1
|
Purali N. Fast calcium transients translate the distribution and conduction of neural activity in different regions of a single sensory neuron. INVERTEBRATE NEUROSCIENCE 2017; 17:7. [PMID: 28612144 DOI: 10.1007/s10158-017-0201-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023]
Abstract
In the present study, cytosolic calcium concentration changes were recorded in response to various forms of excitations, using the fluorescent calcium indicator dye OG-BAPTA1 together with the current or voltage clamp methods in stretch receptor neurons of crayfish. A single action potential evoked a rise in the resting calcium level in the axon and axonal hillock, whereas an impulse train or a large saturating current injection would be required to evoke an equivalent response in the dendrite region. Under voltage clamp conditions, amplitude differences between axon and dendrite responses vanished completely. The fast activation time and the modulation of the response by extracellular calcium concentration changes indicated that the evoked calcium transients might be mediated by calcium entry into the cytosol through a voltage-gated calcium channel. The decay of the responses was slow and sensitive to extracellular sodium and calcium concentrations as well as exposure to 1-10 mM NiCl2 and 10-500 µM lanthanum. Thus, a sodium calcium exchanger and a calcium ATPase might be responsible for calcium extrusion from the cytosol. Present results indicate that the calcium indicator OG-BAPTA1 might be an efficient but indirect way of monitoring regional membrane potential differences in a single neuron.
Collapse
Affiliation(s)
- Nuhan Purali
- Faculty of Medicine, Department of Biophysics, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
2
|
Barzan R, Pfeiffer F, Kukley M. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve. Front Cell Neurosci 2016; 10:135. [PMID: 27313508 PMCID: PMC4889576 DOI: 10.3389/fncel.2016.00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
In the peripheral nervous system (PNS) a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na(+) and K(+) channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca(2+) ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca(2+) channels (VGCCs) are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca(2+) elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca(2+) indicator Oregon Green BAPTA-1, and 2-photon Ca(2+) imaging in fast line scan mode (500 Hz). We report that transient increases in intra-axonal Ca(2+) concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca(2+) transients in peripheral nerves are fast, i.e., occur in a millisecond time-domain. Combining Ca(2+) imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca(2+) transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca(2+) entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca(2+) may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system (CNS).
Collapse
Affiliation(s)
- Ruxandra Barzan
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany
| | - Friederike Pfeiffer
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany
| | - Maria Kukley
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany
| |
Collapse
|
3
|
Bucher D, Goaillard JM. Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog Neurobiol 2011; 94:307-46. [PMID: 21708220 PMCID: PMC3156869 DOI: 10.1016/j.pneurobio.2011.06.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 12/13/2022]
Abstract
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent.
Collapse
Affiliation(s)
- Dirk Bucher
- The Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, FL 32080, USA.
| | | |
Collapse
|
4
|
Brown AM. A modeling study predicts the presence of voltage gated Ca2+ channels on myelinated central axons. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2003; 71:25-31. [PMID: 12725962 DOI: 10.1016/s0169-2607(02)00031-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The objective of this current study was to investigate whether voltage gated Ca(2+) channels are present on axons of the adult rat optic nerve (RON). Simulations of axonal excitability using a Hodgkin-Huxley based one-compartment model incorporating I(Na), I(K) and leak currents were used to predict conditions under which the potential contribution of a Ca(2+) current to an evoked action potential could be measured. Under control conditions the inclusion of a high threshold Ca(2+) current (I(Ca)) in the model had a negligible effect on the action potential. Reducing I(K), by decreasing the value of g(K), elongated the repolarizing phase of the action potential, increasing its duration. Subsequent incorporation of I(Ca) in the model revealed a significant I(Ca) contribution to the repolarizing phase of the action potential. The simulation thus suggests that Ca(2+) channels may be present on RON axons, but that pharmacological intervention is required to unmask their presence. Experiments based on the simulations revealed that there was no significant contribution of I(Ca) to the control action potential. However, as predicted by the simulation, reducing the repolarizing effect of I(K) by adding the K(+) channel blocker 4-AP revealed a Ca(2+) component on the repolarizing phase of the action potential that was blocked by the Ca(2+) channel inhibitor nifedipine.
