1
|
Names GR, Grindstaff JL, Westneat DF, Heidinger BJ. Climate change and its effects on body size and shape: the role of endocrine mechanisms. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220509. [PMID: 38310941 PMCID: PMC10838645 DOI: 10.1098/rstb.2022.0509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 02/06/2024] Open
Abstract
In many organisms, rapidly changing environmental conditions are inducing dramatic shifts in diverse phenotypic traits with consequences for fitness and population viability. However, the mechanisms that underlie these responses remain poorly understood. Endocrine signalling systems often influence suites of traits and are sensitive to changes in environmental conditions; they are thus ideal candidates for uncovering both plastic and evolved consequences of climate change. Here, we use body size and shape, a set of integrated traits predicted to shift in response to rising temperatures with effects on fitness, and insulin-like growth factor-1 as a case study to explore these ideas. We review what is known about changes in body size and shape in response to rising temperatures and then illustrate why endocrine signalling systems are likely to be critical in mediating these effects. Lastly, we discuss research approaches that will advance understanding of the processes that underlie rapid responses to climate change and the role endocrine systems will have. Knowledge of the mechanisms involved in phenotypic responses to climate change will be essential for predicting both the ecological and the long-term evolutionary consequences of a warming climate. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Gabrielle R. Names
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, Fargo, ND 58102, USA
- Biology Department, California Lutheran University, 60 West Olsen Road, Thousand Oaks, CA 91360, USA
| | | | - David F. Westneat
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, KY 40506, USA
| | - Britt J. Heidinger
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, Fargo, ND 58102, USA
| |
Collapse
|
2
|
Keller A, Bai H, Budinger S, Eliazer S, Hansen M, Konopka AR, Morales-Nebreda L, Najt CP, Prahlad V, Victorelli S, Vorland CJ, Yuan R, Rhoads TW, Mihaylova MM. The Third Annual Symposium of the Midwest Aging Consortium. J Gerontol A Biol Sci Med Sci 2024; 79:glad239. [PMID: 37804247 PMCID: PMC10799755 DOI: 10.1093/gerona/glad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 10/09/2023] Open
Abstract
The geroscience hypothesis suggests that addressing the fundamental mechanisms driving aging biology will prevent or mitigate the onset of multiple chronic diseases, for which the largest risk factor is advanced age. Research that investigates the root causes of aging is therefore of critical importance given the rising healthcare burden attributable to age-related diseases. The third annual Midwest Aging Consortium symposium was convened as a showcase of such research performed by investigators from institutions across the Midwestern United States. This report summarizes the work presented during a virtual conference across topics in aging biology, including immune function in the lung-particularly timely given the Corona Virus Immune Disease-2019 pandemic-along with the role of metabolism and nutrient-regulated pathways in cellular function with age, the influence of senescence on stem cell function and inflammation, and our evolving understanding of the mechanisms underlying observation of sex dimorphism in aging-related outcomes. The symposium focused on early-stage and emerging investigators, while including keynote presentations from leaders in the biology of aging field, highlighting the diversity and strength of aging research in the Midwest.
Collapse
Affiliation(s)
- Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, Ohio State University, Columbus, Ohio, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Susan Eliazer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Malene Hansen
- Buck Institute for Research on Aging, Novato, California, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Charles P Najt
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Colby J Vorland
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, USA
| | - Rong Yuan
- Geriatric Research Division, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Josefson CC, Hood WR. Understanding Patterns of Life History Trait Covariation in an Untapped Resource, the Lab Mouse. Physiol Biochem Zool 2023; 96:321-331. [PMID: 37713715 DOI: 10.1086/725435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
AbstractThrough artificial selection and inbreeding, strains of laboratory mice have been developed that vary in the expression of a single or suite of desired traits valuable to biomedical research. In addition to the selected trait(s), these strains also display variation in pelage color, body size, physiology, and life history. This article exploits the broad phenotypic variation across lab mouse strains to evaluate the relationships between life history and metabolism. Life history variation tends to exist along a fast-slow continuum. There has been considerable interest in understanding the ecological and evolutionary factors underlying life history variation and the physiological and metabolic processes that support them. Yet it remains unclear how these key traits scale across hierarchical levels, as ambiguous empirical support has been garnered at the intraspecific level. Within-species investigations have been thwarted by methodological constraints and environmental factors that obscure the genetic architecture underlying the hypothesized functional integration of life history and metabolic traits. In this analysis, we used the publicly available Mouse Phenome Database by the Jackson Laboratory to investigate the relationships among life history traits (e.g., body size, reproduction, and life span) and metabolic traits (e.g., daily energy expenditure and insulin-like growth factor 1 concentration). Our findings revealed significant variation in reproductive characteristics across strains of mice as well as relationships among life history and metabolic traits. We found evidence of variation along the fast-slow life history continuum, though the direction of some relationships among these traits deviated from interspecific predictions laid out in previous literature. Furthermore, our results suggest that the strength of these relationships are strongest earlier in life.
