, which inhibits microsomal prostaglandin E synthase-1 and the serine protease cathepsin G. Thus, these two enzymes might be reasonable molecular targets related to the anti-inflammatory properties of BSE. In view of the results of clinical trials and the experimental data from in vitro studies of BSE, and the available pharmacokinetic and metabolic data on boswellic acids, this review presents different perspectives and gives a differentiated insight into the possible mechanisms of action of BSE in humans. It underlines BSE as a promising alternative to NSAIDs, which warrants investigation in further pharmacological studies and clinical trials.
Collapse
|
22
|
Inflammatory effect of advanced glycation end products on human meniscal cells from osteoarthritic knees. Inflamm Res 2011; 60:1039-48. [DOI: 10.1007/s00011-011-0365-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 07/21/2011] [Accepted: 07/23/2011] [Indexed: 02/07/2023] Open
|
23
|
Leistad L, Feuerherm AJ, Faxvaag A, Johansen B. Multiple phospholipase A2 enzymes participate in the inflammatory process in osteoarthritic cartilage. Scand J Rheumatol 2011; 40:308-16. [PMID: 21417548 DOI: 10.3109/03009742.2010.547872] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to determine the involvement of pro-inflammatory phospholipase A2 (PLA2) enzymes in human chondrocytes from patients with osteoarthritis (OA). METHODS PLA2 involvement in OA chondrocytes was analysed by (a) arachidonic acid (AA) and oleic acid release, (b) PLA2 mRNA analysis, and (c) prostaglandin E2 (PGE2) production in cultured OA chondrocytes in response to various cytokines and platelet activating factor (PAF). RESULTS Pro-inflammatory cytokines and PAF stimulation led to increased AA release, interleukin (IL)-1β and tumour necrosis factor (TNF) being the strongest inducers. The pattern of oleic acid release was similar to but less prominent than AA release, suggesting that predominantly arachidonyl selective enzymes were activated. IL-1β, TNF, IL-6, and IL-8 upregulated secretory group IIA, IID, and V phospholipase A2 (sPLA2-IIA, -IID, -V) and cytosolic group IVA phospholipase A2 (cPLA2-IVA) expression, where induction of chondrocyte sPLA2-IID is a novel finding. Furthermore, IL-1β, TNF, and IL-6 also induced COX2 expression. PAF induced expression of group IIA, IID and IVA PLA2, and COX2. In line with its anti-inflammatory properties, IL-4 was unable to induce either AA release or expression of PLA2s or COX2. IL-1β and TNF strongly increased PGE2 production, with IL-1β as the most prominent inducer. CONCLUSION Multiple PLA2 isoforms are expressed and influenced by pro-inflammatory stimuli in OA chondrocytes. Hence, several PLA2 enzymes may contribute to chondrocyte function by their upregulation and activation, and increased AA release and PGE2 production may therefore be important effectors in OA pathophysiology. PLA2 enzymes and cPLA2-IVA in particular are thus possible therapeutic targets in OA.
Collapse
Affiliation(s)
- L Leistad
- SINTEF Technology and Society, Department of Health, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | |
Collapse
|
24
|
Korotkova M, Jakobsson PJ. Microsomal prostaglandin e synthase-1 in rheumatic diseases. Front Pharmacol 2011; 1:146. [PMID: 21927605 PMCID: PMC3174088 DOI: 10.3389/fphar.2010.00146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 12/22/2010] [Indexed: 11/25/2022] Open
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is a well-recognized target for the development of novel anti-inflammatory drugs that can reduce symptoms of inflammation in rheumatic diseases and other inflammatory conditions. In this review, we focus on mPGES-1 in rheumatic diseases with the aim to cover the most recent advances in the understanding of mPGES-1 in rheumatoid arthritis, osteoarthritis, and inflammatory myopathies. Novel findings regarding regulation of mPGES-1 cell expression as well as enzyme inhibitors are also summarized.
Collapse
Affiliation(s)
- Marina Korotkova
- Rheumatology Unit, Department of Medicine, Karolinska Institutet Stockholm, Sweden
| | | |
Collapse
|
25
|
Liu Y, Zhang L, Wu Y, Tong T, Zhao W, Li P, Huang M, Wang W, Fang J, Wei W. Therapeutic effects of TACI-Ig on collagen-induced arthritis by regulating T and B lymphocytes function in DBA/1 mice. Eur J Pharmacol 2011; 654:304-14. [PMID: 21244850 DOI: 10.1016/j.ejphar.2011.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 11/13/2010] [Accepted: 01/04/2011] [Indexed: 11/17/2022]
Abstract
To investigate the abnormal function of T and B lymphocytes involved in collagen-induced arthritis in DBA/1 mice and the regulation role of TACI-Ig on T and B lymphocytes, collagen-induced arthritis models were established in DBA/1 mice. Mice were divided randomly into eight groups, including normal, collagen-induced arthritis model, TACI-Ig (0.350, 1.105, 3.333, 10, and 30 mg/kg) and IgG-Fc (10mg/kg) treated groups. The effect of TACI-Ig on collagen-induced arthritis was evaluated by arthritis scores, joints and spleens histopathology, paws radiology, and indices of thymus and spleen. T and B lymphocyte proliferations were assayed by [(3)H]-TdR method. B lymphocyte stimulator and prostaglandin E(2) in serum were assayed by enzyme linked immunosorbent assay. The subsets of T and B lymphocytes were assayed by flow cytometry. Results showed that the onset of paw-swelling was on day 31 after immunization. The peak of inflammation appeared on day 42 and then declined after day 63. Compared with normal mice, collagen-induced arthritis mice have increased arthritis scores, spleen and thymus indices, radiograph scores of joints, and pathology scores of joints and spleens. TACI-Ig could ameliorate these changes and reduce the increased serum level of B lymphocyte stimulator and prostaglandin E(2). Further studies showed that TACI-Ig inhibited T and B lymphocyte proliferation response, and inhibited differentiation and activity of T and B lymphocytes in collagen-induced arthritis mice. In conclusion, TACI-Ig has a good therapeutic action on collagen-induced arthritis mice, which might be related to the regulation of TACI-Ig on inflammation mediators and abnormal function of T and B lymphocytes.