Collapse
Affiliation(s)
- Angus M Brown
- Department of Neurology, Box 356465, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Brown AM, Westenbroek RE, Catterall WA, Ransom BR. Axonal L-type Ca2+ channels and anoxic injury in rat CNS white matter. J Neurophysiol 2001; 85:900-11. [PMID: 11160521 DOI: 10.1152/jn.2001.85.2.900] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We studied the magnitude and route(s) of Ca2+ flux from extra- to intracellular compartments during anoxia in adult rat optic nerve (RON), a central white matter tract, using Ca2+ sensitive microelectrodes to monitor extracellular [Ca2+] ([Ca2+]o). One hour of anoxia caused a rapid loss of the stimulus-evoked compound action potential (CAP), which partially recovered following re-oxygenation, indicating that irreversible injury had occurred. After an initial increase caused by extracellular space shrinkage, anoxia produced a sustained decrease of 0.42 mM (29%) in [Ca2+]o. We quantified the [Ca2+]o decrease as the area below baseline [Ca2+]o during anoxia and used this as a qualitative index of suspected Ca2+ influx. The degree of RON injury was predicted by the amount of Ca2+ leaving the extracellular space. Bepridil, 0 Na+ artificial cerebrospinal fluid or tetrodotoxin reduced suspected Ca2+ influx during anoxia implicating reversal of the Na+/Ca2+ exchanger as a route of Ca2+ influx. Diltiazem reduced suspected Ca2+ influx during anoxia, suggesting that Ca2+ influx via L-type Ca2+ channels is a route of toxic Ca2+ influx into axons during anoxia. Immunocytochemical staining was used to demonstrate and localize high-threshold Ca2+ channels. Only alpha1(C) and alpha1(D) subunits were detected, indicating that only L-type Ca2+ channels were present. Double labeling with anti-neurofilament antibodies or anti-glial fibrillary acidic protein antibodies localized L-type Ca2+ channels to axons and astrocytes.
Collapse
Affiliation(s)
- A M Brown
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
6
|
Baran H, Kepplinger B, Hörtnagl H. Clonidine modulates BAY K 8644-induced rat behavior and neurotransmitter changes in the brain. Eur J Pharmacol 2000; 401:31-7. [PMID: 10915834 DOI: 10.1016/s0014-2999(00)00404-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BAY K 8644 (methyl-1,4-dihydro-2, 6-dimethyl-3-nitro-4[2-trifluoromethyl-phenyl]-pyridine-5-carboxylate), an activator of dihydropyridine-sensitive Ca(2+) channels, injected in rats [2 mg/kg intraperitoneally (i.p.)], induces behavioral changes including ataxia, increased sensitivity to auditory stimulation, stiff tail, arched back, limb tonus and clonus, and rolling over. Neurochemical changes in the brain 45 min after application of 2 mg/kg were characterized by a significant decrease of noradrenaline in the amygdala (-27.8%, P<0.02) and piriform cortex (-16.3%, P<0.02). No significant changes of catecholamines were found in the hippocampal subregions CA1, CA3 and dentate gyrus or in the septum as compared to controls. The dopamine metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the amygdala were elevated by 60% (P<0.02) and 66.7% (P<0.02), respectively. In the septum, a 52.6% (P<0.02) increase of HVA was observed. Analysis of amino acids revealed a marked increase of gamma-aminobutyric acid (GABA) content (+50.4%, P<0.001) in the septum. Pretreatment of the rats with the alpha(2)-adrenoceptor agonist, clonidine (0.1 mg/kg i.p.), 30 min before BAY K 8644 (2 mg/kg i.p.) injection completely abolished the behavioral and neurochemical changes. The data suggest that the Ca(2+)-dependent neurotransmitter release provoked by BAY K 8644 can be modulated by stimulation of presynaptic alpha(2)-adrenoceptors. The effect of clonidine on the GABAergic system may represent an important mechanism involved in the prevention of BAY K 8644-induced behavior.
