1
|
Kang J, Mun D, Chun Y, Park D, Kim H, Yun N, Joung B. Engineered small extracellular vesicle-mediated NOX4 siRNA delivery for targeted therapy of cardiac hypertrophy. J Extracell Vesicles 2023; 12:e12371. [PMID: 37795828 PMCID: PMC10552075 DOI: 10.1002/jev2.12371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Small-interfering RNA (siRNA) therapy is considered a powerful therapeutic strategy for treating cardiac hypertrophy, an important risk factor for subsequent cardiac morbidity and mortality. However, the lack of safe and efficient in vivo delivery of siRNAs is a major challenge for broadening its clinical applications. Small extracellular vesicles (sEVs) are a promising delivery system for siRNAs but have limited cell/tissue-specific targeting ability. In this study, a new generation of heart-targeting sEVs (CEVs) has been developed by conjugating cardiac-targeting peptide (CTP) to human peripheral blood-derived sEVs (PB-EVs), using a simple, rapid and scalable method based on bio-orthogonal copper-free click chemistry. The experimental results show that CEVs have typical sEVs properties and excellent heart-targeting ability. Furthermore, to treat cardiac hypertrophy, CEVs are loaded with NADPH Oxidase 4 (NOX4) siRNA (siNOX4). Consequently, CEVs@siNOX4 treatment enhances the in vitro anti-hypertrophic effects by CEVs with siRNA protection and heart-targeting ability. In addition, the intravenous injection of CEVs@siNOX4 into angiotensin II (Ang II)-treated mice significantly improves cardiac function and reduces fibrosis and cardiomyocyte cross-sectional area, with limited side effects. In conclusion, the utilization of CEVs represents an efficient strategy for heart-targeted delivery of therapeutic siRNAs and holds great promise for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ji‐Young Kang
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Dasom Mun
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Yumin Chun
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Da‐Seul Park
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Hyoeun Kim
- Department of Biochemistry and Molecular BiologyYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Nuri Yun
- GNTPharma Science and Technology Center for Health, Giheung‐guYongin‐siIncheonRepublic of Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
- Graduate School of Medical Science, Brain Korea 21 ProjectYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| |
Collapse
|
2
|
Gunata M, Parlakpinar H. Experimental heart failure models in small animals. Heart Fail Rev 2023; 28:533-554. [PMID: 36504404 DOI: 10.1007/s10741-022-10286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is one of the most critical health and economic burdens worldwide, and its prevalence is continuously increasing. HF is a disease that occurs due to a pathological change arising from the function or structure of the heart tissue and usually progresses. Numerous experimental HF models have been created to elucidate the pathophysiological mechanisms that cause HF. An understanding of the pathophysiology of HF is essential for the development of novel efficient therapies. During the past few decades, animal models have provided new insights into the complex pathogenesis of HF. Success in the pathophysiology and treatment of HF has been achieved by using animal models of HF. The development of new in vivo models is critical for evaluating treatments such as gene therapy, mechanical devices, and new surgical approaches. However, each animal model has advantages and limitations, and none of these models is suitable for studying all aspects of HF. Therefore, the researchers have to choose an appropriate experimental model that will fully reflect HF. Despite some limitations, these animal models provided a significant advance in the etiology and pathogenesis of HF. Also, experimental HF models have led to the development of new treatments. In this review, we discussed widely used experimental HF models that continue to provide critical information for HF patients and facilitate the development of new treatment strategies.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye.
| |
Collapse
|
3
|
Samra M, Srivastava K. Non-coding RNA and their potential role in cardiovascular diseases. Gene 2023; 851:147011. [DOI: 10.1016/j.gene.2022.147011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
|
4
|
Abstract
Heart failure is a worldwide pandemic influencing 26 million individuals worldwide and is expanding. Imbalanced redox homeostasis in cardiac cells alters the structure and function of the cells, which leads to contractile dysfunction, myocardial hypertrophy, and fibrosis in chronic heart failure. Various targets and agents acting on these such as siRNA, miRNA, interleukin-1, opioids, vasodilators, and SGLT2 inhibitors are being evaluated for heart failure, and nuclear factor erythroid 2-related factor 2 (NRF2) is one of them. NRF2 is a master transcription factor which is expressed in most of the tissues and exhibits a major role in amplification of the antioxidant pathways associated with the enzymes present in myocardium. Increased ROS generation and PI3K-Akt signaling can activate the receptor NRF2. Various in vitro and in vivo and few clinical studies suggested NRF2 may possess a potential for targeting oxidative stress-induced cardiovascular diseases including heart failures. All these studies collectively propose that upregulation of NRF2 will attenuate the increase in hemodynamic stress and provide beneficial role in cardiovascular diseases. The current review shall familiarize readers about the regulations and functions of NRF2. We have also discussed the current evidences suggesting beneficial role of NRF2 activators in heart failure. Graphical abstract.