Collapse
Affiliation(s)
- Yunjie Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education Ministry of China, 230032 Hefei, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Kojima F, Matnani RG, Kawai S, Ushikubi F, Crofford LJ. Potential roles of microsomal prostaglandin E synthase-1 in rheumatoid arthritis. Inflamm Regen 2011; 31:157-166. [PMID: 22308189 DOI: 10.2492/inflammregen.31.157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease which primarily affects the synovial joints leading to inflammation, pain and joint deformities. Nonsteroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids, both of which inhibit cyclooxygenase (COX), have been extensively used for treating RA patients. Prostaglandin E synthase (PGES) is a specific biosynthetic enzyme that acts downstream of COX and converts prostaglandin (PG) H(2) to PGE(2). Among PGES isozymes, microsomal PGES-1 (mPGES-1) has been shown to be induced in a variety of cells and tissues under inflammatory conditions. The induction of mPGES-1 in the synovial tissue of RA patients is closely associated with the activation of the tissue by proinflammatory cytokines. Although selective mPGES-1 inhibitors have not yet been widely available, mice lacking mPGES-1 (mPGES-1(-/-) mice) have been generated to evaluate the physiological and pathological roles of mPGES-1 in vivo. Recent studies utilizing mPGES-1(-/-) mice have demonstrated the significance of mPGES-1 in the process of chronic inflammation and evocation of humoral immune response in autoimmune arthritis models. These recent findings highlight mPGES-1 as a novel therapeutic target for the treatment of autoimmune inflammatory diseases, including RA. Currently, both natural and synthetic chemicals are being tested for inhibition of mPGES-1 activity to produce PGE(2). The present review focuses on the recent advances in understanding the role of mPGES-1 in the pathophysiology of RA.
Collapse
Affiliation(s)
- Fumiaki Kojima
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | | | | | | | | |
Collapse
|
28
|
Harding P, Yang XP, He Q, Lapointe MC. Lack of microsomal prostaglandin E synthase-1 reduces cardiac function following angiotensin II infusion. Am J Physiol Heart Circ Physiol 2010; 300:H1053-61. [PMID: 21193590 DOI: 10.1152/ajpheart.00772.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our laboratory previously reported that inducible PGE(2) synthase, mPGES-1, contributes to micromolar production of PGE(2) in neonatal ventricular myocytes in vitro, which stimulates their growth. We therefore hypothesized that mPGES-1 contributes to cardiac hypertrophy following angiotensin II (ANG II) infusion. To test this hypothesis, we used 10- to 12-wk-old mPGES-1 knockout mice (mPGES-1 KO) and C57Bl/6 control mice infused for 8 wk with either 1.4 mg · kg(-1) · day(-1) ANG II or vehicle subcutaneously. Blood pressure [systolic blood pressure (SBP)] was measured throughout the study, and cardiac function was assessed by M-mode echocardiography at baseline and at 8 wk of infusion. At the conclusion of the study, immunohistochemistry was used to evaluate collagen fraction, myocyte cross-sectional area (MCSA), and apoptosis. At baseline, there was no difference in SBP between mPGES-1 KO mice and C57BL/6 controls. ANG II infusion increased SBP to similar levels in both strains. In control mice, infusion of ANG II increased MCSA and posterior wall thickness at diastole (PWTd) but had little effect on cardiac function, consistent with compensatory hypertrophy. In contrast, cardiac function was worse in mPGES-1 KO mice after ANG II treatment. Ejection fraction declined from 76.2 ± 2.7 to 63.3 ± 3.4% after ANG II, and left ventricular dimension at systole and diastole increased from 1.29 ± 0.02 to 1.78 ± 0.15 mm and from 2.57 ± 0.03 to 2.90 ± 0.13 mm, respectively. Infusion of ANG II increased both the LV-to-body weight and the mass-to-body weight ratios to a similar extent in both strains. However, PWTd increased by a lesser extent in KO mice, suggesting an impaired hypertrophic response. ANG II infusion increased collagen staining similarly in both strains, but TdT-dUTP nick end labeling staining was greater in mPGES-1 KO mice. Overall, these results are consistent with a beneficial effect for mPGES-1 in the maintenance of cardiac function in ANG II-dependent hypertension.