Collapse
Affiliation(s)
- H Baran
- Institute of Pharmacology and Toxicology, Veterinary University Vienna, A-1210, Vienna, Austria.
| | | | | |
Collapse
|
7
|
Abstract
The active principle of suprenal extract that produces its pressor effects was isolated by the joint research of John Abel in 1899 and Jokichi Takamine in 1901. Within three years Elliott, working in Langley's laboratory, suggested that this active principle, referred to by British physiologists as "adrenaline" and named "Adrenalin" by Takamine, was released from sympathetic nerve terminals to act on smooth muscle cells. However, it was not until 1946 that von Euler showed that demythelated adrenaline (noradrenaline) rather than adrenaline is a sympathetic transmitter. The possibility that this sympathetic transmitter could also act on nerve terminals was not developed until 1971. Research on autoreceptors culminated in the identification of adrenergic receptors on nerve terminals different to those on muscle cells. This paper assesses the contributions that established the idea of the adrenergic autoreceptor, 100 years after the discovery of adrenaline.
Collapse
Affiliation(s)
- M R Bennett
- Institute for Biomedical Research and The Department of Physiology, University of Sydney, Australia.
| |
Collapse
|
8
|
Powis DA, O'Brien KJ, Harrison SM, Jarvie PE, Dunkley PR. Mn2+ can substitute for Ca2+ in causing catecholamine secretion but not for increasing tyrosine hydroxylase phosphorylation in bovine adrenal chromaffin cells. Cell Calcium 1996; 19:419-29. [PMID: 8793182 DOI: 10.1016/s0143-4160(96)90115-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ability of the divalent cation manganese (Mn2+) to substitute for calcium (Ca2+) both in triggering catecholamine release and in stimulating catecholamine synthesis, as indicated by an increase in tyrosine hydroxylase (TOH) phosphorylation, has been determined in bovine adrenal medullary chromaffin cells maintained in tissue culture. Mn2+ was found to enter chromaffin cells through pathways activated by nicotinic receptor stimulation and potassium depolarisation, and via the Na1:Ca0 exchange mechanism in Na(+)-loaded cells. Like Ca2+, entry of Mn2+ through these pathways triggered immediate catecholamine release and, like Ca2+, maintained quantitatively comparable release at least up to 40 min. Unlike Ca2+, Mn2+ did not stimulate an increase in TOH phosphorylation in intact chromaffin cells, even over a prolonged time course, but Mn2+ did stimulate increased TOH phosphorylation in lysed cell preparations showing that its lack of effect in the intact cells was not due to inhibition of the specific phosphorylation pathway. In lysed cell preparations, Mn2+ stimulated also phosphorylation of a different spectrum of proteins to Ca2+, and of the same proteins to different extents. In particular, P80 (MARCKS protein) was more intensely phosphorylated in the presence of Mn2+ than in the presence of Ca2+. Since TOH phosphorylation always occurs when intracellular Ca2+ is increased, the absence of an increase with Mn2+ indicates that none of its intracellular effects could have occurred as a consequence of Mn2+ mobilisation of intracellular Ca2+. In summary, the data show that Mn2+ is a surrogate for Ca2+ in triggering and maintaining catecholamine release, but does not substitute for Ca2+ in stimulating TOH phosphorylation.