Collapse
|
4
|
McQuail JA, Dunn AR, Stern Y, Barnes CA, Kempermann G, Rapp PR, Kaczorowski CC, Foster TC. Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies. Front Aging Neurosci 2021; 12:607685. [PMID: 33551788 PMCID: PMC7859530 DOI: 10.3389/fnagi.2020.607685] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review article is to provide a resource for longitudinal studies, using animal models, directed at understanding and modifying the relationship between cognition and brain structure and function throughout life. We propose that forthcoming longitudinal studies will build upon a wealth of knowledge gleaned from prior cross-sectional designs to identify early predictors of variability in cognitive function during aging, and characterize fundamental neurobiological mechanisms that underlie the vulnerability to, and the trajectory of, cognitive decline. Finally, we present examples of biological measures that may differentiate mechanisms of the cognitive reserve at the molecular, cellular, and network level.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Carol A. Barnes
- Departments of Psychology and Neuroscience, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Gerd Kempermann
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers (HZ), Dresden, Germany
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, MD, United States
| | | | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Wilches R, Beluch WH, McConnell E, Tautz D, Chan YF. Independent evolution toward larger body size in the distinctive Faroe Island mice. G3-GENES GENOMES GENETICS 2021; 11:6062402. [PMID: 33561246 PMCID: PMC8022703 DOI: 10.1093/g3journal/jkaa051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022]
Abstract
Most phenotypic traits in nature involve the collective action of many genes. Traits that evolve repeatedly are particularly useful for understanding how selection may act on changing trait values. In mice, large body size has evolved repeatedly on islands and under artificial selection in the laboratory. Identifying the loci and genes involved in this process may shed light on the evolution of complex, polygenic traits. Here, we have mapped the genetic basis of body size variation by making a genetic cross between mice from the Faroe Islands, which are among the largest and most distinctive natural populations of mice in the world, and a laboratory mouse strain selected for small body size, SM/J. Using this F2 intercross of 841 animals, we have identified 111 loci controlling various aspects of body size, weight and growth hormone levels. By comparing against other studies, including the use of a joint meta-analysis, we found that the loci involved in the evolution of large size in the Faroese mice were largely independent from those of a different island population or other laboratory strains. We hypothesize that colonization bottleneck, historical hybridization, or the redundancy between multiple loci have resulted in the Faroese mice achieving an outwardly similar phenotype through a distinct evolutionary path.
Collapse
Affiliation(s)
- Ricardo Wilches
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - William H Beluch
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Ellen McConnell
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Genetics, 24306 Plön, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Genetics, 24306 Plön, Germany
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Kruempel JC, Howington MB, Leiser SF. Computational tools for geroscience. TRANSLATIONAL MEDICINE OF AGING 2019; 3:132-143. [PMID: 33241167 PMCID: PMC7685266 DOI: 10.1016/j.tma.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The rapid progress of the past three decades has led the geroscience field near a point where human interventions in aging are plausible. Advances across scientific areas, such as high throughput "-omics" approaches, have led to an exponentially increasing quantity of data available for biogerontologists. To best translate the lifespan and healthspan extending interventions discovered by basic scientists into preventative medicine, it is imperative that the current data are comprehensively utilized to generate testable hypotheses about translational interventions. Building a translational pipeline for geroscience will require both systematic efforts to identify interventions that extend healthspan across taxa and diagnostics that can identify patients who may benefit from interventions prior to the onset of an age-related morbidity. Databases and computational tools that organize and analyze both the wealth of information available on basic biogerontology research and clinical data on aging populations will be critical in developing such a pipeline. Here, we review the current landscape of databases and computational resources available for translational aging research. We discuss key platforms and tools available for aging research, with a focus on how each tool can be used in concert with hypothesis driven experiments to move closer to human interventions in aging.
Collapse
Affiliation(s)
- Joseph C.P. Kruempel
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marshall B. Howington
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott F. Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Csiszar A, Balasubramanian P, Tarantini S, Yabluchanskiy A, Zhang XA, Springo Z, Benbrook D, Sonntag WE, Ungvari Z. Chemically induced carcinogenesis in rodent models of aging: assessing organismal resilience to genotoxic stressors in geroscience research. GeroScience 2019; 41:209-227. [PMID: 31037472 DOI: 10.1007/s11357-019-00064-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
There is significant overlap between the cellular and molecular mechanisms of aging and pathways contributing to carcinogenesis, including the role of genome maintenance pathways. In the field of geroscience analysis of novel genetic mouse models with either a shortened, or an extended, lifespan provides a unique opportunity to evaluate the synergistic roles of longevity assurance pathways in cancer resistance and regulation of lifespan and to develop novel targets for interventions that both delay aging and prevent carcinogenesis. There is a growing need for robust assays to assess the susceptibility of cancer in these models. The present review focuses on a well-characterized method frequently used in cancer research, which can be adapted to study resilience to genotoxic stress and susceptibility to genotoxic stress-induced carcinogenesis in geroscience research namely, chemical carcinogenesis induced by treatment with 7,12-dimethylbenz(a)anthracene (DMBA). Recent progress in understanding how longer-living mice may achieve resistance to chemical carcinogenesis and how these pathways are modulated by anti-aging interventions is reviewed. Strain-specific differences in sensitivity to DMBA-induced carcinogenesis are also explored and contrasted with mouse lifespan. The clinical relevance of inhibition of DMBA-induced carcinogenesis for the pathogenesis of mammary adenocarcinomas in older human subjects is discussed. Finally, the potential role of insulin-like growth factor-1 (IGF-1) in the regulation of pathways responsible for cellular resilience to DMBA-induced mutagenesis is discussed.
Collapse
Affiliation(s)
- Anna Csiszar
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priya Balasubramanian
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zsolt Springo
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Doris Benbrook
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary. .,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary. .,Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
8
|
Hook M, Roy S, Williams EG, Bou Sleiman M, Mozhui K, Nelson JF, Lu L, Auwerx J, Williams RW. Genetic cartography of longevity in humans and mice: Current landscape and horizons. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2718-2732. [PMID: 29410319 PMCID: PMC6066442 DOI: 10.1016/j.bbadis.2018.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022]
Abstract
Aging is a complex and highly variable process. Heritability of longevity among humans and other species is low, and this finding has given rise to the idea that it may be futile to search for DNA variants that modulate aging. We argue that the problem in mapping longevity genes is mainly one of low power and the genetic and environmental complexity of aging. In this review we highlight progress made in mapping genes and molecular networks associated with longevity, paying special attention to work in mice and humans. We summarize 40 years of linkage studies using murine cohorts and 15 years of studies in human populations that have exploited candidate gene and genome-wide association methods. A small but growing number of gene variants contribute to known longevity mechanisms, but a much larger set have unknown functions. We outline these and other challenges and suggest some possible solutions, including more intense collaboration between research communities that use model organisms and human cohorts. Once hundreds of gene variants have been linked to differences in longevity in mammals, it will become feasible to systematically explore gene-by-environmental interactions, dissect mechanisms with more assurance, and evaluate the roles of epistasis and epigenetics in aging. A deeper understanding of complex networks-genetic, cellular, physiological, and social-should position us well to improve healthspan.
