1
|
The interactions of alcohol and cocaine regulate the expression of genes involved in the GABAergic, glutamatergic and endocannabinoid systems of male and female rats. Neuropharmacology 2021; 206:108937. [PMID: 34965406 DOI: 10.1016/j.neuropharm.2021.108937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Although the pharmacological and behavioural interactions between cocaine and alcohol are well established, less is known about how polyconsumption of these drugs affects the neurotransmitter systems involved in their psychoactive effects and in particular, in the process of addiction. Here, rats of both sexes at two stages of development were studied under a chronic regime of intravenous cocaine and/or alcohol administration. Brain samples from the medial prefrontal cortex, nucleus accumbens, hippocampus and amygdala were extracted to analyse the mRNA expression of genes encoding subunits of the GABA, NMDA and AMPA receptors, as well as the expression of the CB1 receptor, and that of enzymes related to the biosynthesis and degradation of endocannabinoids. Moreover, two synaptic scaffold proteins related to GABA and NMDA receptors, gephyrin and PSD-95, were quantified in Western blots. Significant interactions between cocaine and alcohol were common, affecting the GABAergic and endocannabinoid systems in the medial prefrontal cortex and amygdala of young adults, whereas such interactions were evident in the glutamatergic and endocannabinoid systems in adults, as well as a more pronounced sex effect. Significant interactions between these drugs affecting the scaffold proteins were evident in the medial prefrontal cortex and nucleus accumbens of young adults, and in the nucleus accumbens and amygdala of adults, but not in the hippocampus. These results highlight the importance of considering the interactions between cocaine and alcohol on neurotransmitter systems in the context of polyconsumption, specifically when treating problems of abuse of these two substances.
Collapse
|
2
|
Estrous cycle variations in GABA(A) receptor phosphorylation enable rapid modulation by anabolic androgenic steroids in the medial preoptic area. Neuroscience 2012; 226:397-410. [PMID: 22989919 DOI: 10.1016/j.neuroscience.2012.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/31/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Anabolic androgenic steroids (AAS), synthetic testosterone derivatives that are used for ergogenic purposes, alter neurotransmission and behaviors mediated by GABA(A) receptors. Some of these effects may reflect direct and rapid action of these synthetic steroids at the receptor. The ability of other natural allosteric steroid modulators to alter GABA(A) receptor-mediated currents is dependent upon the phosphorylation state of the receptor complex. Here we show that phosphorylation of the GABA(A) receptor complex immunoprecipitated by β(2)/β(3) subunit-specific antibodies from the medial preoptic area (mPOA) of the mouse varies across the estrous cycle; with levels being significantly lower in estrus. Acute exposure to the AAS, 17α-methyltestosterone (17α-MeT), had no effect on the amplitude or kinetics of inhibitory postsynaptic currents in the mPOA of estrous mice when phosphorylation was low, but increased the amplitude of these currents from mice in diestrus, when it was high. Inclusion of the protein kinase C (PKC) inhibitor, calphostin, in the recording pipette eliminated the ability of 17α-MeT to enhance currents from diestrous animals, suggesting that PKC-receptor phosphorylation is critical for the allosteric modulation elicited by AAS during this phase. In addition, a single injection of 17α-MeT was found to impair an mPOA-mediated behavior (nest building) in diestrus, but not in estrus. PKC is known to target specific serine residues in the β(3) subunit of the GABA(A) receptor. Although phosphorylation of these β(3) serine residues showed a similar profile across the cycle, as did phosphoserine in mPOA lysates immunoprecipitated with β2/β3 antibody (lower in estrus than in diestrus or proestrus), the differences were not significant. These data suggest that the phosphorylation state of the receptor complex regulates both the ability of AAS to modulate receptor function in the mPOA and the expression of a simple mPOA-dependent behavior through a PKC-dependent mechanism that involves the β(3) subunit and other sites within the GABA(A) receptor complex.