Collapse
Affiliation(s)
- D A Powis
- Neuroscience Group, Faculty of Medicine and Health Sciences, University of Newcastle, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
9
|
Quasthoff S, Grosskreutz J, Schröder JM, Schneider U, Grafe P. Calcium potentials and tetrodotoxin-resistant sodium potentials in unmyelinated C fibres of biopsied human sural nerve. Neuroscience 1995; 69:955-65. [PMID: 8596662 DOI: 10.1016/0306-4522(95)00307-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Compound action potentials and electrotonic responses to 150 ms current pulses were recorded from isolated nerve fascicles of human sural nerve biopsies. Compound action potentials in normal bathing solution were characterized by previously described A beta, A delta and C fibre components. In addition, tetrodotoxin-resistant sodium- or calcium-dependent potential components were found when a mixture of tetrodotoxin and the potassium channel blockers 4-aminopyridine and tetraethylammonium was added to the bathing solution. In contrast to tetrodotoxin-sensitive action potentials, tetrodotoxin-resistant sodium- or calcium-dependent potentials could be recorded in the presence of high extracellular potassium concentrations (10-20 mM). Calcium action potentials were found to be sensitive to specific pharmacological antagonists or agonists of L-, N- and P-type calcium channels. Lidocaine, cadmium, verapamil and capsaicin showed unspecific blocking effects on calcium and tetrodotoxin-resistant potentials. Tetrodotoxin-resistant action potentials seem to originate from unmyelinated C fibres since a clear correlation was found between the number of C fibres and the amplitude of tetrodotoxin-resistant calcium and sodium spikes in preparations with different axon type composition. The evidence for tetrodotoxin-resistant Na+ and Ca2+ spikes in peripheral human axons offers new possibilities for a better understanding and/or treatment of abnormalities in the excitability of damaged or diseased peripheral nerves.
Collapse
Affiliation(s)
- S Quasthoff
- Department of Neurology, Technical University of Munich, Germany
| | | | | | | | | |
Collapse
|
10
|
Powis DA, Clark CL, O'Brien KJ. Lanthanum can be transported by the sodium-calcium exchange pathway and directly triggers catecholamine release from bovine chromaffin cells. Cell Calcium 1994; 16:377-90. [PMID: 7859252 DOI: 10.1016/0143-4160(94)90031-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A comparison of the effectiveness of the trivalent cation, lanthanum (La3+) relative to Ca2+ in causing catecholamine release from bovine chromaffin cells has been made, together with a determination of the pathway by which La3+ enters these cells. In chromaffin cells maintained in tissue culture and permeabilised with digitonin, both La3+ and Ca2+ caused 3H release from cells preloaded with [3H]-noradrenaline; La3+ and Ca2+ caused similar maximal release but the EC50 for La3+ was an order of magnitude less than that for Ca2+. At maximal release caused by either La3+ or Ca2+ (approximately 14% of cell 3H content in 15 min), the other cation caused a small, but significant, further release. At submaximal effective concentrations the effects of the two cations were exactly additive. Using 3H release as an indicator of cytosolic La3+, its route of entry into intact chromaffin cells was investigated. With La(3+)-containing medium there was no release evoked by nicotine or by K(+)-depolarisation indicating that La3+ does not enter either via the nicotinic receptor linked ion channel or via voltage-sensitive (Ca2+) channels. However, in sodium-loaded chromaffin cells (ouabain incubation in Ca(2+)-free medium for 15 min) exposure to bathing media containing either Ca2+ or La3+ caused 3H release. La3+ (0.1 mM) caused a release similar in magnitude to that caused by Ca2+ (about 1 mM). La3+ at low concentrations had an additive (0.1 mM La3+) or synergistic (0.25-0.45 mM La3+) action with Ca2+ (< 3.6 mM) on 3H release. At higher concentrations (> 0.9 mM) the effects of La3+ predominated and prevented the expected effects of Ca2+. In other experiments, La3+ (1 mM) blocked export of 45Ca2+ via both Nao-dependent and independent pathways, i.e. sodium-calcium exchange and the calcium pump. The results indicate that La3+ can enter bovine chromaffin cells via the Nai/Cao exchange pathway independently of, or together with, Ca2+ but, that concentrations above 0.9 mM block the influx or efflux of Ca2+. However, Ca2+, even at 3.6 mM, did not block the influx of La3+. The results further indicate that, within chromaffin cells, La3+ is at least as effective as Ca2+ in triggering catecholamine release and maintaining prolonged release. La3+ also appears to act cooperatively with Ca2+ at the release pathway.