Collapse
Affiliation(s)
- Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - Maroun Bou Sleiman
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James F Nelson
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johan Auwerx
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
9
|
Wang J, Chen X, Osland J, Gerber SJ, Luan C, Delfino K, Goodwin L, Yuan R. Deletion of Nrip1 Extends Female Mice Longevity, Increases Autophagy, and Delays Cell Senescence. J Gerontol A Biol Sci Med Sci 2018; 73:882-892. [PMID: 29346516 PMCID: PMC6001896 DOI: 10.1093/gerona/glx257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022] Open
Abstract
Using age of female sexual maturation as a biomarker, we previously identified nuclear receptor interacting protein 1 (Nrip1) as a candidate gene that may regulate aging and longevity. In the current report, we found that the deletion of Nrip1 can significantly extend longevity of female mice (log-rank test, p = .0004). We also found that Nrip1 expression is altered differently in various tissues during aging and under diet restriction. Remarkably, Nrip1 expression is elevated with aging in visceral white adipose tissue (WAT), but significantly reduced after 4 months of diet restriction. However, in gastrocnemius muscle, Nrip1 expression is significantly upregulated after the diet restriction. In mouse embryonic fibroblasts, we found that the deletion of Nrip1 can suppress fibroblast proliferation, enhance autophagy under normal culture or amino acid starvation conditions, as well as delay oxidative and replicative senescence. Importantly, in WAT of old animals, the deletion of the Nrip could significantly upregulate autophagy and reduce the number of senescent cells. These results suggest that deleting Nrip1 can extend female longevity, but tissue-specific deletion may have varying effects on health span. The deletion of Nrip1 in WAT may delay senescence in WAT and extend health span.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, P. R. China
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| | - Xundi Chen
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
- Department of Molecular Biology, Microbiology and Biochemistry, Southern Illinois University School of Medicine, Springfield
| | - Jared Osland
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| | - Skyler J Gerber
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
- Department of Molecular Biology, Microbiology and Biochemistry, Southern Illinois University School of Medicine, Springfield
| | - Chao Luan
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
- Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology Nanjing, P. R. China
| | - Kristin Delfino
- Department of Surgery, Center for Clinical Research, Southern Illinois University School of Medicine, Springfield
| | | | - Rong Yuan
- Department of Internal Medicine, Division of Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| |
Collapse
|
10
|
Hullinger R, Puglielli L. Molecular and cellular aspects of age-related cognitive decline and Alzheimer's disease. Behav Brain Res 2016; 322:191-205. [PMID: 27163751 DOI: 10.1016/j.bbr.2016.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 01/14/2023]
Abstract
As the population of people aged 60 or older continues to rise, it has become increasingly important to understand the molecular basis underlying age-related cognitive decline. In fact, a better understanding of aging biology will help us identify ways to maintain high levels of cognitive functioning throughout the aging process. Many cellular and molecular aspects of brain aging are shared with other organ systems; however, certain age-related changes are unique to the nervous system due to its structural, cellular and molecular complexity. Importantly, the brain appears to show differential changes throughout the aging process, with certain regions (e.g. frontal and temporal regions) being more vulnerable than others (e.g. brain stem). Within the medial temporal lobe, the hippocampus is especially susceptible to age-related changes. The important role of the hippocampus in age-related cognitive decline and in vulnerability to disease processes such as Alzheimer's disease has prompted this review, which will focus on the complexity of changes that characterize aging, and on the molecular connections that exist between normal aging and Alzheimer's disease. Finally, it will discuss behavioral interventions and emerging insights for promoting healthy cognitive aging.
Collapse
Affiliation(s)
- Rikki Hullinger
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Geriatric Research Education Clinical Center, VA Medical Center, Madison, WI 53705, USA.
| |
Collapse
|
11
|
A Chromosome 13 locus is associated with male-specific mortality in mice. Aging Clin Exp Res 2016; 28:59-67. [PMID: 25995165 DOI: 10.1007/s40520-015-0370-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIM Mortality is a highly complex trait influenced by a wide array of genetic factors. METHODS We examined a population of 1200 mice that were F2 generation offspring of a 4-way reciprocal cross between C57BL6/J and DBA2/J strains. Animals were sacrificed at age 200, 500, or 800 days and genotyped at 96 markers. The 800 days old cohort, which were the survivors of a much larger breeding group, were examined for enriched frequency of alleles that benefit survival and depletion of alleles that reduce survival. RESULTS Loci on Chr 13 in males and on Chr X in females were significantly distorted from Mendelian expectations, even after conservative correction for multiple testing. DBA2/J alleles between 35 and 80 Mb on Chr 13 were underrepresented in the age 800 male animals. D2 genotypes in this region were also associated with premature death during behavioral testing. Furthermore, confirmatory analysis showed BXD recombinant inbred strains carrying the D2 alleles in this region had shorter median survival. Exploration of available pathology data indicated that a syndrome involving dental malocclusions, pancreatic islet hypertrophy, and kidney lipidosis may have mediated the effects of DBA alleles on mortality specifically in male mice. The heterozygote advantage locus on the X Chr was not found to be associated with any pathology. CONCLUSIONS These results suggest a novel locus influencing survival in the B6/D2 genetic background, perhaps via a metabolic disorder that emerges by 200 days of age in male animals.