Collapse
|
3
|
Abstract
Steroid hormones, such as progesterone, are typically considered to be primarily secreted by the gonads (albeit adrenals can also be a source) and to exert their actions through cognate intracellular progestin receptors (PRs). Through its actions in the midbrain ventral tegmental Area (VTA), progesterone mediates appetitive (exploratory, anxiety, social approach) and consummatory (social, sexual) aspects of rodents' mating behaviour. However, progesterone and its natural metabolites ('progestogens') are produced in the midbrain VTA independent of peripheral sources and midbrain VTA of adult rodents is devoid of intracellular PRs. One approach that we have used to understand the effects of progesterone and mechanisms in the VTA for mating is to manipulate the actions of progesterone in the VTA and to examine effects on lordosis (the posture female rodents assume for mating to occur). This review focuses on the effects and mechanisms of progestogens to influence reproduction and related processes. The actions of progesterone and its 5α-reduced metabolite and neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP; allopregnanolone) in the midbrain VTA to facilitate mating are described. The findings that 3α,5α-THP biosynthesis in the midbrain occurs with mating are discussed. Evidence for the actions of 3α,5α-THP in the midbrain VTA via nontraditional steroid targets is summarised. The broader relevance of these actions of 3α,5α-THP for aspects of reproduction, beyond lordosis, is summarised. Finally, the potential role of the pregnane xenobiotic receptor in mediating 3α,5α-THP biosynthesis in the midbrain is introduced.
Collapse
Affiliation(s)
- Cheryl Anne Frye
- Department of Psychology, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
4
|
Casteels C, Bormans G, Van Laere K. The effect of anaesthesia on [(18)F]MK-9470 binding to the type 1 cannabinoid receptor in the rat brain. Eur J Nucl Med Mol Imaging 2010; 37:1164-73. [PMID: 20182714 DOI: 10.1007/s00259-010-1383-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/05/2010] [Indexed: 11/27/2022]
Abstract
PURPOSE Small animal PET can be applied to study molecular processes in animal models of a variety of human diseases. In order to keep the animals in a restricted position during imaging, anaesthesia is in many instances inevitable. Using small animal PET and ex vivo autoradiography, we examined the influence of pentobarbital and isoflurane anaesthesia on the rat brain uptake of [(18)F]MK-9470, a radioligand for the type 1 cannabinoid receptor. METHODS PET imaging was performed on adult Wistar rats under pentobarbital (n = 6) and isoflurane anaesthesia (n = 7), and under control conditions (free moving during tracer uptake, n = 8). Parametric PET images were generated, anatomically standardized and analysed by voxel-based Statistical Parametric Mapping and a predefined volume of interest approach. Immediately after in vivo PET, brains were processed for ex vivo autoradiography using manually placed regions of interest. An extra group (n = 6) was included ex vivo, in which animals were intravenously injected without the use of anaesthetics. RESULTS Using in vivo and ex vivo molecular imaging techniques, no significant changes in absolute [(18)F]MK-9470 uptake were present in the brain of pentobarbital and isoflurane rats as compared to control conditions. Relative [(18)F]MK-9470 uptake PET values obtained applying global scaling were, however, decreased in the cortex under both anaesthetics (pentobarbital: -13.3+/-1.4%; isoflurane -8.7 +/- 3.1%), while an increase was seen in the cerebellum by 13.5 +/- 4.0% and 13.9 +/- 4.1% under pentobarbital and isoflurane, respectively. Ex vivo results were in agreement with in vivo findings. CONCLUSION These findings suggest a similar, regionally specific interference of pentobarbital and isoflurane anaesthesia with in vivo CB1 receptor imaging using [(18)F]MK-9470.
Collapse
Affiliation(s)
- Cindy Casteels
- Division of Nuclear Medicine, KU Leuven and University Hospital Gasthuisberg, Herestraat 49 bus 7003, 3000, Leuven, Belgium.