Collapse
Affiliation(s)
- Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | | | |
Collapse
|
29
|
Chan MMY, Moore AR. Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. THE JOURNAL OF IMMUNOLOGY 2010; 184:6418-26. [PMID: 20435922 DOI: 10.4049/jimmunol.0903816] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute inflammation follows defined phases of induction, inflammation and resolution, and resolution occurs by an active process that requires cyclooxygenase-2 (COX-2) activity. This study aims to address whether this paradigm extends to recognized model of chronic inflammation. We demonstrated that murine collagen-induced arthritis follows a similar sequential course. Interestingly, COX-2 and its metabolite, the presumably proinflammatory PGE(2), are present in the joints during resolution, and blocking COX-2 activity and PGE(2) production within this period perpetuated, instead of attenuated, inflammation. Repletion with PGE(2) analogs restored homeostasis, and this function is mediated by the proresolving lipoxygenase metabolite, lipoxin A(4), a potent stop signal. Thus, the study provided in vivo evidence for a natural, endogenous link between the cyclooxygenase-lipoxygenase pathways and showed that PGE(2) serves as a feedback inhibitor essential for limiting chronic inflammation in autoimmune arthritis. These findings may explain the enigma regarding why COX-2 inhibitors are palliative rather than curative in humans, because blocking resolution may mitigate the benefit of preventing induction.
Collapse
Affiliation(s)
- Marion Man-Ying Chan
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
30
|
Guerrero MD, Aquino M, Bruno I, Riccio R, Terencio MC, Payá M. Anti-inflammatory and analgesic activity of a novel inhibitor of microsomal prostaglandin E synthase-1 expression. Eur J Pharmacol 2009; 620:112-9. [DOI: 10.1016/j.ejphar.2009.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 07/17/2009] [Accepted: 08/04/2009] [Indexed: 12/27/2022]
|
31
|
Gosselin F, Lau S, Nadeau C, Trinh T, O’Shea PD, Davies IW. A Practical Synthesis of m-Prostaglandin E Synthase-1 Inhibitor MK-7285. J Org Chem 2009; 74:7790-7. [DOI: 10.1021/jo901798d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francis Gosselin
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, 16711 Route Transcanadienne, Kirkland, Québec, Canada H9H 3L1
| | - Stephen Lau
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, 16711 Route Transcanadienne, Kirkland, Québec, Canada H9H 3L1
| | - Christian Nadeau
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, 16711 Route Transcanadienne, Kirkland, Québec, Canada H9H 3L1
| | - Thao Trinh
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, 16711 Route Transcanadienne, Kirkland, Québec, Canada H9H 3L1
| | - Paul D. O’Shea
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, 16711 Route Transcanadienne, Kirkland, Québec, Canada H9H 3L1
| | - Ian W. Davies
- Department of Process Research, Merck Research Laboratories, Rahway, P.O. Box 2000, New Jersey 07065
| |
Collapse
|
32
|
Iyer JP, Srivastava PK, Dev R, Dastidar SG, Ray A. Prostaglandin E(2) synthase inhibition as a therapeutic target. Expert Opin Ther Targets 2009; 13:849-65. [PMID: 19530988 DOI: 10.1517/14728220903018932] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Most NSAIDs function by inhibiting biosynthesis of PGE(2) by inhibition of COX-1 and/or COX-2. Since COX-1 has a protective function in the gastro-intestinal tract (GIT), non-selective inhibition of both cycloxy genases leads to moderate to severe gastro-intestinal intolerance. Attempts to identify selective inhibitors of COX-2, led to the identification of celecoxib and rofecoxib. However, long-term use of these drugs has serious adverse effects of sudden myocardial infarction and thrombosis. Drug-mediated imbalance in the levels of prostaglandin I(2) (PGI(2)) and thromboxane A(2) (TXA(2)) with a bias towards TXA(2) may be the primary reason for these events. This resulted in the drugs being withdrawn from the market, leaving a need for an effective and safe anti-inflammatory drug. METHODS Recently, the focus of research has shifted to enzymes downstream of COX in the prosta glandin biosynthetic pathway such as prostaglandin E(2) synthases. Microsomal prostaglandin E(2) synthase-1 (mPGES-1) specifically isomerizes PGH(2) to PGE(2), under inflammatory conditions. In this review, we examine the biology of mPGES-1 and its role in disease. Progress in designing molecules that can selectively inhibit mPGES-1 is reviewed. CONCLUSION mPGES-1 has the potential to be a target for anti-inflammatory therapy, devoid of adverse GIT and cardiac effects and warrants further investigation.
Collapse
Affiliation(s)
- Jitesh P Iyer
- Department of Pharmacology, New Drug Discovery Research, Ranbaxy Research Laboratories, Plot No-20, Sector-18, Udyog Vihar, Gurgaon, Haryana, India-122015
| | | | | | | | | |
Collapse
|
33
|
Katolik LI. Osteoid osteoma of the scaphoid presenting with radiocarpal arthritis: a case report. Hand (N Y) 2009; 4:187-90. [PMID: 19130146 PMCID: PMC2686796 DOI: 10.1007/s11552-008-9159-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022]
Abstract
A case of osteoid osteoma of the scaphoid presenting as painful monoarticular arthritis is presented. Degenerative arthritis, associated with osteoid osteoma of the carpus, has not been described. The implications for treatment are discussed.