Collapse
|
12
|
Abstract
The somatotropic signaling pathway has been implicated in aging and longevity studies in mice and other species. The physiology and lifespans of a variety of mutant mice, both spontaneous and genetically engineered, have contributed to our current understanding of the role of growth hormone and insulin-like growth factor I on aging-related processes. Several other mice discovered to live longer than their wild-type control counterparts also exhibit differences in growth factor levels; however, the complex nature of the phenotypic changes in these animals may also impact lifespan. The somatotropic axis impacts several pathways that dictate insulin sensitivity, nutrient sensing, mitochondrial function, and stress resistance as well as others that are thought to be involved in lifespan regulation.
Collapse
Affiliation(s)
- H M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
13
|
Ackert-Bicknell CL, Anderson LC, Sheehan S, Hill WG, Chang B, Churchill GA, Chesler EJ, Korstanje R, Peters LL. Aging Research Using Mouse Models. ACTA ACUST UNITED AC 2015; 5:95-133. [PMID: 26069080 DOI: 10.1002/9780470942390.mo140195] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in "health-span," or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, and immune function, as well as physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process.
Collapse
Affiliation(s)
- Cheryl L Ackert-Bicknell
- The Jackson Laboratory, Bar Harbor, Maine.,Present address: University of Rochester, Department of Orthopaedics and Rehabilitation, Rochester, New York
| | | | | | - Warren G Hill
- Laboratory of Voiding Dysfunction, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine
| | | | | | | | | |
Collapse
|
14
|
Bogue MA, Peters LL, Paigen B, Korstanje R, Yuan R, Ackert-Bicknell C, Grubb SC, Churchill GA, Chesler EJ. Accessing Data Resources in the Mouse Phenome Database for Genetic Analysis of Murine Life Span and Health Span. J Gerontol A Biol Sci Med Sci 2014; 71:170-7. [PMID: 25533306 PMCID: PMC4707687 DOI: 10.1093/gerona/glu223] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/28/2014] [Indexed: 01/18/2023] Open
Abstract
Understanding the source of genetic variation in aging and using this variation to define the molecular mechanisms of healthy aging require deep and broad quantification of a host of physiological, morphological, and behavioral endpoints. The murine model is a powerful system in which to understand the relations across age-related phenotypes and to identify research models with variation in life span and health span. The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging has performed broad characterization of aging in genetically diverse laboratory mice and has placed these data, along with data from several other major aging initiatives, into the interactive Mouse Phenome Database. The data may be accessed and analyzed by researchers interested in finding mouse models for specific aging processes, age-related health and disease states, and for genetic analysis of aging variation and trait covariation. We expect that by placing these data in the hands of the aging community that there will be (a) accelerated genetic analyses of aging processes, (b) discovery of genetic loci regulating life span, (c) identification of compelling correlations between life span and susceptibility for age-related disorders, and (d) discovery of concordant genomic loci influencing life span and aging phenotypes between mouse and humans.
Collapse
Affiliation(s)
- Molly A Bogue
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine.
| | - Luanne L Peters
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Beverly Paigen
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Ron Korstanje
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Rong Yuan
- Southern Illinois University School of Medicine, Springfield
| | - Cheryl Ackert-Bicknell
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Stephen C Grubb
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Gary A Churchill
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Elissa J Chesler
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| |
Collapse
|
15
|
Yuan R, Gatti DM, Krier R, Malay E, Schultz D, Peters LL, Churchill GA, Harrison DE, Paigen B. Genetic Regulation of Female Sexual Maturation and Longevity Through Circulating IGF1. J Gerontol A Biol Sci Med Sci 2014; 70:817-26. [PMID: 25070661 DOI: 10.1093/gerona/glu114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/11/2014] [Indexed: 01/27/2023] Open
Abstract
We previously reported that insulin-like growth factor 1 (IGF1) was involved in coregulating female sexual maturation and longevity. To understand the underlying genetic mechanisms, based on the strain survey assays of development and aging traits, we crossed two mouse strains, KK/HIJ and PL/J, and produced 307 female F2 mice. We observed the age of vaginal patency (AVP) and the life span of these females. We also measured circulating IGF1 level at 7, 16, 24, 52, and 76 weeks. IGF1 level at 7 weeks significantly correlated with AVP. IGF1 levels at ages of 52 and 76 weeks negatively correlated with longevity (p ≤ .05). A gene mapping study found 22, 4 ,and 3 quantitative trait loci for IGF1, AVP, and life span, respectively. Importantly, the colocalization of IGF1, AVP, and life span quantitative trait loci in the distal region of chromosome 2 suggests this locus carries gene(s) that could regulate IGF1, AVP, and life span. In this region, proprotein convertase subtilisin/kexin type 2 has been found to be associated with female sexual maturation in a human genome-wide association study. We verified the roles of proprotein convertase subtilisin/kexin type 2 in regulating IGF1 and AVP by showing that depletion of proprotein convertase subtilisin/kexin type 2 significantly reduced IGF1 and delayed AVP in mice, suggesting that it also might be involved in the regulation of aging.
Collapse
Affiliation(s)
- Rong Yuan
- The Jackson Laboratory, Bar Harbor, Maine. Geriatric Research Division, Internal Medicine, School of Medicine, Southern Illinois University, Springfield.