| | | | | |
Collapse
|
5
|
Febo M, Felix-Ortiz AC, Johnson TR. Inactivation or inhibition of neuronal activity in the medial prefrontal cortex largely reduces pup retrieval and grouping in maternal rats. Brain Res 2010; 1325:77-88. [PMID: 20156425 DOI: 10.1016/j.brainres.2010.02.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/02/2010] [Accepted: 02/06/2010] [Indexed: 12/19/2022]
Abstract
Previous research suggests that the maternal medial prefrontal cortex (mPFC) may play a role in maternal care and that cocaine sensitization before pregnancy can affect neuronal activity within this region. The present work was carried out to test whether the mPFC does actually play a role in the expression of maternal behaviors in the rats and to understand what specific behaviors this cortical area may modulate. In the first experiment, tetrodotoxin (TTX) was used to chemically inactivate the mPFC during tests for maternal behavior latencies. Lactating rats were tested on postpartum days 7-9. The results of this first experiment indicate that there is a large effect of TTX-induced inactivation on retrieval behavior latencies. TTX nearly abolished the expression of maternal retrieval of pups without significantly impairing locomotor activity. In the second experiment, GABA-mediated inhibition was used to test maternal behavior latencies and durations of maternal and other behaviors in postpartum dams. In agreement with experiment 1, it was observed that dams capable of retrieving are rendered incapable by inhibition in the mPFC. GABA-mediated inhibition in the mPFC largely reduced retrieval without altering other indices of maternal care and non-specific behavior such as ambulation time, self-grooming, and inactivity. Moreover, in both experiments, dams were able to establish contact with pups within seconds. The overall results indicate that the mPFC may play an active role in modulating maternal care, particularly retrieval behavior. External factors that affect the function of the frontal cortical site may result in significant impairments in maternal goal-directed behavior as reported in our earlier work.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
6
|
|
7
|
Craft RM, Leitl MD. Potentiation of morphine antinociception by pentobarbital in female vs. male rats. Pain 2006; 121:115-25. [PMID: 16473463 DOI: 10.1016/j.pain.2005.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 11/25/2005] [Accepted: 12/06/2005] [Indexed: 11/16/2022]
Abstract
It has been shown previously that female rats are more sensitive than males to barbiturate anesthesia, whereas males may be more sensitive than females to opioid antinociception. The aim of the present study was to determine whether enhancement of morphine antinociception by pentobarbital, previously demonstrated in male animals and humans, occurs similarly in females. Pentobarbital (50 mg/kg i.p.) produced longer-lasting anesthetic effects (loss of muscle tone, righting reflex) in gonadally intact female rats than in males, but greater antinociceptive effects in males at some time points post-injection. There were no significant sex differences in morphine-induced anesthesia or antinociception; however, 50 mg/kg pentobarbital produced greater leftward shifts in the morphine antinociceptive dose-effect curve in gonadally intact females than males, whether pentobarbital was administered 30 vs. 120 min before morphine (times at which there were no sex differences vs. sex differences, respectively, in pentobarbital's effects when administered alone). Dose-addition analysis confirmed that pentobarbital enhancement of morphine antinociception was supra-additive in both sexes; morphine also significantly enhanced pentobarbital-induced anesthesia in both sexes. In gonadectomized males, testosterone did not significantly alter pentobarbital enhancement of morphine antinociception; in contrast, in gonadectomized females, estradiol significantly attenuated the drug interaction. Estradiol did not significantly alter the effects of pentobarbital alone or morphine alone, indicating that the attenuation of the pentobarbital's potentiation of morphine antinociception in estradiol-treated rats is specific to the drug interaction. These results suggest that barbiturate potentiation of opioid antinociception may be greater in females - particularly those in low ovarian hormone states - than in males.
Collapse
Affiliation(s)
- Rebecca M Craft
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA.
| | | |
Collapse
|
8
|
Wihlbäck AC, Nyberg S, Bäckström T, Bixo M, Sundström-Poromaa I. Estradiol and the addition of progesterone increase the sensitivity to a neurosteroid in postmenopausal women. Psychoneuroendocrinology 2005; 30:38-50. [PMID: 15358441 DOI: 10.1016/j.psyneuen.2004.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 04/27/2004] [Accepted: 05/04/2004] [Indexed: 11/29/2022]
Abstract
The aim of this study was to compare the pharmacodynamic response to a neuroactive steroid, pregnanolone, before and during different hormonal settings of postmenopausal hormone replacement therapy (HRT), using natural progesterone. A second aim was to investigate whether the response to pregnanolone was associated with cyclicity in negative mood symptoms during treatment. Twenty six postmenopausal women with climacteric symptoms were administered HRT in a randomized, double blinded, placebo-controlled, crossover study. The women received 2 mg oral estradiol (E(2)) continuously during two 28-day cycles and 800 mg of vaginal progesterone or placebo sequentially for the last 14 days of each treatment cycle. Pharmacodynamic response to pregnanolone was assessed before treatment, and during the last week of each treatment cycle, by comparing the effects of intravenous pregnanolone (3alpha-hydroxy-5beta-pregnan-20-one) on saccadic eye velocity (SEV), saccade acceleration, saccade latency and self-rated sedation. Throughout the study daily symptom rating scales were kept. According to the daily symptom rating scales, patients were divided into two groups; one group who displayed a significant variance in negative mood symptoms during HRT (cyclicity) and one group with no cyclical changes in negative mood symptoms during treatment. During treatment with either E(2) alone or E(2)+progesterone the response in saccadic eye movement parameters and in self-rated sedation to pregnanolone was enhanced compared to pretreatment values. The SEV, saccade acceleration and sedation responses to pregnanolone was also increased in women expressing cyclicity in negative mood symptoms compared to women with no cyclical changes in negative mood during HRT. In conclusion, during treatment with either E(2) alone, or E(2)+progesterone, pregnanolone sensitivity was increased. Women expressing cyclicity in negative mood symptoms were more sensitive to pregnanolone than women without symptom cyclicity during HRT.