Collapse
|
5
|
Thompson BR, Soller KJ, Vetter A, Yang J, Veglia G, Bowser MT, Metzger JM. Cytoplasmic nucleic acid-based XNAs directly enhance live cardiac cell function by a Ca 2+ cycling-independent mechanism via the sarcomere. J Mol Cell Cardiol 2019; 130:1-9. [PMID: 30849419 DOI: 10.1016/j.yjmcc.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/05/2019] [Accepted: 02/27/2019] [Indexed: 11/19/2022]
Abstract
Nucleic acid - protein interactions are critical for regulating gene activation in the nucleus. In the cytoplasm, however, potential nucleic acid-protein functional interactions are less clear. The emergence of a large and expanding number of non-coding RNAs and DNA fragments raises the possibility that the cytoplasmic nucleic acids may interact with cytoplasmic cellular components to directly alter key biological processes within the cell. We now show that both natural and synthetic nucleic acids, collectively XNAs, when introduced to the cytoplasm of live cell cardiac myocytes, markedly enhance contractile function via a mechanism that is independent of new translation, activation of the TLR-9 pathway or by altered intracellular Ca2+ cycling. Findings show a steep XNA oligo length-dependence, but not sequence dependence or nucleic acid moiety dependence, for cytoplasmic XNAs to hasten myocyte relaxation. XNAs localized to the sarcomere in a striated pattern and bound the cardiac troponin regulatory complex with high affinity in an electrostatic-dependent manner. Mechanistically, XNAs phenocopy PKA-based modified troponin to cause faster relaxation. Collectively, these data support a new role for cytoplasmic nucleic acids in directly modulating live cell cardiac performance and raise the possibility that cytoplasmic nucleic acid - protein interactions may alter functionally relevant pathways in other cell types.
Collapse
Affiliation(s)
- Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Kailey J Soller
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States of America
| | - Anthony Vetter
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Jing Yang
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States of America
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Michael T Bowser
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States of America
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America.
| |
Collapse
|
6
|
Beneficial Effect of Silymarin in Pressure Overload Induced Experimental Cardiac Hypertrophy. Cardiovasc Toxicol 2018; 19:23-35. [DOI: 10.1007/s12012-018-9470-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Abstract
The World Health Organization suggests that the cardiovascular diseases (CVDs) are the major cause of mortality and account for two-thirds of the deaths all over the world. These diseases kill about 17 million people every year and 3 in every 10 deaths are due to these diseases. The past decade has seen considerable improvements in diagnosis as well as treatment of various heart diseases. Various new therapeutic targets are being identified through in-depth knowledge of the disease mechanisms which has favored the testing of new strategies leading to newer treatment options. Opioid peptides and G-protein-coupled opioid receptors (ORs) have been previously studied widely in terms of central nervous system actions in mitigating the pain and drug abuse. The OR agonism or antagonism induces cytoprotective states in the myocardium, rendering these receptors as an attractive target for protection of heart from the fatal heart diseases. The opioids can provide an extended window of protection of the heart from various diseases. Although the mechanisms may not be fully understood, they seem to play a crucial role in various CVDs such as hypertension, hyperlipidemia, ischemic heart disease myocardial ischemia, and congestive heart failure. Since these compounds are already being used in acute and chronic pain, soon these compounds might be approved for use as cardioprotective agents. The following review focuses on the new information acquired on the role of the ORs in various CVDs.