Collapse
|
34
|
Molloy ES, Morgan MP, Doherty GA, McDonnell B, O'Byrne J, Fitzgerald DJ, McCarthy GM. Microsomal prostaglandin E2 synthase 1 expression in basic calcium phosphate crystal-stimulated fibroblasts: role of prostaglandin E2 and the EP4 receptor. Osteoarthritis Cartilage 2009; 17:686-92. [PMID: 19010065 DOI: 10.1016/j.joca.2008.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 09/30/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Basic calcium phosphate (BCP) crystals have been implicated in the pathogenesis of osteoarthritis (OA), in part because of their ability to upregulate cyclooxygenase and prostaglandin E(2) (PGE(2)) production. The aim of this work was to investigate the expression of terminal PGE(2) synthases and PGE(2) receptors (EP) in BCP crystal-stimulated fibroblasts. METHODS Cultured fibroblasts were stimulated with BCP crystals in vitro. mRNA expression was measured by real-time polymerase chain reaction, and protein production by western blotting. RESULTS Basal expression of microsomal prostaglandin E(2) synthase 1 (mPGES1) in osteoarthritic synovial fibroblasts (OASF) was found to be 30-fold higher than in human foreskin fibroblasts (HFF). BCP crystals increased mPGES1 expression fourfold in HFF, but not in OASF. EP4 expression was downregulated twofold by BCP crystals in OASF, but not in HFF. Exogenous PGE(2) also downregulated EP4 expression; this effect was blocked by co-administration of L-161,982, a selective EP4 antagonist. While administration of exogenous PGE(2) significantly upregulated mPGES1 expression in OASF, mPGES1 expression was threefold higher in the OASF treated with BCP crystals and PGE(2) as compared with OASF treated with PGE(2) alone. CONCLUSIONS The differing effects of BCP crystals on mPGES1 expression in HFF and OASF may be explained by BCP crystal-induced EP4 downregulation in OASF, likely mediated via PGE(2). These data underline the complexity of the pathways regulating PGE(2) synthesis and suggest the existence of a compensatory mechanism whereby mPGES1 expression can be diminished, potentially reducing the stimulus for further PGE(2) production.
Collapse
Affiliation(s)
- E S Molloy
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kojima F, Kapoor M, Kawai S, Yang L, Aronoff DM, Crofford LJ. Prostaglandin E2 activates Rap1 via EP2/EP4 receptors and cAMP-signaling in rheumatoid synovial fibroblasts: involvement of Epac1 and PKA. Prostaglandins Other Lipid Mediat 2009; 89:26-33. [PMID: 19464664 DOI: 10.1016/j.prostaglandins.2009.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/02/2009] [Accepted: 03/14/2009] [Indexed: 10/21/2022]
Abstract
The small GTPase Rap1 is implicated in a variety of cellar functions. In this study, we investigated the effect of prostaglandin E(2) (PGE(2)) on Rap1 activation in rheumatoid synovial fibroblasts (RSF). Rap1 was expressed in RSF, and GTP-bound active Rap1 (GTP-Rap1) was rapidly increased by PGE(2). The effect of PGE(2) was mimicked by an EP2 receptor agonist, an EP4 agonist and a cAMP-elevating agent forskolin with association to the increase of cAMP, but not by an EP1 or an EP3 agonist. RSF expressed the downstream signaling partners of cAMP, exchange protein directly activated by cAMP (Epac1) and protein kinase A (PKA). Both 8-pCPT-2-O-Me-cAMP (an Epac-specific cAMP analog) and 6-Bnz-cAMP (a PKA-specific cAMP analog) activated Rap1 in RSF. Activation of Rap1 by PGE(2) via cAMP-signaling may play an important role in the articular pathology of rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Fumiaki Kojima
- Division of Rheumatology, Department of Internal Medicine, University of Kentucky, Kentucky Clinic, Lexington, KY 40536-0284, USA
| | | | | | | | | | | |
Collapse
|
36
|
Classification using hierarchical clustering of tumor-infiltrating immune cells identifies poor prognostic ovarian cancers with high levels of COX expression. Mod Pathol 2009; 22:373-84. [PMID: 18997734 DOI: 10.1038/modpathol.2008.187] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Local immune status is influenced by the tumor microenvironment. This study aims to characterize the local immune/microenvironment status by examining tumor-infiltrating immune cells, as well as cyclooxygenase (COX) expression in tumor cells, and to analyze the relationship with the prognosis of ovarian cancers. Using immunohistochemical staining of 70 ovarian cancer specimens, the numbers of CD8+, CD57+, and CD1a+ cells infiltrating intraepithelial or stromal spaces were counted (six parameters). Hierarchical clustering was used to analyze the six parameters at one time. Expression of COX-1 and COX-2 in tumor cells was also analyzed by immunohistochemistry. Expression of both COX-1 and COX-2 was negatively correlated with intraepithelial CD8+ cells (P<0.05 for both). Hierarchical clustering using the six parameters classified ovarian cancers into three clusters. The overall and progression-free survival of cluster 1 with low CD8+ cell and high CD1a+ cell density was poorer than cluster 2 with high CD8+ cell density (P<0.05). The cluster classification did not correlate with clinical features, such as histology, stage, age, and amount of residual tumor. In a multivariate analysis, cluster 1 was an independent poor prognostic factor (P<0.05). Expression of both COX-1 and COX-2 was higher in cluster 1 than in cluster 2 (P<0.05, respectively). In conclusion, hierarchical clustering of tumor-infiltrating immune cells allows poor prognostic COX-high subgroup of ovarian cancer to be detected. COX may influence the pattern of tumor-infiltrating immune cells and prognosis in ovarian cancer.