Collapse
Affiliation(s)
- Anna-Carin Wihlbäck
- Department of Clinical Science, Obstetrics and Gynecology, University Hospital of Umeå, S-90185 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
9
|
Frye CA. The role of neurosteroids and non-genomic effects of progestins and androgens in mediating sexual receptivity of rodents. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:201-22. [PMID: 11744087 DOI: 10.1016/s0165-0173(01)00119-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Progestins and androgens modulate sexual receptivity in rodents, in part through mechanisms independent of traditional intracellular steroid receptors. Progesterone (PROG) in the ventromedial hypothalamus (VMH) and ventral tegmental (VTA) facilitates lordosis but has different actions in these brain areas. Primarily using lordosis in rodents as an in vivo experimental model, we have examined the effects that progestins exert in the midbrain and hypothalamus. Localization and blocker studies indicate that PROG's actions in the VMH require intracellular progestin receptors (PRs) but in the VTA they do not. Progestins that have rapid, membrane effects, and/or are devoid of affinity for PRs, facilitate lordosis when applied to the VTA. Manipulation of GABA and/or GABA(A)/benzodiazepine receptor complexes (GBRs) in the VTA alters lordosis, which suggests that progestins may interact with GBRs to facilitate receptivity by enhancing the function of GABAergic neurons. Interfering with PROG's metabolism to, or the biosynthesis of, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG or allopregnanolone), the most effective endogenous GBR agonist, in the VTA attenuates female sexual behavior in rodents. Stimulation of mitochondrial benzodiazepine receptors (MBRs), which enhances neurosteroid production, by infusions of an MBR agonist to the VTA enhances lordosis. 3alpha,5alpha-TH PROG is increased in the midbrain of mated>proestrous>diestrous rodents. These data suggest that in the VTA, PROG may facilitate lordosis following metabolism to and/or biosynthesis of 3alpha,5alpha-TH PROG, which may have subsequent actions at GBRs and/or MBRs to acutely modulate female sexual behavior in rodents. The 3alpha-hydroxysteroid oxidoreduced metabolite of dihydrotestosterone (DHT), 5alpha-androstane-3alpha,17beta-diol (3alpha-androstanediol), is important for termination of sexual receptivity in rodents and has these effects in the absence of functional intracellular androgens receptors. As well, altering GBR function in the hypothalamus can influence 3alpha-androstanediol's inhibition of sexual receptivity. Through actions in the hypothalamus that are independent of intracellular androgen receptors but involving GBRs, 3alpha-androstanediol inhibits lordosis. These findings suggest that the PROG metabolite and pregnane neurosteroid, 3alpha,5alpha-TH PROG, and the testosterone metabolite and androstane neurosteroid, 3alpha-androstanediol, can have proximate influences on lordosis that is via nonclassical actions at intracellular steroid receptors.
Collapse
Affiliation(s)
- C A Frye
- Department of Psychology, Biological Sciences and The Center for Neuroscience Research, The University at Albany, SUNY, Albany, NY 12222, USA.
| |
Collapse
|
10
|
Frye CA. The role of neurosteroids and nongenomic effects of progestins in the ventral tegmental area in mediating sexual receptivity of rodents. Horm Behav 2001; 40:226-33. [PMID: 11534987 DOI: 10.1006/hbeh.2001.1674] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Progesterone (P(4)) in the ventromedial hypothalamus (VMH) and ventral tegmental (VTA) is important for facilitation of lordosis; however, P(4)'s actions in these brain areas are different. Using lordosis in rodents as in vivo experimental models, we have examined the effects progestins exert in the midbrain and hypothalamus. Localization and blocker studies indicate that P(4)'s actions in the VMH require intracellular progestin receptors (PRs) but in the VTA they do not. Progestins that have rapid, membrane effects, and/or are devoid of affinity for PRs, facilitate lordosis when applied to the VTA. Manipulation of GABA and/or GABA(A)/benzodiazepine receptor complexes (GBRs) in the VTA alter lordosis, which suggests that progestins may interact with GBRs to facilitate receptivity by enhancing the function of GABAergic neurons. Interfering with P(4)'s metabolism to 5 alpha-pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP), the most effective endogenous positive modulator of GBRs, or the biosynthesis of the neurosteroid 3 alpha,5 alpha-THP in the VTA attenuates female sexual behavior in rodents. Stimulation of mitochondrial benzodiazepine receptors (MBRs), which enhance neurosteroid production, by infusions of a MBR agonist to the VTA enhances lordosis. 3 alpha,5 alpha-THP is increased in the midbrain of mated > proestrous > diestrous rodents. These data suggest that 3 alpha,5 alpha-THP has a proximate modulatory role on lordosis. In summary, the actions of P(4) in the VTA are different from those in the VMH that involve PRs. In the VTA, P(4) may facilitate lordosis following metabolism to and/or biosynthesis of 3 alpha,5 alpha-THP, which may have subsequent actions at GBRs and/or MBRs to acutely modulate female sexual behavior in rodents.