Collapse
Affiliation(s)
- D A Powis
- Neuroscience Group, Faculty of Medicine, University of Newcastle, New South Wales, Australia
| | | | | |
Collapse
|
11
|
Hill CE, Powis DA, Hendry IA. Involvement of pertussis toxin-sensitive and -insensitive mechanisms in alpha-adrenoceptor modulation of noradrenaline release from rat sympathetic neurones in tissue culture. Br J Pharmacol 1993; 110:281-8. [PMID: 8106104 PMCID: PMC2175990 DOI: 10.1111/j.1476-5381.1993.tb13806.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. Sympathetic neurones derived from superior cervical ganglia of neonatal rats and maintained in tissue culture were used to investigate the modulation of neurotransmitter release by presynaptic receptors. Three week old cultures of neurones were loaded with [3H]-noradrenaline to label endogenous neurotransmitter stores. Release of noradrenaline was evoked by depolarization with raised extracellular K+ in the presence of desipramine and corticosterone to prevent uptake of released catecholamine. 2. Potassium (55 mmol l-1) depolarization for 30 s caused more than a four fold increase in 3H overflow from basal levels but this increase was reduced by up to 40% in the presence of exogenous noradrenaline (1 mumol l-1). The inhibition by noradrenaline of depolarization-evoked overflow was blocked by the alpha 1/alpha 2-adrenoceptor antagonist, phentolamine. Phentolamine alone did not increase K(+)-evoked 3H overflow. 3. The alpha 2-adrenoceptor antagonist, yohimbine, produced a concentration-dependent block of the inhibition by noradrenaline of K(+)-evoked overflow, while the alpha 1-adrenoceptor antagonist, prazosin, was without effect at concentrations up to 0.1 mumol l-1. 4. The beta-adrenoceptor antagonist, propranolol, neither reduced K(+)-evoked overflow nor increased the degree of inhibition caused by the addition of 1 mumol l-1 noradrenaline. 5. The alpha 2-adrenoceptor agonist, clonidine (1 mumol l-1) was less effective than noradrenaline at inhibiting K(+)-evoked overflow, while the alpha 1-adrenoceptor agonist, phenylephrine (1 mumol l-1) had no significant effect. 6. The L-channel calcium blocker, nicardipine (1 mumol l-1) significantly inhibited 3H overflow evoked by K+. In the presence of L-channel block, however, noradrenaline still inhibited residual evoked overflow.7. In the presence or absence of nicardipine, pertussis toxin pretreatment (1 nmol 1-1) reduced, but did not prevent, the effect of noradrenaline (1 micromol 1-1). Pertussis toxin alone caused a significant enhancement of K+-evoked 3H overflow.8. The data indicate that on postganglionic neurones of cultured rat sympathetic ganglia there are alpha 2-adrenoceptors that modulate neurotransmitter release, but no functional beta-adrenoceptors that mediate an enhancement of transmitter release. The data suggest further that in this preparation the mechanism of alpha2-adrenoceptor modulation may involve pertussis toxin sensitive and insensitive G-proteins and effects on calcium channels other than L-type.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Antagonists
- Adrenergic alpha-2 Receptor Antagonists
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Animals, Newborn/physiology
- Calcium Channel Blockers/pharmacology
- Culture Techniques
- Neurons/drug effects
- Neurons/metabolism
- Norepinephrine/metabolism
- Norepinephrine/physiology
- Pertussis Toxin
- Potassium/antagonists & inhibitors
- Potassium/pharmacology
- Rats
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/physiology
- Second Messenger Systems/drug effects
- Superior Cervical Ganglion/cytology
- Superior Cervical Ganglion/drug effects
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/metabolism
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- C E Hill
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra
| | | | | |
Collapse
|
12
|
Connolly GP, Stone TW. Ionic mechanism of action of adenosine on the rat superior cervical ganglion. JOURNAL OF AUTONOMIC PHARMACOLOGY 1993; 13:291-302. [PMID: 7691824 DOI: 10.1111/j.1474-8673.1993.tb00277.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. The ionic mechanism responsible for hyperpolarization of the rat superior cervical ganglion (SCG) and depression of the depolarizing response to muscarine by adenosine was studied using an extracellular grease-gap recording technique. 2. Both the hyperpolarizations to adenosine and 2-chloroadenosine and the depression of the response to muscarine by adenosine were potentiated in reduced external calcium (Ca2+). Hyperpolarizations to adenosine were either unaltered or potentiated in the presence of the dihydropyridine Ca2+ channel antagonists, nitrendipine or (+)PN200 110 respectively. Hyperpolarizations to adenosine were unaltered by inorganic Ca2+ channel antagonists except for cobalt, which also antagonized hyperpolarizations to carbachol and depolarizations to muscarine. 