Collapse
|
37
|
Sandee D, Sivanuntakorn S, Vichai V, Kramyu J, Kirtikara K. Up-regulation of microsomal prostaglandin E synthase-1 in COX-1 and COX-2 knock-out mouse fibroblast cell lines. Prostaglandins Other Lipid Mediat 2008; 88:111-6. [PMID: 19114118 DOI: 10.1016/j.prostaglandins.2008.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 10/17/2008] [Accepted: 12/02/2008] [Indexed: 12/31/2022]
Abstract
In this paper we investigated the possible involvement of prostaglandin E synthases (PGESs) in compensatory mechanism. Our findings showed that microsomal (m)PGES-1 expression was significantly up-regulated in COX knock-out (K/O) cells whereas the expression of cytosolic PGES was not changed indicating that the induction of mPGES-1 may, at least in part, contribute to the substantial increase of PGE(2) production in COX K/O cell lines. The selective up-regulation of mPGES-1 in COX-2 K/O cells suggests that mPGES-1 may be metabolically coupled with COX-1 for PGE(2) formation. Addition of arachidonic acid caused significant induction of mPGES-1 and COX-2 in WT cells, whereas COX-1 and cPGES were not affected. Our earlier and the current studies demonstrate the coregulation of cPLA(2), COX, and mPGES-1, in PGE(2) synthesis pathway, and that these enzymes contribute to the elevation of PGE(2) level when one COX isoform is absent.
Collapse
Affiliation(s)
- Duanpen Sandee
- The National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani 12120, Thailand.
| | | | | | | | | |
Collapse
|
38
|
Goedken ER, Gagnon AI, Overmeyer GT, Liu J, Petrillo RA, Burchat AF, Tomlinson MJ. HTRF-Based Assay for Microsomal Prostaglandin E2 Synthase-1 Activity. ACTA ACUST UNITED AC 2008; 13:619-25. [DOI: 10.1177/1087057108321145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1) catalyzes the formation of prostaglandin E2 (PGE2) from the endoperoxide prostaglandin H 2 (PGH2). Expression of this enzyme is induced during the inflammatory response, and mouse knockout experiments suggest it may be an attractive target for antiarthritic therapies. Assaying the activity of this enzyme in vitro is challenging because of the unstable nature of the PGH 2 substrate. Here, the authors present an mPGES-1 activity assay suitable for characterization of enzyme preparations and for determining the potency of inhibitor compounds. This plate-based competition assay uses homogenous time-resolved fluorescence to measure PGE2 produced by the enzyme. The assay is insensitive to DMSO concentration up to 10% and does not require extensive washes after the initial enzyme reaction is concluded, making it a simple and convenient way to assess mPGES-1 inhibition. ( Journal of Biomolecular Screening 2008:619-625)
Collapse
Affiliation(s)
| | | | | | - Junjian Liu
- Abbott Bioresearch Center, Worcester, Massachusetts
| | | | | | | |
Collapse
|
39
|
Wang D, DuBois RN. Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett 2008; 267:197-203. [PMID: 18406516 DOI: 10.1016/j.canlet.2008.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/18/2008] [Accepted: 03/03/2008] [Indexed: 12/25/2022]
Abstract
Chronic inflammation is a risk factor for several gastrointestinal malignancies, including esophageal, gastric, hepatic, pancreatic and colorectal cancer. It has long been known that long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the relative risk of developing colorectal cancer. NSAIDs exert their anti-inflammatory and anti-tumor effects primarily by inhibiting activity of cyclooxygenase (COX) enzymes. Cyclooxygenase enzymes catalyze the conversion of arachidonic acid into prostanoids, including prostaglandins (PGs) and thromboxanes (TXs). Emerging evidence demonstrates that prostaglandins play an important role in inflammation and cancer. In this review, we highlight recent breakthroughs in our understanding of the roles of the different prostaglandins in colorectal cancer (CRC) and inflammatory bowel disease (IBD). These findings may provide a rationale for the development of new anti-inflammatory therapeutic approaches to cancer prevention and/or treatment.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
40
|
Nauta AJ, Engels F, Knippels LM, Garssen J, Nijkamp FP, Redegeld FA. Mechanisms of allergy and asthma. Eur J Pharmacol 2008; 585:354-60. [PMID: 18410921 DOI: 10.1016/j.ejphar.2008.02.094] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 02/14/2008] [Accepted: 02/20/2008] [Indexed: 01/07/2023]
Abstract
Allergies are the result of an inappropriate reaction against innocuous environmental proteins. The prevalence and severity of allergic diseases has increased dramatically during the last decade in developed countries. Allergen-specific T helper (Th) cells play a pivotal role in the pathogenesis of allergic hypersensitivity reactions. These Th cells activate a complex immune reaction that triggers the release of potent mediators and enhances the recruitment of inflammatory cells, which in turn elicit an inflammatory response that leads to the clinical symptoms of allergic disease. The current therapies for allergic diseases focus primarily on control of symptoms and suppression of inflammation, without affecting the underlying cause. However, the knowledge about the pathophysiology of allergic diseases has substantially increased, offering new opportunities for therapeutic intervention. In this review, we will focus on current insights into the mechanism of allergic reactions.