| | | | - Rebecca Krier
- The Jackson Laboratory, Bar Harbor, Maine. Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
16
|
Xu J, Gontier G, Chaker Z, Lacube P, Dupont J, Holzenberger M. Longevity effect of IGF-1R(+/-) mutation depends on genetic background-specific receptor activation. Aging Cell 2014; 13:19-28. [PMID: 23898955 PMCID: PMC4326867 DOI: 10.1111/acel.12145] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2013] [Indexed: 12/22/2022] Open
Abstract
Growth hormone (GH) and insulin-like growth factor (IGF) signaling regulates lifespan in mice. The modulating effects of genetic background gained much attention because it was shown that life-prolonging effects in Snell dwarf and GH receptor knockout vary between mouse strains. We previously reported that heterozygous IGF-1R inactivation (IGF-1R(+/-) ) extends lifespan in female mice on 129/SvPas background, but it remained unclear whether this mutation produces a similar effect in other genetic backgrounds and which molecules possibly modify this effect. Here, we measured the life-prolonging effect of IGF-1R(+/-) mutation in C57BL/6J background and investigated the role of insulin/IGF signaling molecules in strain-dependent differences. We found significant lifespan extension in female IGF-1R(+/-) mutants on C57BL/6J background, but the effect was smaller than in 129/SvPas, suggesting strain-specific penetrance of longevity phenotypes. Comparing GH/IGF pathways between wild-type 129/SvPas and C57BL/6J mice, we found that circulating IGF-I and activation of IGF-1R, IRS-1, and IRS-2 were markedly elevated in 129/SvPas, while activation of IGF pathways was constitutively low in spontaneously long-lived C57BL/6J mice. Importantly, we demonstrated that loss of one IGF-1R allele diminished the level of activated IGF-1R and IRS more profoundly and triggered stronger endocrine feedback in 129/SvPas background than in C57BL/6J. We also revealed that acute oxidative stress entails robust IGF-1R pathway activation, which could account for the fact that IGF-1R(+/-) stress resistance phenotypes are fully penetrant in both backgrounds. Together, these results provide a possible explanation why IGF-1R(+/-) was less efficient in extending lifespan in C57BL/6J compared with 129/SvPas.
Collapse
Affiliation(s)
- Jie Xu
- INSERM; Hôpital Saint-Antoine; Paris 75012 France
- Université Pierre et Marie Curie; UPMC; Paris 75005 France
| | - Géraldine Gontier
- INSERM; Hôpital Saint-Antoine; Paris 75012 France
- Université Pierre et Marie Curie; UPMC; Paris 75005 France
| | - Zayna Chaker
- INSERM; Hôpital Saint-Antoine; Paris 75012 France
- Université Pierre et Marie Curie; UPMC; Paris 75005 France
- Faculté de Médecine; Université Paris Descartes; Paris 75006 France
| | - Philippe Lacube
- INSERM; Hôpital Saint-Antoine; Paris 75012 France
- Université Pierre et Marie Curie; UPMC; Paris 75005 France
| | - Joëlle Dupont
- INRA UMR7247; Nouzilly 37380 France
- CNRS UMR6175; Nouzilly 37380 France
- Université François Rabelais; Tours 37041 France
| | - Martin Holzenberger
- INSERM; Hôpital Saint-Antoine; Paris 75012 France
- Université Pierre et Marie Curie; UPMC; Paris 75005 France
| |
Collapse
|
17
|
Integrated Genomics Approaches in Evolutionary and Ecological Endocrinology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:299-319. [DOI: 10.1007/978-94-007-7347-9_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Marissal-Arvy N, Duron E, Parmentier F, Zizzari P, Mormède P, Epelbaum J. QTLs influencing IGF-1 levels in a LOU/CxFischer 344F2 rat population. Tracks towards the metabolic theory of Ageing. Growth Horm IGF Res 2013; 23:220-228. [PMID: 24028904 DOI: 10.1016/j.ghir.2013.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/29/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Since a reduction of the insulin/IGF-1 signaling cascade extends life span in many species and IGF-1 signaling might partly mediate the effects of caloric restriction (CR), an experimental intervention for increasing longevity, the purpose of the present study was to use quantitative trait loci (QTL) analysis, an unbiased genetic approach, to identify particular regions of the genome influencing plasma IGF-1 levels in an F2 intercross between F344 and LOU/C rats; the latter being an inbred strain of Wistar origin, considered as a model of healthy aging since it resists to age (and diet)-induced obesity. DESIGN F1 hybrids were obtained by crossbreeding LOU/C with F344 rats, and then F1 were bred inter se to obtain the F2 population, of which 93 males and 94 females were studied. Total plasma IGF-1 levels were determined by radioimmunoassay. A genome scan of the F2 population was made with 100 microsatellite markers) selected for their polymorphism between LOU/C and F344 strains (and by covering evenly the whole genome. RESULTS By simple interval mapping sex-dependent QTLs were found on chromosome 17 in males and on chromosome 18 in females. By multiple interval mapping, additional QTLs were found on chromosomes 1, 4, 5, 6, 12, 15 and 19 in males and on chromosomes 3, 5, 6, 12 and 17 in females. Only the markers D1Rat196 and D12Mgh5 were found in both males and females. The majority of QTLs corresponded to metabolic syndrome (cardiac function: n = 45 (30%), obesity/diabetes: n = 22 (15%), inflammation: n = 19 (13%) and only a limited number to body weight: n = 13 (9%), proliferation (n = 10 (7%) or ossification: n = 7 (5%). Ninety-six candidate genes were located on the different QTLs. A significant proportion of these genes are connected to IGF-1 production and receptor pathways (n = 18) or metabolic syndrome (n = 11). CONCLUSIONS Subsequent studies are necessary to determine whether the genetic networks underscored are also involved in age-associated obesity, diabetes and inflammation as well as cardiovascular impairments.