Collapse
Affiliation(s)
- C A Frye
- Department of Psychology, Biological Sciences and The Neurobiology Research Center, Social Sciences 112, The University at Albany-SUNY, 1400 Washington Avenue, Albany, New York 12222, USA.
| |
Collapse
|
11
|
Akinci MK, Johnston GA. Sex differences in the effects of gonadectomy and acute swim stress on GABAA receptor binding in mouse forebrain membranes. Neurochem Int 1997; 31:1-10. [PMID: 9185158 DOI: 10.1016/s0197-0186(96)00143-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gonadectomy of male mice resulted in a significant increase in GABAA receptor binding in forebrain membranes at GABA concentrations of 100-1000 nM, whereas gonadectomy of female mice resulted in no significant change in such binding. Acute swim stress (3 min swim at 32 degrees C) in gonadectomised female mice resulted in a significant increase in GABAA receptor binding in forebrain membranes at GABA concentrations of 400-1000 nM and in the plasma levels of corticosterone, whereas this stress produced no significant change in such binding or steroid levels in gonadectomised male mice. The surgical stress of sham gonadectomy produced significant increases in GABAA receptor binding in forebrain membranes at GABA concentrations of 100-1000 nM in both sexes, such that the acute swim stress induced increase in GABAA receptor binding in unoperated females is not observed. Hormone replacement studies in swim stressed gonadectomised females indicate that intraperitoneal injection of oestrogen (beta-oestradiol, 10 micrograms) or progesterone (6 alpha-methyl-17 alpha-hydroxy-progesterone acetate, 1 mg) significantly decreased GABAA receptor binding in forebrain membranes at GABA concentrations of 100-1000 nM compared to swim stressed, gonadectomised females injected with the sesame oil vehicle. The injection of a combination of oestrogen (1 microgram) and progesterone (0.1 mg) produced a greater reduction in GABAA receptor binding than the injection of either steroid hormone alone. These results indicate that, in addition to neurosteroids and corticosteroids, gonadal steroids contribute to the modulation of GABAA receptor binding in the brains of male and female mice.
Collapse
Affiliation(s)
- M K Akinci
- Department of Pharmacology, University of Sydney, NSW, Australia
| | | |
Collapse
|
12
|
Pesce ME, Acevedo X, Pinardi G, Miranda HF. Progesterone modulation of diazepam withdrawal syndrome in mice. PHARMACOLOGY & TOXICOLOGY 1996; 79:331-3. [PMID: 9000261 DOI: 10.1111/j.1600-0773.1996.tb00018.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The influence of progesterone and oestrogens on the benzodiazepine withdrawal syndrome in mice was studied. The intraperitoneal administration of 15 mg/kg of flumazenil induced a withdrawal syndrome in chronic diazepam-treated mice, characterized by jerks, usually accompanied by tail lifts, and seizures. The principal finding of the present work is that the intensity of diazepam withdrawal syndrome was significantly reduced by acute administration of progesterone as revealed by a low incidence of jerks and seizures. The action of progesterone could be due to a modulatory role of the hormone on neuronal activity as an anxiolytic agent. The modulatory activity of progesterone appears to be related to changes in the pharmacological properties of benzodiazepine receptors.