Collapse
|
41
|
Kapoor M, Kojima F, Yang L, Crofford LJ. Sequential induction of pro- and anti-inflammatory prostaglandins and peroxisome proliferators-activated receptor-gamma during normal wound healing: a time course study. Prostaglandins Leukot Essent Fatty Acids 2007; 76:103-12. [PMID: 17239574 PMCID: PMC1847382 DOI: 10.1016/j.plefa.2006.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 11/22/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
Lipid mediators generated from metabolism of arachidonic acid play a crucial role in the initiating and resolution of acute inflammation by shifting from pro-inflammatory prostaglandin (PG) E2 to anti-inflammatory PGD2 and its metabolites. The changes in PG levels over time during the normal wound-repair process have not, however, been reported. We determined the temporal expression of PG and their biosynthetic enzymes using the full thickness incisional model of normal wound healing in mice. We demonstrate that during normal wound repair, there is a shift in the metabolism of arachidonate from PGE2 during the acute inflammatory phase to PGD2 during the repair phase. This shift is mediated by temporal changes in the expression of cyclooxygenases (COX) and microsomal PGES (mPGES)-1. Inducible COX (COX-2) expression is sustained throughout the initiation and repair process, but mPGES-1 is increased only during the acute inflammatory phase and its disappearance coincides with increased PGD2. PGD2 and its degradation products are known to mediate their anti-inflammatory effects by binding to peroxisome proliferators-activated receptor gamma (PPARgamma). In this study, we show that PPARgamma is upregulated during the resolution phase of wound repair concomitant with the shift to PGD2, and may be responsible for initiating endogenous mechanism resulting in healing/resolution.
Collapse
Affiliation(s)
- Mohit Kapoor
- Department of Internal Medicine, Division of Rheumatology, Room J-509, Kentucky Clinic, University of Kentucky, Lexington, KY 40536-0284, USA
| | | | | | | |
Collapse
|
42
|
Kapoor M, Kojima F, Qian M, Yang L, Crofford LJ. Microsomal prostaglandin E synthase-1 deficiency is associated with elevated peroxisome proliferator-activated receptor gamma: regulation by prostaglandin E2 via the phosphatidylinositol 3-kinase and Akt pathway. J Biol Chem 2006; 282:5356-66. [PMID: 17186945 DOI: 10.1074/jbc.m610153200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mPGES-1 (microsomal PGE synthase-1) is an inducible enzyme that acts downstream of cyclooxygenase (COX) and specifically catalyzes the conversion of prostaglandin (PG) H(2) to PGE(2) under basal as well as inflammatory conditions. In this study, using mouse embryo fibroblasts (MEFs) isolated from mice genetically deficient for the mPges-1 gene, we show basal elevation of peroxisome proliferator-activated receptor gamma (PPARgamma) expression (protein and mRNA) and transcriptional activity associated with reduced basal PGE(2). We further show that basal mPGES-1-derived PGE(2) suppresses the expression of PPARgamma through a cAMP-independent pathway involving phosphatidylinositol 3-kinase and Akt signaling. Using specific PPARgamma agonist (rosiglitazone), PPARgamma ligand (15-deoxy-Delta12,14-PGJ(2)), and PPARgamma inhibitor (GW9662), we confirm that activation of PPARgamma blocks interleukin-1beta-induced up-regulation of COX-2, mPGES-1, and their derived PGE(2). Furthermore, we demonstrate that up-regulation of PPARgamma upon genetic deletion of mPGES-1 is responsible for reduced COX-2 expression under basal as well as interleukin-1beta-stimulated conditions. This study provides evidence for the first time that mPGES-1 deletion not only decreases proinflammatory PGE(2) but also up-regulates anti-inflammatory PPARgamma, which has the ability to suppress COX-2 and mPGES-1 expression and PGE(2) production. Thus, mPGES-1 inhibition may limit inflammation by multiple mechanisms and is a potential therapeutic target.
Collapse
Affiliation(s)
- Mohit Kapoor
- Department of Internal Medicine, Rheumatology Division, University of Kentucky, Lexington, Kentucky 40536
| | | | | | | | | |
Collapse
|
43
|
Kapoor M, Kojima F, Qian M, Yang L, Crofford LJ. Shunting of prostanoid biosynthesis in microsomal prostaglandin E synthase-1 null embryo fibroblasts: regulatory effects on inducible nitric oxide synthase expression and nitrite synthesis. FASEB J 2006; 20:2387-9. [PMID: 17023389 PMCID: PMC4415996 DOI: 10.1096/fj.06-6366fje] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Microsomal prostaglandin (PG) E synthase (mPGES)-1 is an inducible enzyme that acts downstream of cyclooxygenase (COX) and specifically catalyzes the conversion of prostaglandin (PG)H2 to PGE2, most prominently in inflammatory conditions. Specific inhibitors of mPGES-1 are not yet available, however, mice with genetic deletion of mPGES-1 have been generated that have given insight into the specific role of mPGES-1 in eicosanoid biosynthesis in vivo and in peritoneal macrophages. We created mouse embryo fibroblast (MEF) cell lines that would facilitate investigation of the effect of mPGES-1 genetic deletion on prostanoid biosynthesis in fibroblast lineage cells and its subsequent effect on the expression of inducible NOS (iNOS) and nitrite biosynthesis using cells derived from mPGES-1 wild-type (WT), heterozygous (Het), and null mice. The results show that genetic deletion of mPGES-1 results in a dramatic decrease in PGE2 production in Het and null MEFs under basal conditions and after stimulation with interleukin (IL)-1beta, suggesting that mPGES-1 is critically important for PGE2 production. Furthermore, we show that mPGES-1 gene deletion results in diversion of prostanoid production from PGE2 to 6-keto PGF1alpha (the stable metabolic product of PGI2; prostacyclin) in a gene dose-dependent manner in Het and null MEFs compared with their WT counterparts, suggesting a shunting phenomenon within the arachidonic acid (AA) metabolic pathway. In addition, we show that mPGES-1 gene deletion and subsequent decrease in PGE2 levels results in a differential induction profile of iNOS and nitrite levels (the stable breakdown product of nitric oxide (NO) in mPGES-1 WT MEFs compared with null MEFs. These results provide important information regarding the therapeutic potential for pharmacologic inhibition of mPGES-1 in inflammatory conditions.