Collapse
Affiliation(s)
- Nathalie Marissal-Arvy
- INRA, Laboratory of Nutrition and Integrative Neurobiology, UMR1286, 33076 Bordeaux Cedex, France; Univ. Bordeaux, Laboratory of Nutrition and Integrative Neurobiology, UMR1286, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
Demeure O, Duclos MJ, Bacciu N, Le Mignon G, Filangi O, Pitel F, Boland A, Lagarrigue S, Cogburn LA, Simon J, Le Roy P, Le Bihan-Duval E. Genome-wide interval mapping using SNPs identifies new QTL for growth, body composition and several physiological variables in an F2 intercross between fat and lean chicken lines. Genet Sel Evol 2013; 45:36. [PMID: 24079476 PMCID: PMC3851061 DOI: 10.1186/1297-9686-45-36] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 09/10/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For decades, genetic improvement based on measuring growth and body composition traits has been successfully applied in the production of meat-type chickens. However, this conventional approach is hindered by antagonistic genetic correlations between some traits and the high cost of measuring body composition traits. Marker-assisted selection should overcome these problems by selecting loci that have effects on either one trait only or on more than one trait but with a favorable genetic correlation. In the present study, identification of such loci was done by genotyping an F2 intercross between fat and lean lines divergently selected for abdominal fatness genotyped with a medium-density genetic map (120 microsatellites and 1302 single nucleotide polymorphisms). Genome scan linkage analyses were performed for growth (body weight at 1, 3, 5, and 7 weeks, and shank length and diameter at 9 weeks), body composition at 9 weeks (abdominal fat weight and percentage, breast muscle weight and percentage, and thigh weight and percentage), and for several physiological measurements at 7 weeks in the fasting state, i.e. body temperature and plasma levels of IGF-I, NEFA and glucose. Interval mapping analyses were performed with the QTLMap software, including single-trait analyses with single and multiple QTL on the same chromosome. RESULTS Sixty-seven QTL were detected, most of which had never been described before. Of these 67 QTL, 47 were detected by single-QTL analyses and 20 by multiple-QTL analyses, which underlines the importance of using different statistical models. Close analysis of the genes located in the defined intervals identified several relevant functional candidates, such as ACACA for abdominal fatness, GHSR and GAS1 for breast muscle weight, DCRX and ASPSCR1 for plasma glucose content, and ChEBP for shank diameter. CONCLUSIONS The medium-density genetic map enabled us to genotype new regions of the chicken genome (including micro-chromosomes) that influenced the traits investigated. With this marker density, confidence intervals were sufficiently small (14 cM on average) to search for candidate genes. Altogether, this new information provides a valuable starting point for the identification of causative genes responsible for important QTL controlling growth, body composition and metabolic traits in the broiler chicken.
Collapse
Affiliation(s)
- Olivier Demeure
- INRA, UMR1348 PEGASE, 35042 Rennes, France
- Agrocampus Ouest, UMR1348 PEGASE, 35042 Rennes, France
| | | | - Nicola Bacciu
- INRA, UMR1348 PEGASE, 35042 Rennes, France
- Agrocampus Ouest, UMR1348 PEGASE, 35042 Rennes, France
| | - Guillaume Le Mignon
- INRA, UMR1348 PEGASE, 35042 Rennes, France
- Agrocampus Ouest, UMR1348 PEGASE, 35042 Rennes, France
| | - Olivier Filangi
- INRA, UMR1348 PEGASE, 35042 Rennes, France
- Agrocampus Ouest, UMR1348 PEGASE, 35042 Rennes, France
| | - Frédérique Pitel
- INRA, UMR444 Génétique Cellulaire, 31326 Castanet-Tolosan, France
| | - Anne Boland
- CEA, IG, Centre National de Génotypage, 2 rue Gaston-Crémieux, CP 5721, 91057 Evry, France
| | - Sandrine Lagarrigue
- INRA, UMR1348 PEGASE, 35042 Rennes, France
- Agrocampus Ouest, UMR1348 PEGASE, 35042 Rennes, France
| | - Larry A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | - Jean Simon
- INRA, UR83 Recherches Avicoles, 37380 Nouzilly, France
| | - Pascale Le Roy
- INRA, UMR1348 PEGASE, 35042 Rennes, France
- Agrocampus Ouest, UMR1348 PEGASE, 35042 Rennes, France
| | | |
Collapse
|
20
|
The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. Ageing Res Rev 2013; 12:8-21. [PMID: 22543101 DOI: 10.1016/j.arr.2012.03.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 12/29/2022]
Abstract
The mouse has become the favorite mammalian model. Among the many reasons for this privileged position of mice is their genetic proximity to humans, the possibilities of genetically manipulating their genomes and the availability of many tools, mutants and inbred strains. Also in the field of aging, mice have become very robust and reliable research tools. Since laboratory mice have a life expectancy of only a few years, genetic approaches and other strategies for intervening in aging can be tested by examining their effects on life span and aging parameters during the relatively short period of, for example, a PhD project. Moreover, experiments on mice with an extended life span as well as on mice demonstrating signs of (segmental) premature aging, together with genetic mapping strategies, have provided novel insights into the fundamental processes that drive aging. Finally, the results of studies on caloric restriction and pharmacological anti-aging treatments in mice have a high degree of relevance to humans. In this paper, we review a number of recent genetic mapping studies that have yielded novel insights into the aging process. We discuss the value of the mouse as a model for testing interventions in aging, such as caloric restriction, and we critically discuss mouse strains with an extended or a shortened life span as models of aging.
Collapse
|
21
|
Suto JI. Quantitative trait locus mapping of genes that control body length and plasma insulin-like growth factor 1 level in mice. BMC Res Notes 2012; 5:547. [PMID: 23031221 PMCID: PMC3517383 DOI: 10.1186/1756-0500-5-547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Ay allele at the agouti locus causes obesity and promotes linear growth in mice. The effect of the Ay allele on obesity has been extensively investigated, whereas its effect on body length is only poorly analyzed. To gain insight into the genetic control of body length, quantitative trait locus (QTL) analysis was performed in F2 female mice produced by crossing C57BL/6 J females and DDD.Cg-Ay males. A congenic DDD.Cg-Ay strain was established by introgressing the Ay allele from the B6.Cg-Ay strain by backcrossing for 12 generations. DDD.Cg-Ay females were longer than B6.Cg-Ay females; therefore, QTLs that interact with the Ay allele may be identified for body length. In addition, QTL analysis was also performed for plasma insulin-like growth factor 1 (IGF1) levels because IGF1 is known to play essential roles in growth and development. If QTLs for IGF1 levels coincide with those for body length, we can gain endocrinological insight into the QTLs for body length. RESULTS Correlations between body length and IGF1 levels were statistically significant in F2 populations. For body length, two significant QTLs were identified on chromosomes 15 and 17. For IGF1 levels, three significant QTLs were identified on chromosomes 10, 12, and 19. QTLs on chromosomes 12 and 19 appeared to be novel, and the latter interacted with the Ay allele. CONCLUSION QTLs for body length and IGF1 levels contained candidate genes that were components of the growth hormone/insulin-like growth factor axis. However, there was no overlap between QTLs for these two traits. Contrary to our expectations, QTLs that interacted with the Ay allele were identified not for body length but for IGF1 levels. Body length and IGF1 levels were, thus, controlled by different sets of genes.