3. Hyperpolarizations to adenosine were unaltered in nominally magnesium (Mg2+)-free or in reduced external chloride (Cl-) media. When sodium ions (Na+) were replaced by lithium ions (Li+) maximal responses to adenosine were initially enhanced, returning to pretreatment levels and subsequently reduced in their duration. In contrast, responses to adenosine were significantly enhanced in nominally potassium (K+)-free medium and reduced upon doubling the extracellular K+. 4. Hyperpolarizations were enhanced in the presence of the K+ channel antagonists, 4-aminopyridine and 3,4-diaminopyridine, and reduced by a low concentration (2 mM) of tetraethylammonium (TEA), but not in 10 mM TEA. 5. The results support the hypothesis that adenosine-mediated hyperpolarization of postganglionic neurones of the rat SCG is by a Ca(2+)-independent mechanism and is probably mediated via an increase of a K+ current. The results also indicate that adenosine-induced hyperpolarizations of the rat SCG are independent of the presence of extracellular magnesium.
Collapse
Affiliation(s)
- G P Connolly
- Department of Pharmacology, Glasgow University, UK
| | | |
Collapse
|
13
|
Jackisch R, Huang HY, Rensing H, Lauth D, Allgaier C, Hertting G. Alpha 2-adrenoceptor mediated inhibition of exocytotic noradrenaline release in the absence of extracellular Ca2+. Eur J Pharmacol 1992; 226:245-52. [PMID: 1330632 DOI: 10.1016/0922-4106(92)90068-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of the alpha 2-adrenoceptor agonist clonidine on 3,4-diaminopyridine (3,4-DAP)-evoked [3H]noradrenaline ([32H]NA) release in rat hippocampus slices was studied in the presence or absence (+1 mM EGTA) of extracellular Ca2+. 3H overflow (consisting mainly of unmetabolized [3H]NA) was evoked by addition of 100 microM 3,4-DAP for 10 min to the medium, which always contained 1 microM desipramine. Ligands for L-type voltage-sensitive Ca2+ channels (VSCC) did not affect the evoked [3H]NA release, whereas the preferential N-type VSCC antagonist omega-conotoxin was inhibitory, both in the presence and even more potently in the absence of Ca2+, suggesting an involvement of N-type VSCC in the mechanism of 3,4-DAP-evoked [3H]NA release. In the absence of extracellular Ca2+ the initial Na+ influx, which has been previously proposed to liberate Ca2+ from intracellular stores for the exocytotic process, most probably occurs via N-type VSCC. Clonidine inhibited the 3,4-DAP-evoked [3H]NA release in a concentration-dependent manner, both in the presence and even more potently in the absence of Ca2+; its effects were antagonized by yohimbine. In the presence of extracellular Ca2+ the clonidine effect was not changed by addition of omega-conotoxin. Similar effects of clonidine were found in slices from the rabbit hippocampus. Since the availability of Ca2+ from intracellular stores seems to predominate in the present model, our results lend some support to the suggestion that alpha 2-adrenoceptor activation might affect intracellular mechanisms of Ca2+ homeostasis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Jackisch
- Institut für Pharmakologie und Toxikologie, Universität Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Anwyl R. Modulation of vertebrate neuronal calcium channels by transmitters. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1991; 16:265-81. [PMID: 1686417 DOI: 10.1016/0165-0173(91)90010-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A large number of neurotransmitters have now been shown to reduce the amplitude and slow the activation kinetics of whole cell HVA ICa in a great diversity of neurons. These transmitters include L-glutamate (AMPA/kainate, metabotropic and NMDA receptors), GABA (via GABAB receptors, NA (via alpha 2 receptors), 5-HT, NA (via alpha 2 receptors), DA and several peptides. Both whole-cell and single-channel studies have demonstrated that the N-channel is the most common channel type to be blocked by transmitters, although an inhibition of the L-type channel has also occasionally been reported. The suppression of the N-type Ca current was commonly shown to be voltage-dependent, with a relief at large positive voltages. Strong evidence has been put forward showing that the transmitter action is mediated by a G-protein, with GDP-beta-S blocking transmitter action, and GTP-gamma-S directly inhibiting the Ca channel. Moreover, pertussis toxin blocked the transmitter action in most neurons, and following such block, injection of the G-protein Go restored transmitter action. A direct link between the G-protein and the Ca channel has been widely theorized to mediate the action of transmitters on certain neurons. There is also some evidence that certain transmitters in specific neurons mediate calcium channel inhibition through a 2nd messenger, perhaps protein kinase C. Transmitters have also been found, although uncommonly, to inhibit HVA L-type and LVA T-type channels. In addition, an enhancement of both HVA and LVA Ca currents by transmitters has been demonstrated, and substantial evidence exists for mediation of this action by cAMP.