Collapse
Affiliation(s)
- Mohit Kapoor
- Department of Internal Medicine, Division of Rheumatology, Kentucky Clinic, University of Kentucky, Lexington, Kentucky, USA
| | - Fumiaki Kojima
- Department of Internal Medicine, Division of Rheumatology, Kentucky Clinic, University of Kentucky, Lexington, Kentucky, USA
| | - Min Qian
- Ophthalmology and Visual Sciences, Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lihua Yang
- Department of Internal Medicine, Division of Rheumatology, Kentucky Clinic, University of Kentucky, Lexington, Kentucky, USA
| | - Leslie J. Crofford
- Department of Internal Medicine, Division of Rheumatology, Kentucky Clinic, University of Kentucky, Lexington, Kentucky, USA
- Correspondence: Department of Internal Medicine, Rheumatology Division, Rm. J-509, Kentucky Clinic, University of Kentucky, Lexington, KY 40536-0284, USA.
| |
Collapse
|
44
|
Romanovsky AA, Ivanov AI, Petersen SR. Microsomal prostaglandin E synthase-1, ephrins, and ephrin kinases as suspected therapeutic targets in arthritis: exposed by "criminal profiling". Ann N Y Acad Sci 2006; 1069:183-94. [PMID: 16855145 DOI: 10.1196/annals.1351.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Feeding information obtained in one criminal case into the profile of another crime often helps to solve the latter. The literature on two different "crimes," namely, acute systemic inflammation and arthritis (including osteoarthritis [OA] and rheumatoid arthritis [RA] deals largely with the same "gang" of inflammatory mediators, such as prostaglandin (PG) E2. Early investigations suggested that microsomal PGE synthase-1 (mPGES-1; a terminal PGE2-synthesizing enzyme) plays a pivotal role in bacterial lipopolysaccharide (LPS)-induced systemic inflammation, but overlooked the possibility that the same enzyme could be involved in OA or RA. Later studies showed that mPGES-1 is indeed a key perpetrator in arthritic diseases, a fact that could have been predicted earlier by pooling the new knowledge about mPGES-1 into the profile of arthritic diseases. In this review, we analyze our recent study on the expression of erythropoietin-producing hepatocellular (Eph) receptor kinases and their ligands, ephrins, in LPS-induced systemic inflammation. By pooling these results together with literature data into the profile of RA, we conclude that Eph kinases and ephrins are prime suspects for being involved in the pathogenesis of RA. We further conjecture that the involvement of Eph kinases and ephrins may be realized via the induction of angiogenesis in the inflamed joint, promotion of leukocyte infiltration, and activation of the infiltrated cells. Studies to test this new hypothesis seem warranted, and our prediction is that the "smoking gun" will be found.
Collapse
Affiliation(s)
- Andrej A Romanovsky
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, Arizona 85013 USA.
| | | | | |
Collapse
|
45
|
Shi Y, Cui L, Dai G, Chen J, Pan H, Song L, Cheng S, Wang X. Elevated prostaglandin E2 level via cPLA2--COX-2--mPGES-1 pathway involved in bladder carcinogenesis induced by terephthalic acid-calculi in Wistar rats. Prostaglandins Leukot Essent Fatty Acids 2006; 74:309-15. [PMID: 16621493 DOI: 10.1016/j.plefa.2006.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 02/28/2006] [Indexed: 11/29/2022]
Abstract
To investigate the prostaglandin E2 (PGE2) biosynthetic mechanism in bladder carcinogenesis, we established Wistar rat model of bladder papilloma and transitional cell carcinoma (TCC) induced by 5% terephthalic acid (TPA) treatment. Then, the mRNA level of cytosolic phospholipase A2 (cPLA2), cyclooxygenases (COX)-1 and -2, membrane-bound PGE2 synthases (mPGES)-1 and -2 was detected using reverse transcription polymerase chain reaction (RT-PCR). Immunoblotting was applied to detect the expression of COX-2 protein. Proliferating cell nuclear antigen (PCNA) was determined by immunohistochemistry. In addition, the level of PGE2 was measured by radioimmunoassay (RIA). Bladder papilloma (100%, 8/8) was examined in rats after 24-week treatment, and bladder TCC (80%, 16/20) was found after 48-week treatment. Histopathological changes were not found in control group rats. The incidence of bladder papilloma and TCC in test group was significantly higher than that in control group (P<0.01). The mRNA levels of cPLA2, COX-2 and mPGES-1 in the bladder papilloma and TCC were significantly higher than those in normal bladder (P<0.01), while the mRNA levels of COX-1 and mPGES-2 in TCC were unchanged compared with normal bladder. Bladder TCC exhibited a substantial expression of COX-2 protein. On the contrary, normal bladder tissue barely expresses COX-2 protein. PCNA labeling index (LI) and the level of PGE2 in bladder papilloma are much higher than those in normal bladder (P<0.01), but lower than those in bladder TCC (P<0.05). In conclusion, increasing PGE2 level via cPLA2--COX-2--mPGES-1 pathway may play an important role in rat bladder carcinogenesis. PGE2 may be a biomarker for the development of bladder TCC. cPLA2 and mPGES-1 may be targets for development of novel chemoprevention strategies for bladder TCC.