Collapse
Affiliation(s)
- Hemangi Rawal
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | | |
Collapse
|
8
|
Rabadiya S, Bhadada S, Dudhrejiya A, Vaishnav D, Patel B. Magnesium valproate ameliorates type 1 diabetes and cardiomyopathy in diabetic rats through estrogen receptors. Biomed Pharmacother 2017; 97:919-927. [PMID: 29136770 DOI: 10.1016/j.biopha.2017.10.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 01/14/2023] Open
Abstract
Estrogen is known to exhibit cardioprotective and antihyperlipidemic action. Valproic acid has been shown to upregulate estrogen receptors (ERs) in breast and prostate cancer tissues. No pharmacological evaluations for magnesium valproate (MgV) so far have been done for diabetic cadio-lipidemic complications. Based on the above context, current study was undertaken to evaluate the therapeutic effectiveness of MgV in cardiac complications associated with type-1 diabetes mellitus in rats wherein diabetes was induced by single tail vein injection of streptozotocin (STZ, 45mg/kg, IV) in female Sprague Dawley rats and treatment of MgV (210mg/kg, PO) was given for eight weeks to diabetic animals, after which, various biochemical and cardiac biomarkers, hypertrophic, hemodynamic and histological parameters along with immunohistochemistry of ERs in the left ventricle (LV) were estimated. MgV treatment significantly controlled hyperglycemia and dyslipidemia, reduced elevated cardiac biomarkers and C-reactive protein(CRP), significantly improved hemodynamic functions and increased the rate of pressure development and decay. MgV also significantly reduced left ventricular hypertrophy index and cardiac hypertrophy index, LV wall thickness, LV collagen, cardiomyocyte diameter and prevented the oxidative stress with significant increase in Na+-K+-ATPase activity in LV. Moreover, MgV reversed STZ-induced histological alterations and decreased glycogen content in LV and increased the ERβ expressions in LV as evidenced by immunohistochemistry. The result indicated that MgV prevented disease progression in the early stage of diabetic cardiomyopathy which seems to be mediated by upregulation of estrogen receptors in LV tissue.
Collapse
Affiliation(s)
- Samir Rabadiya
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Shradhha Bhadada
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Ashvin Dudhrejiya
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Devendra Vaishnav
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Bhoomika Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India.
| |
Collapse
|
9
|
Lemcke H, Voronina N, Steinhoff G, David R. Analysis of the Gap Junction-dependent Transfer of miRNA with 3D-FRAP Microscopy. J Vis Exp 2017. [PMID: 28654065 DOI: 10.3791/55870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Small antisense RNAs, like miRNA and siRNA, play an important role in cellular physiology and pathology and, moreover, can be used as therapeutic agents in the treatment of several diseases. The development of new, innovative strategies for miRNA/siRNA therapy is based on an extensive knowledge of the underlying mechanisms. Recent data suggest that small RNAs are exchanged between cells in a gap junction-dependent manner, thereby inducing gene regulatory effects in the recipient cell. Molecular biological techniques and flow cytometric analysis are commonly used to study the intercellular exchange of miRNA. However, these methods do not provide high temporal resolution, which is necessary when studying the gap junctional flux of molecules. Therefore, to investigate the impact of miRNA/siRNA as intercellular signaling molecules, novel tools are needed that will allow for the analysis of these small RNAs at the cellular level. The present protocol describes the application of three-dimensional fluorescence recovery after photobleaching (3D-FRAP) microscopy to elucidating the gap junction-dependent exchange of miRNA molecules between cardiac cells. Importantly, this straightforward and non-invasive live-cell imaging approach allows for the visualization and quantification of the gap junctional shuttling of fluorescently labeled small RNAs in real time, with high spatio-temporal resolution. The data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation, where small RNAs act as signaling molecules within the intercellular network.
Collapse
Affiliation(s)
- Heiko Lemcke
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC); Department of Cardiac Surgery, University of Rostock; Department of Life, Light and Matter of the Interdisciplinary Faculty, University of Rostock;
| | - Natalia Voronina
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC); Department of Cardiac Surgery, University of Rostock; Department of Life, Light and Matter of the Interdisciplinary Faculty, University of Rostock
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC); Department of Cardiac Surgery, University of Rostock; Department of Life, Light and Matter of the Interdisciplinary Faculty, University of Rostock
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC); Department of Cardiac Surgery, University of Rostock; Department of Life, Light and Matter of the Interdisciplinary Faculty, University of Rostock;
| |
Collapse
|
10
|
|
11
|
Pichu S, Patel BM, Apparsundaram S, Goyal RK. Role of biomarkers in predicting diabetes complications with special reference to diabetic foot ulcers. Biomark Med 2017; 11:377-388. [DOI: 10.2217/bmm-2016-0205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetic foot ulcer (DFU) is one of the major complications of diabetes and about 1% of people with diabetes have to go for lower limb amputation. With better understanding of the pathological basis of DFU, number of biomarkers like atrial natriuretic peptides, galectin-3, and cardiac troponins for diabetic cardiomyopathy, cystatin C for diabetics nephropathy and C-reactive protein for infection and procalcitonin could aid in early and noninvasive diagnosis especially when clinical signs are misleading. Predictive role of novel biomarkers in primary prevention however, requires additional studies considering sex, age and multiple complications in DFU. The current review provides an insight about the novel and emerging biomarkers of diabetes and its complications with special reference to DFUs.