Collapse
Affiliation(s)
- R Anwyl
- Department of Physiology, Trinity College, Dublin, Ireland
| |
Collapse
|
15
|
Astrand P, Stjärne L. A calcium-dependent component of the action potential in sympathetic nerve terminals in rat tail artery. Pflugers Arch 1991; 418:102-8. [PMID: 2041716 DOI: 10.1007/bf00370458] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A pharmacological approach was employed in order to visualize a Ca2(+)-dependent component of the extracellularly recorded nerve terminal impulse in the secretory regions of the sympathetic postganglionic nerves in the rat tail artery. Application of potassium-channel-blocking agents within the recording electrode caused the nerve terminal impulse to acquire a delayed negative deflection, which we have termed the late negative component (LNC) of the nerve terminal impulse. The time course and the latency of the LNC differed from that of the postjunctional transmitter-induced excitatory junction current, and the LNC persisted when the excitatory junction current was blocked by adenosine [alpha,beta-methylene]triphosphate, and was resistant to the alpha 1-antagonist prazosin and the alpha 2-antagonist yohimbine. Probably, therefore, the LNC was exclusively prejunctional in origin. For the following reasons it seems likely that the LNC, at least in part, was caused by influx of Ca2+ into the secretory regions of these nerves: (a) the LNC occurred only when potassium-blocking agents were present within the recording electrode; (b) the LNC amplitude increased with the Ca2+ concentration inside the recording electrode and was reduced by the removal of Ca2+; (c) the LNC was enhanced by replacing Ca2+ in the medium inside the recording electrode with Ba2+; (d) the LNC was depressed by the inorganic Ca2(+)-channel blocker cadmium or the Ca2(+)-channel-blocking peptide omega-conotoxin added within the recording electrode only, or by addition of cadmium or cobalt (but not the organic Ca2(+)-channel blocker nifedipine) inside and outside the recording electrode.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Astrand
- Department of Physiology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
16
|
Elliott P. Action of antiepileptic and anaesthetic drugs on Na- and Ca-spikes in mammalian non-myelinated axons. Eur J Pharmacol 1990; 175:155-63. [PMID: 2311652 DOI: 10.1016/0014-2999(90)90226-v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The actions of the antiepileptic drugs phenytoin, carbamazepine and phenobarbitone, and the local anaesthetic drugs lignocaine and procaine on sodium-dependent and calcium-dependent compound action potentials (Na- and Ca-spikes) have been compared in rat preganglionic cervical sympathetic nerves, using extracellular recording techniques. There was no discernible difference in the frequency dependence of Na-spike block over the frequency range 0.2-20 Hz between these two groups of drugs. However the antiepileptic drugs were more potent blockers of the Ca-spike, whereas the local anaesthetics were more potent on the Na-spike. It is proposed that a dual action of antiepileptics, a frequency-dependent block of sodium currents combined with a block of calcium currents, may explain their efficacy in the treatment of seizures.
Collapse
Affiliation(s)
- P Elliott
- M.R.C. Neuropharmacology Research Group, School of Pharmacy, University of London, Brunswick Square, U.K
| |
Collapse
|