Collapse
Affiliation(s)
- Yuan Shi
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Whiteman M, Spencer JPE, Zhu YZ, Armstrong JS, Schantz JT. Peroxynitrite-modified collagen-II induces p38/ERK and NF-kappaB-dependent synthesis of prostaglandin E2 and nitric oxide in chondrogenically differentiated mesenchymal progenitor cells. Osteoarthritis Cartilage 2006; 14:460-70. [PMID: 16427328 DOI: 10.1016/j.joca.2005.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 11/07/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Peroxynitrite (ONOO(-)) is formed in the inflamed and degenerating human joint. Peroxynitrite-modified collagen-II (PMC-II) was recently discovered in the serum of patients with osteoarthritis (OA) and rheumatoid arthritis (RA). Therefore we investigated the cellular effects of PMC-II on human mesenchymal progenitor cells (MPCs) as a model of cartilage and cartilage repair cells in the inflamed and degenerating joint. DESIGN MPCs were isolated from the trabecular bone of patients undergoing reconstructive surgery and were differentiated into a chondrogenic lineage. Cells were exposed to PMC-II and levels of the proinflammatory mediators nitric oxide (*NO) and prostaglandin E(2) (PGE(2)) measured. Levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated mitogen activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kappaB) activation were measured by enzyme linked immunosorbent assay (ELISA) together with specific MAPK and NF-kappaB inhibitors. RESULTS PMC-II induced ()NO and PGE(2) synthesis through upregulation of iNOS and COX-2 proteins. PMC-II also lead to the phosphorylation of MAPKs, extracellularly regulated kinase 1/2 (ERK1/2) and p38 [but not c-Jun NH(2)-terminal kinase (JNK1/2)] and the activation of proinflammatory transcription factor NF-kappaB. Inhibitors of p38, ERK1/2 and NF-kappaB prevented PMC-II induced ()NO and PGE(2) synthesis, iNOS and COX-2 protein expression and NF-kappaB activation. CONCLUSION iNOS, COX-2, NF-kappaB and MAPK are known to be activated in the joints of patients with OA and RA. PMC-II induced iNOS and COX-2 synthesis through p38, ERK1/2 and NF-kappaB dependent pathways suggesting a previously unidentified pathway for the synthesis of the proinflammatory mediators, ()NO and PGE(2), further suggesting that inhibitors of these pathways may be therapeutic in the inflamed and degenerating human joint.
Collapse
Affiliation(s)
- M Whiteman
- Department of Biochemistry, Yong Yoo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Republic of Singapore 117597.
| | | | | | | | | |
Collapse
|
47
|
Valdes AM, Van Oene M, Hart DJ, Surdulescu GL, Loughlin J, Doherty M, Spector TD. Reproducible genetic associations between candidate genes and clinical knee osteoarthritis in men and women. ACTA ACUST UNITED AC 2006; 54:533-9. [PMID: 16453284 DOI: 10.1002/art.21621] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is recognized to have a genetic component, and in this study, we aimed to replicate in a case-control study of men and women with clinical knee OA genetic associations in 12 candidate genes previously reported to be associated with OA. METHODS Twenty-five single-nucleotide polymorphisms were genotyped in 298 men and 305 women ages 50-86 who were diagnosed as having knee OA, as assessed both clinically and radiographically, and in 297 men and 299 women matched for age and ethnicity (controls). Standardized anteroposterior radiographs of the knee in extension were performed on each of the cases, and all cases met the American College of Rheumatology criteria for OA of the knee. Genotype and haplotype frequencies in cases and controls were compared separately in men and women. The 12 genes tested were AACT, ADAM12, BMP2, CD36, CILP, COX2, ESR1, NCOR2, OPG, TNA, TNFAIP6, and VDR. RESULTS Eight of the candidate genes were associated in women and 5 in men, and only 3 genes (TNFAIP6, NCOR2, and CD36) were not significantly associated in either sex. The strongest associations in terms of odds ratios (ORs) were a haplotype in ADAM12 (OR 7.1 [95% confidence interval (95% CI) 3.3-33.8]) and a haplotype in ESR1 (OR 3.6 [95% CI 1.18-10.98]) in women. The same ADAM12 haplotype (OR 2.54 [95% CI 1.2-5.4]) and a haplotype in the CILP gene (OR 0.38 [95% CI 0.23-0.62]) were the strongest associations in men. CONCLUSION We found that genes previously identified by their association with subclinical features of knee OA or progression were also associated with clinical knee OA. These genetic associations may identify individuals at a particularly high risk of developing knee OA.
Collapse
|