Collapse
Affiliation(s)
- M E Pesce
- Department of Pharmacology, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
13
|
Frye CA, Duncan JE, Basham M, Erskine MS. Behavioral effects of 3 alpha-androstanediol. II: Hypothalamic and preoptic area actions via a GABAergic mechanism. Behav Brain Res 1996; 79:119-30. [PMID: 8883823 DOI: 10.1016/0166-4328(96)00005-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated whether 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-androstanediol; 3 alpha-Diol), a neurosteroid whose effects are primarily inhibitory to sexual behavior, may act through interactions with gamma-aminobutyric acid (GABA) receptor complexes (GBRs) in the medial basal hypothalamus (MBH) and the preoptic area (POA). In Experiment (Exp.) 1, ovariectomized (ovx) rats were implanted with bilateral guide cannulae aimed above the MBH and were later treated with 17 beta-estradiol (E2, 2 injections of 1 microgram/0.2 ml in 10% ethanol) and either 3 alpha-Diol (3.0 mg/kg, s.c.) or vehicle. Progesterone (0.5 mg, s.c.) was given 24 h after the first E2 injection and a pre-test for lordosis responsiveness was carried out 4 h later. The GABAA agonist, muscimol (50 ng), then was infused into the MBH and rats were tested 10, 30 and 60 min later. Muscimol infusion facilitated lordosis behavior in vehicle-treated controls, but 3 alpha-Diol-treated animals failed to show this facilitation. To ascertain whether 3 alpha-Diol would also prevent muscimol's action in the POA, a site in which muscimol inhibits, rather than facilitates, sexual receptivity, ovx animals in Exp.2 were implanted with bilateral guide cannulae aimed above the POA and were treated with E2, 3 alpha-Diol, and P and infused and tested as in Exp. 1. Muscimol and 3 alpha-Diol each significantly inhibited receptivity; when they were combined, the inhibition was more pronounced. In Exp. 3, POA infusions of the GABAA antagonist, bicuculline, counteracted muscimol's and 3 alpha-Diol's inhibition of sexual behavior. In Exp. 4, in vitro treatment of POA and MBH membrane fractions with 3 alpha-Diol (30 microM) enhanced maximal [3H]muscimol binding without altering the affinity of the binding sites for the agonist. These data suggest that 3 alpha-Diol inhibits E2 and progestin-induced lordosis behavior via actions at the GBR in both the MBH and POA.
Collapse
Affiliation(s)
- C A Frye
- Department of Biology, Boston University, MA 02215, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
gamma-Aminobutyric acid (GABA)A receptors for the inhibitory neurotransmitter GABA are likely to be found on most, if not all, neurons in the brain and spinal cord. They appear to be the most complicated of the superfamily of ligand-gated ion channels in terms of the large number of receptor subtypes and also the variety of ligands that interact with specific sites on the receptors. There appear to be at least 11 distinct sites on GABAA receptors for these ligands.
Collapse
Affiliation(s)
- G A Johnston
- Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology, University of Sydney, NSW, Australia
| |
Collapse
|
15
|
Martin JV, Williams DB. Benzodiazepine binding varies with stage of estrous cycle in unwashed membranes from mouse brain. Life Sci 1995; 57:1903-9. [PMID: 7475940 DOI: 10.1016/0024-3205(95)02177-k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The influence of the stage of the estrous cycle on binding of [3H]diazepam was examined in membranes from brains of female mice. In order to conserve endogenous factors such as progesterone, other steroids, or GABA, the assay was performed without the extensive washing procedures typically employed in measurements of benzodiazepine binding. Significant variations in the apparent maximal numbers of binding sites (Bmax) were noted during the estrous cycle in both hypothalamus and cortex. The Bmax measured in membranes from proestrus female mice was significantly higher than in membranes from mice at other stages in the estrous cycle. Variations in apparent equilibrium binding dissociation constants (Kd) were not statistically significant by stage of the estrous cycle. The demonstrated variations in binding suggest the existence of a factor which varies with the estrous cycle in female mice and modulates the activity of the GABAA receptor complex.