Collapse
Affiliation(s)
- Sivakamasundari Pichu
- V Clinbio labs (P) Ltd, Sri Ramachandra University, Porur, Chennai, India
- AU-KBC, Anna University – MIT campus, Chromepet, Chennai – 44, India
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad – 382481, India
| | | | - Ramesh K Goyal
- V Clinbio labs (P) Ltd, Sri Ramachandra University, Porur, Chennai, India
| |
Collapse
|
12
|
Wang F, Gao L, Meng LY, Xie JM, Xiong JW, Luo Y. A Neutralized Noncharged Polyethylenimine-Based System for Efficient Delivery of siRNA into Heart without Toxicity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33529-33538. [PMID: 27960377 DOI: 10.1021/acsami.6b13295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cationic polymers constitute an important class of materials in development of delivery vehicles for nucleic acid-based therapeutics. Among them, polyethylenimine (PEI) has been a classical cationic carrier intensively studied for therapeutic delivery of DNA, RNA, and short RNA molecules to treat diseases. However, the development of PEI for in vivo applications has been hampered by the inherent problems associated with the material, particularly its cytotoxicity and the instability of the nucleic acid complexation systems formed via electrostatic interactions. Here, we demonstrate a strategy to modify PEI polymers via hydrazidation to create neutralized, stable, and multifunctional system for delivering siRNA molecules. Through substitution of the primary amino groups of PEI with neutral hydrazide groups, cross-linked nanoparticles with surface decorated with a model targeting ligands were generated. The neutral cross-linked siRNA nanoparticles not only showed favorable biocompatibility and cell internalization efficiency in vitro but also allowed for significant tissue uptake and gene silencing efficiency in zebrafish heart in vivo. Our study suggests transformation of conventional branched PEI into a neutral polymer that can lead to a new category of nonviral carriers, and the resulting functional delivery systems may be further explored for development of siRNA therapeutics for treating cardiovascular disease/injury.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Lu Gao
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Liu-Yi Meng
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Jing-Ming Xie
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Jing-Wei Xiong
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| |
Collapse
|
13
|
Raghunathan S, Goyal RK, Patel BM. Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy. Can J Physiol Pharmacol 2016; 95:260-267. [PMID: 28177689 DOI: 10.1139/cjpp-2016-0542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The regulatory paradigm in cardiac hypertrophy involves alterations in gene expression that is mediated by chromatin remodeling. Various data suggest that class I and class II histone deacetylases (HDACs) play opposing roles in the regulation of hypertrophic pathways. To address this, we tested the effect of magnesium valproate (MgV), an HDAC inhibitor with 5 times more potency on class I HDACs. Cardiac hypertrophy was induced by partial abdominal aortic constriction in Wistar rats, and at the end of 6 weeks, we evaluated hypertrophic, hemodynamic, and oxidative stress parameters, and mitochondrial DNA concentration. Treatment with MgV prevented cardiac hypertrophy, improved hemodynamic functions, prevented oxidative stress, and increased mitochondrial DNA concentration. MgV treatment also increased the survival rate of the animals as depicted by the Kaplan-Meier curve. Improvement in hypertrophy due to HDAC inhibition was further confirmed by HDAC mRNA expression studies, which revealed that MgV decreases expression of pro-hypertrophic HDAC (i.e., HDAC2) without altering the expression of anti-hypertrophic HDAC5. Selective class I HDAC inhibition is required for controlling cardiac hypertrophy. Newer HDAC inhibitors that are class I inhibitors and class II promoters can be designed to obtain "pan" or "dual" natural HDAC "regulators".
Collapse
Affiliation(s)
| | - Ramesh K Goyal
- b Delhi Pharmaceutical Sciences Research University, Delhi, India
| | - Bhoomika M Patel
- a Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India
| |
Collapse
|
14
|
Lemcke H, Peukert J, Voronina N, Skorska A, Steinhoff G, David R. Applying 3D-FRAP microscopy to analyse gap junction-dependent shuttling of small antisense RNAs between cardiomyocytes. J Mol Cell Cardiol 2016; 98:117-27. [DOI: 10.1016/j.yjmcc.2016.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
|
15
|
Kopechek JA, Carson AR, McTiernan CF, Chen X, Klein EC, Villanueva FS. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound. PLoS One 2016; 11:e0159751. [PMID: 27471848 PMCID: PMC4966949 DOI: 10.1371/journal.pone.0159751] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 07/07/2016] [Indexed: 01/29/2023] Open
Abstract
RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.