Collapse
Affiliation(s)
- Jun-Ichi Suto
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
22
|
Yuan R, Flurkey K, Meng Q, Astle MC, Harrison DE. Genetic regulation of life span, metabolism, and body weight in Pohn, a new wild-derived mouse strain. J Gerontol A Biol Sci Med Sci 2012; 68:27-35. [PMID: 22570136 DOI: 10.1093/gerona/gls104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantitative trait loci (QTL) of longevity identified in human and mouse are significantly colocalized, suggesting that common mechanisms are involved. However, the limited number of strains that have been used in mouse longevity studies undermines the ability to identify longevity genes. We crossed C57BL/6J mice with a new wild-derived strain, Pohn, and identified two life span QTL-Ls1 and Ls2. Interestingly, homologous human longevity QTL colocalize with Ls1. We also defined new QTL for metabolic heat production and body weight. Both phenotypes are significantly correlated with life span. We found that large clone ratio, an in vitro indicator for cellular senescence, is not correlated with life span, suggesting that cell senescence and intrinsic aging are not always associated. Overall, by using Pohn mice, we identified new QTL for longevity-related traits, thus facilitating the exploration of the genetic regulation of aging.
Collapse
Affiliation(s)
- Rong Yuan
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | |
Collapse
|
23
|
Genetic coregulation of age of female sexual maturation and lifespan through circulating IGF1 among inbred mouse strains. Proc Natl Acad Sci U S A 2012; 109:8224-9. [PMID: 22566614 DOI: 10.1073/pnas.1121113109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We previously reported that mouse strains with lower circulating insulin-like growth factor 1 (IGF1) level at 6 mo have significantly extended longevity. Here we report that strains with lower IGF1 have significantly delayed age of female sexual maturation, measured by vaginal patency (VP). Among strains with normal lifespans (mean lifespan >600 d), delayed age of VP associated with greater longevity (P = 0.015), suggesting a genetically regulated tradeoff at least partly mediated by IGF1. Supporting this hypothesis, C57BL/6J females had 9% lower IGF1, 6% delayed age of VP, and 24% extended lifespan compared with C57BL/6J.C3H/HeJ-Igf1, which carries a C3H/HeJ allele on chromosome (Chr) 10 that increases IGF1. To identify genetic loci/genes that regulate female sexual maturation, including loci that mediate lifespan tradeoffs, we performed haplotype association mapping for age of VP and identified significant loci on Chrs 4 (Vpq1) and 16 (Vpq2 and 3). At each locus, wild-derived strains share a unique haplotype that associates with delayed VP. Substitution of Chr 16 of C57BL/6J with Chr 16 from a wild-derived strain significantly reduced IGF1 and delayed VP. Strains with a wild-derived allele at Vpq3 have significantly extended longevity compared with strains with other alleles. Bioinformatic analysis identified Nrip1 at Vpq3 as a candidate gene. Nrip1(-/-) females have significantly reduced IGF1 and delayed age of VP compared with Nrip1(+/+) females. We conclude that IGF1 may coregulate female sexual maturation and longevity; wild-derived strains carry specific alleles that delay sexual maturation; and Nrip1 is involved in regulating sexual maturation and may affect longevity by regulating IGF1 level.
Collapse
|
24
|
Murabito JM, Yuan R, Lunetta KL. The search for longevity and healthy aging genes: insights from epidemiological studies and samples of long-lived individuals. J Gerontol A Biol Sci Med Sci 2012; 67:470-9. [PMID: 22499766 DOI: 10.1093/gerona/gls089] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic factors clearly contribute to exceptional longevity and healthy aging in humans, yet the identification of the underlying genes remains a challenge. Longevity is a complex phenotype with modest heritability. Age-related phenotypes with higher heritability may have greater success in gene discovery. Candidate gene and genome-wide association studies (GWAS) for longevity have had only limited success to date. The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium conducted a meta-analysis of GWAS data for longevity, defined as survival to age 90 years or older, that identified several interesting associations but none achieved genome-wide significance. A recent GWAS of longevity conducted in the Leiden Longevity Study identified the ApoE E4 isoform as deleterious to longevity that was confirmed in an independent GWAS of long-lived individuals of German descent. Notably, no other genetic loci for longevity have been identified in these GWAS. To examine the conserved genetic mechanisms between the mouse and humans for life span, we mapped the top Cohorts for Heart and Aging Research in Genomic Epidemiology GWAS associations for longevity to the mouse chromosomal map and noted that eight of the ten top human associations were located within a previously reported mouse life-span quantitative trait loci. This work suggests that the mouse and human may share mechanisms leading to aging and that the mouse model may help speed the understanding of how genes identified in humans affect the biology of aging. We expect these ongoing collaborations and the translational work with basic scientists to accelerate the identification of genes that delay aging and promote a healthy life span.
Collapse
Affiliation(s)
- Joanne M Murabito
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA 01702, USA.
| | | | | |
Collapse
|
25
|
Leduc MS, Blair RH, Verdugo RA, Tsaih SW, Walsh K, Churchill GA, Paigen B. Using bioinformatics and systems genetics to dissect HDL-cholesterol genetics in an MRL/MpJ x SM/J intercross. J Lipid Res 2012; 53:1163-75. [PMID: 22498810 DOI: 10.1194/jlr.m025833] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification.