Collapse
Affiliation(s)
- J V Martin
- Department of Biology, Rutgers University, Camden, New Jersey 08102, USA
| | | |
Collapse
|
16
|
Devaud LL, Purdy RH, Morrow AL. The neurosteroid, 3 alpha-hydroxy-5 alpha-pregnan-20-one, protects against bicuculline-induced seizures during ethanol withdrawal in rats. Alcohol Clin Exp Res 1995; 19:350-5. [PMID: 7625568 DOI: 10.1111/j.1530-0277.1995.tb01514.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prolonged alcohol consumption leads to the development of tolerance to and dependence on ethanol, resulting in a decreased response to the sedative/hypnotic effects of ethanol, and by negative symptomatology following abrupt termination of use. One symptom associated with ethanol withdrawal in humans, as well as laboratory animals, is enhanced susceptibility to seizures. This study investigated the effects of the neurosteroid, 3 alpha-hydroxy-5 alpha-pregnan-20-one (3 alpha-5 alpha-THP), on alterations in seizure sensitivity associated with ethanol withdrawal. 3 alpha-5 alpha-THP is a potent anxiolytic and anticonvulsant agent that acts via selective interactions with GABAA receptors. Extensive evidence suggests that some aspects of ethanol dependence and withdrawal are mediated by alterations in GABAA receptor function. Withdrawal from chronic ethanol exposure elicited dramatic increases in seizure susceptibility in male and female rats. Administration of 3 alpha-5 alpha-THP just before seizure threshold determinations blocked the increased seizure susceptibility induced by ethanol withdrawal. Ethanol-withdrawn animals were protected by 3 alpha-5 alpha-THP at a dose that had no effect on control animal seizure thresholds. Moreover, male and female rats displayed differential responses to the seizure-threshold lowering effects of ethanol withdrawal, as well as the protection by 3 alpha-5 alpha-THP pretreatment. These findings suggest that there are gender differences associated both with ethanol withdrawal as well as the protection by 3 alpha-5 alpha-THP in ethanol-dependent rats.
Collapse
Affiliation(s)
- L L Devaud
- Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill 27599-7175, USA
| | | | | |
Collapse
|
17
|
Bitran D, Shiekh M, McLeod M. Anxiolytic effect of progesterone is mediated by the neurosteroid allopregnanolone at brain GABAA receptors. J Neuroendocrinol 1995; 7:171-7. [PMID: 7606242 DOI: 10.1111/j.1365-2826.1995.tb00744.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies from this laboratory have shown that progesterone (PROG) treatment in ovariectomized rats produces an anti-anxiety response similar to that observed after the administration of prototypical anxiolytic benzodiazepine (BDZ) compounds. The PROG-induced anxiolytic response was highly correlated with an increased level of 3 alpha-hydroxy-5 alpha-pregnan-20-one (allopregnanolone) in the blood and brain, and was also associated with a facilitation of GABA-stimulated chloride ion (Cl-) influx in cortical synaptoneurosomes. This correlative evidence suggested that the anxiolytic effect of PROG was a result of its in vivo reduction to the neuroactive steroid, allopregnanolone. In this report, a series of studies was conducted to determine the mechanism(s) by which PROG alters behavior in animal models of anxiety. In the first experiment, ovariectomized rats were injected with PROG (1 mg/0.2 ml, SC) 4 h prior to a test in the elevated plus-maze. Some animals also received an injection of picrotoxin (0.75 mg/kg, IP), a GABAA receptor-gated Cl- channel antagonist, whereas other animals were pretreated with RU 38486 (5 mg/0.2 ml, SC), a progestin receptor antagonist. PROG elicited anxiolytic behavior in the plus-maze, an effect that was blocked by picrotoxin administration. Pretreatment with RU 38486 was not effective in altering PROG-induced anxiolytic behavior in the plus-maze. In a second experiment, the effect of PROG on behavior in the plus-maze was determined in the presence of N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide (4-MA; 10 mg/0.2 ml, SC), a 5 alpha-reductase inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Bitran
- Department of Psychology, College of the Holy Cross, Worcester, MA 01610, USA
| | | | | |
Collapse
|
18
|
Haggerty HS, Lusted HS, Morton SC. Statistical quantification of 24-hour and monthly variabilities of spontaneous otoacoustic emission frequency in humans. Hear Res 1993; 70:31-49. [PMID: 8276731 DOI: 10.1016/0378-5955(93)90050-b] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous evidence has suggested a relationship between spontaneous otoacoustic emissions (SOAEs) and established, biological cycles, although detailed statistical quantifications of the suggested relationships do not exist in the literature. In an attempt to statistically quantify the purported circadian and monthly influences on this phenomenon, two experiments were undertaken. The first experiment was conducted over eight weeks, investigating 31 SOAEs recorded from eight women and two men. Time series statistical analysis examined whether daily, weekly, and/or monthly cycles characterized SOAE frequency variability. Results yielded a significant monthly cycle for the majority of SOAEs recorded from the women but for none of the SOAEs recorded from the men. These results suggest the possibility that SOAE frequency fluctuation in women may be entrained to the monthly menstrual cycle. In the second experiment, hourly SOAE frequency stability was examined over a 24-h period to ascertain the nature of the daily frequency variation as precisely as possible. Four SOAEs from two subjects were examined, and time series analysis of these data included (1) modelling the autocorrelation structure of the measurements, (2) resolving each 24-h series of measurements into cyclical components of various periodicities, and (3) testing the statistical significance of given cycles within the spectrum of each series. Findings included a significant 24-h variability of frequency for each SOAE, suggesting the possibility of a circadian influence on frequency fluctuation. Results from the two experiments provide quantitative evidence supporting a hypothetical relationship between SOAEs and established, biological cycles.