Collapse
Affiliation(s)
- Jonathan A. Kopechek
- Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Dept. of Bioengineering, University of Louisville, Louisville, KY, United States of America
| | - Andrew R. Carson
- Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Charles F. McTiernan
- Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xucai Chen
- Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Edwin C. Klein
- Dept. of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, United States of America
| | | |
Collapse
|
16
|
The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Strilakou A, Perelas A, Lazaris A, Papavdi A, Karkalousos P, Giannopoulou I, Kriebardis A, Panayiotides I, Liapi C. Immunohistochemical determination of the extracellular matrix modulation in a rat model of choline-deprived myocardium: the effects of carnitine. Fundam Clin Pharmacol 2015; 30:47-57. [PMID: 26501493 DOI: 10.1111/fcp.12163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/06/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
Abstract
Choline has been identified as an essential nutrient with crucial role in many vital biological functions. Recent studies have demonstrated that heart dysfunction can develop in the setting of choline deprivation even in the absence of underlying heart disease. Matrix metalloproteinases (MMPs) are responsible for extracellular matrix degradation, and the dysregulation of MMP-2 and MMP-9 has been involved in the pathogenesis of various cardiovascular disorders. The aim of the study was to investigate the role of MMPs and their inhibitors (TIMPs), in the pathogenesis of choline deficiency-induced cardiomyopathy, and the way they are affected by carnitine supplementation. Male Wistar Albino adult rats were divided into four groups and received standard or choline-deficient diet with or without L-carnitine in drinking water (0.15% w/v) for 1 month. Heart tissue immunohistochemistry for MMP-2, MMP-9, TIMP-1, and TIMP-2 was performed. Choline deficiency was associated with suppressed immunohistochemical expression of MMP-2 and an increased expression of TIMP-2 compared to control, while it had no impact on TIMP-1. MMP-9 expression was decreased without, however, reaching statistical significance. Carnitine did not affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. The pattern of TIMP and MMP modulation observed in a choline deficiency setting appears to promote fibrosis. Carnitine, although shown to suppress fibrosis, does not seem to affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. Further studies will be required to identify the mechanism underlying the beneficial effects of carnitine.
Collapse
Affiliation(s)
- Athina Strilakou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Apostolos Perelas
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Andreas Lazaris
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Asteria Papavdi
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Petros Karkalousos
- Department of Medical Laboratories, Technological Institute of Athens, Agiou Spyridonos and Dimitsanas Street, Egaleo, 12210, Athens, Greece
| | - Ioanna Giannopoulou
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Anastasios Kriebardis
- Department of Medical Laboratories, Technological Institute of Athens, Agiou Spyridonos and Dimitsanas Street, Egaleo, 12210, Athens, Greece
| | - Ioannis Panayiotides
- 2nd Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, 1Rimini Street, Chaidari, 12462, Athens, Greece
| | - Charis Liapi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| |
Collapse
|
18
|
Nadithe V, Liu R, Killinger BA, Movassaghian S, Kim NH, Moszczynska AB, Masters KS, Gellman SH, Merkel OM. Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery. Mol Pharm 2014; 12:362-74. [PMID: 25437915 PMCID: PMC4319696 DOI: 10.1021/mp5004724] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Amphiphilic nucleic acid carriers
have attracted strong interest.
Three groups of nylon-3 copolymers (poly-β-peptides) possessing
different cationic/hydrophobic content were evaluated as siRNA delivery
agents in this study. Their ability to condense siRNA was determined
in SYBR Gold assays. Their cytotoxicity was tested by MTT assays,
their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly
in the presence and absence of uptake inhibitors was assessed by flow
cytometry, and their transfection efficacies were studied by luciferase
knockdown in a cell line stably expressing luciferase (H1299/Luc).
Endosomal release was determined by confocal laser scanning microscopy
and colocalization with lysotracker. All polymers efficiently condensed
siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected
in hydrodynamic diameters smaller than that at N/P 1. Although several
formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes
yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry.
Luciferase knockdown (20–65%) was observed after transfection
with polyplexes made of the high molecular weight polymers that were
the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA
intracellularly even at negative zeta potential implies that they
mediate transport across cell membranes based on their amphiphilicity.
The cellular uptake route was determined to strongly depend on the
presence of cholesterol in the cell membrane. These polymers are,
therefore, very promising for siRNA delivery at reduced surface charge
and toxicity. Our study identified nylon-3 formulations at low N/P
ratios for effective gene knockdown, indicating that nylon-3 polymers
are a new, promising type of gene delivery agent.
Collapse
Affiliation(s)
- Venkatareddy Nadithe
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Patel BM, Desai VJ. Beneficial role of tamoxifen in experimentally induced cardiac hypertrophy. Pharmacol Rep 2014; 66:264-72. [DOI: 10.1016/j.pharep.2014.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/22/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022]
|