Collapse
|
26
|
Wollam J, Magner DB, Magomedova L, Rass E, Shen Y, Rottiers V, Habermann B, Cummins CL, Antebi A. A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity. PLoS Biol 2012; 10:e1001305. [PMID: 22505847 PMCID: PMC3323522 DOI: 10.1371/journal.pbio.1001305] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 03/02/2012] [Indexed: 01/10/2023] Open
Abstract
Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs) regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity in metazoans.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Lilia Magomedova
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elisabeth Rass
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Yidong Shen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Veerle Rottiers
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Carolyn L. Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Adam Antebi
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
27
|
Kirschner J, Weber D, Neuschl C, Franke A, Böttger M, Zielke L, Powalsky E, Groth M, Shagin D, Petzold A, Hartmann N, Englert C, Brockmann GA, Platzer M, Cellerino A, Reichwald K. Mapping of quantitative trait loci controlling lifespan in the short-lived fish Nothobranchius furzeri--a new vertebrate model for age research. Aging Cell 2012; 11:252-61. [PMID: 22221414 PMCID: PMC3437503 DOI: 10.1111/j.1474-9726.2011.00780.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The African annual fish Nothobranchius furzeri emerged as a new model for age research over recent years. Nothobranchius furzeri show an exceptionally short lifespan, age-dependent cognitive/behavioral decline, expression of age-related biomarkers, and susceptibility to lifespan manipulation. In addition, laboratory strains differ largely in lifespan. Here, we set out to study the genetics of lifespan determination. We crossed a short- to a long-lived strain, recorded lifespan, and established polymorphic markers. On the basis of genotypes of 411 marker loci in 404 F(2) progeny, we built a genetic map comprising 355 markers at an average spacing of 5.5 cM, 22 linkage groups (LGs) and 1965 cM. By combining marker data with lifespan values, we identified one genome-wide highly significant quantitative trait locus (QTL) on LG 9 (P < 0.01), which explained 11.3% of the F(2) lifespan variance, and three suggestive QTLs on LG 11, 14, and 17. We characterized the highly significant QTL by synteny analysis, because a genome sequence of N. furzeri was not available. We located the syntenic region on medaka chromosome 5, identified candidate genes, and performed fine mapping, resulting in a c. 40% reduction of the initial 95% confidence interval. We show both that lifespan determination in N. furzeri is polygenic, and that candidate gene detection is easily feasible by cross-species analysis. Our work provides first results on the way to identify loci controlling lifespan in N. furzeri and illustrates the potential of this vertebrate species as a genetic model for age research.
Collapse
Affiliation(s)
- Jeanette Kirschner
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - David Weber
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Christina Neuschl
- Faculty of Agriculture and Horticulture, Department of Crop and Animal Sciences, Humboldt‐University, Berlin, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian‐Albrechts‐University, Kiel, Germany
| | - Marco Böttger
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Lea Zielke
- Faculty of Agriculture and Horticulture, Department of Crop and Animal Sciences, Humboldt‐University, Berlin, Germany
| | - Eileen Powalsky
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Marco Groth
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Dmitry Shagin
- Evrogen JSC, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Andreas Petzold
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Nils Hartmann
- Molecular Genetics, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Christoph Englert
- Molecular Genetics, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Gudrun A. Brockmann
- Faculty of Agriculture and Horticulture, Department of Crop and Animal Sciences, Humboldt‐University, Berlin, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Alessandro Cellerino
- Biology of Aging, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
- Scuola Normale Superiore, Pisa, Italy
| | - Kathrin Reichwald
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
28
|
Abstract
The Mouse Phenome Project was launched a decade ago to complement mouse genome sequencing efforts by promoting new phenotyping initiatives under standardized conditions and collecting the data in a central public database, the Mouse Phenome Database (MPD; http://phenome.jax.org). MPD houses a wealth of strain characteristics data to facilitate the use of the laboratory mouse in translational research for human health and disease, helping alleviate problems involving experimentation in humans that cannot be done practically or ethically. Data sets are voluntarily contributed by researchers from a variety of institutions and settings, or in some cases, retrieved by MPD staff from public sources. MPD maintains a growing collection of standardized reference data that assists investigators in selecting mouse strains for research applications; houses treatment/control data for drug studies and other interventions; offers a standardized platform for discovering genotype-phenotype relationships; and provides tools for hypothesis testing. MPD improvements and updates since our last NAR report are presented, including the addition of new tools and features to facilitate navigation and data mining as well as the acquisition of new data (phenotypic, genotypic and gene expression).
Collapse
Affiliation(s)
- Terry P Maddatu
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | |
Collapse
|
29
|
Leduc MS, Hageman RS, Verdugo RA, Tsaih SW, Walsh K, Churchill GA, Paigen B. Integration of QTL and bioinformatic tools to identify candidate genes for triglycerides in mice. J Lipid Res 2011; 52:1672-82. [PMID: 21622629 DOI: 10.1194/jlr.m011130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify genetic loci influencing lipid levels, we performed quantitative trait loci (QTL) analysis between inbred mouse strains MRL/MpJ and SM/J, measuring triglyceride levels at 8 weeks of age in F2 mice fed a chow diet. We identified one significant QTL on chromosome (Chr) 15 and three suggestive QTL on Chrs 2, 7, and 17. We also carried out microarray analysis on the livers of parental strains of 282 F2 mice and used these data to find cis-regulated expression QTL. We then narrowed the list of candidate genes under significant QTL using a "toolbox" of bioinformatic resources, including haplotype analysis; parental strain comparison for gene expression differences and nonsynonymous coding single nucleotide polymorphisms (SNP); cis-regulated eQTL in livers of F2 mice; correlation between gene expression and phenotype; and conditioning of expression on the phenotype. We suggest Slc25a7 as a candidate gene for the Chr 7 QTL and, based on expression differences, five genes (Polr3 h, Cyp2d22, Cyp2d26, Tspo, and Ttll12) as candidate genes for Chr 15 QTL. This study shows how bioinformatics can be used effectively to reduce candidate gene lists for QTL related to complex traits.
Collapse
|