Collapse
Affiliation(s)
- H S Haggerty
- Division of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, CA 94305
| | | | | |
Collapse
|
19
|
Akinci MK, Johnston GA. Sex differences in the effects of acute swim stress on binding to GABAA receptors in mouse brain. J Neurochem 1993; 60:2212-6. [PMID: 8388035 DOI: 10.1111/j.1471-4159.1993.tb03507.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acute swim stress (3-min swim at 32 degrees C) in female, but not in male, mice results in substantial changes in the characteristics of GABA binding to membranes prepared from the forebrain. These changes were larger when measured in a relatively crude membrane preparation than in a well-washed membrane preparation commonly used in GABA binding assays, consistent with the loss of endogenous modulators of GABA binding in the latter preparation. These changes may be related to stress-induced alterations in part in the modulation of the characteristics of GABA binding by endogenous steroids, as the acute swim stress produced a larger increase in plasma corticosterone levels in female than in male mice.
Collapse
Affiliation(s)
- M K Akinci
- Department of Pharmacology, University of Sydney, Australia
| | | |
Collapse
|
20
|
Wahnschaffe U, Löscher W. Lack of changes in seizure susceptibility during the estrous cycle in kindled rats. Epilepsy Res 1992; 13:199-204. [PMID: 1493782 DOI: 10.1016/0920-1211(92)90053-v] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The threshold and pattern of focal and generalized seizures in fully kindled rats during the estrous cycle were investigated. Two groups of rats were studied; one was kindled from stimulation of the basolateral amygdala, the other from stimulation of the anterior portion of the posterior piriform cortex. Determinations of the threshold for focal afterdischarges were either carried out in the morning (between 8 and 9 a.m.) or in the afternoon (between 2 and 3 p.m.). In all experiments, stable and reproducible afterdischarge thresholds were obtained during the different stages of the estrous cycle. The only significant alteration was a reduced seizure duration during metestrus and/or the first day of diestrus in amygdala kindled rats. The data indicate that the natural changes in sex hormone levels during the estrous cycle in rats do not affect seizure susceptibility, at least in the kindling model of epilepsy.
Collapse
Affiliation(s)
- U Wahnschaffe
- Department of Pharmacology, Toxicology and Pharmacy, School of Veterinary Medicine, Hannover, Germany
| | | |
Collapse
|
21
|
Löscher W, Wahnschaffe U, Rundfeldt C, Hönack D, Hoppen HO. Regional alterations in brain amino acids during the estrous cycle of the rat. Neurochem Res 1992; 17:973-7. [PMID: 1508307 DOI: 10.1007/bf00966823] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Concentrations of 11 amino acids, including the neurotransmitters GABA, glutamate, aspartate, glycine and taurine, were determined in 12 brain regions of female rats during different stages of the estrous cycle. In addition, amino acids and sex hormone levels were determined in plasma. All sample collections were done in the forenoon between 9 and 11 a.m. Most regional amino acid levels measured did not change significantly during estrous cycle, but significant alterations were found for GABA and glutamate in hypothalamus. Both amino acids were slightly decreased in hypothalamus during proestrus, which might reflect an alteration of GABA turnover in response to the high estrogen levels during this stage. A decreased glutamate level during proestrus was also found in thalamus, while both glutamate and GABA did not vary throughout estrous cycle in any of the other examined regions, including substantia nigra, amygdala, striatum, cortex and hippocampus. When diestrus was subdivided according to progesterone levels, high levels of this hormone seemed to be associated with effects on metabolism of certain amino acids, including glycine in substantia nigra, alanine in thalamus and threonine in pons/medulla. However, the few changes in regional amino acid concentrations found during the estrous cycle were so small that the functional significance of these changes cannot be ascertained without further determination of the cellular or subcellular compartments of brain tissue involved.
Collapse
Affiliation(s)
- W Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, School of Veterinary Medicine, Hannover, Germany
| | | | | | | | | |
Collapse
|