1
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Histamine H 1 Receptor-Mediated JNK Phosphorylation Is Regulated by G q Protein-Dependent but Arrestin-Independent Pathways. Int J Mol Sci 2024; 25:3395. [PMID: 38542369 PMCID: PMC10970263 DOI: 10.3390/ijms25063395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.
Collapse
Affiliation(s)
| | | | | | | | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
2
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Differential regulation of histamine H 1 receptor-mediated ERK phosphorylation by G q proteins and arrestins. Biochem Pharmacol 2023; 213:115595. [PMID: 37201878 DOI: 10.1016/j.bcp.2023.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Gq protein-coupled histamine H1 receptors play crucial roles in allergic and inflammatory reactions, in which the phosphorylation of extracellular signal-regulated kinase (ERK) appears to mediate the production of inflammatory cytokines. ERK phosphorylation is regulated by G protein- and arrestin-mediated signal transduction pathways. Here, we aimed to explore how H1 receptor-mediated processes of ERK phosphorylation might be differentially regulated by Gq proteins and arrestins. For this purpose, we evaluated the regulatory mechanism(s) of H1 receptor-mediated ERK phosphorylation in Chinese hamster ovary cells expressing Gq protein- and arrestin-biased mutants of human H1 receptors, S487TR and S487A, in which the Ser487 residue in the C-terminal was truncated and mutated to alanine, respectively. Immunoblotting analysis indicated that histamine-induced ERK phosphorylation was prompt and transient in cells expressing Gq protein-biased S487TR, whereas it was slow and sustained in cells expressing arrestin-biased S487A. Inhibitors of Gq proteins (YM-254890) and protein kinase C (PKC) (GF109203X), and an intracellular Ca2+ chelator (BAPTA-AM) suppressed histamine-induced ERK phosphorylation in cells expressing S487TR, but not those expressing S487A. Conversely, inhibitors of G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), clathrin (hypertonic sucrose), Raf (LY3009120), and MEK (U0126) suppressed histamine-induced ERK phosphorylation in cells expressing S487A, but not those expressing S487TR. These results suggest that H1 receptor-mediated ERK phosphorylation might be differentially regulated by the Gq protein/Ca2+/PKC and GRK/arrestin/clathrin/Raf/MEK pathways to potentially determine the early and late phases of histamine-induced allergic and inflammatory responses, respectively.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ayaka Nagata
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ryosuke Ogami
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasuhiro Ogawa
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
3
|
Signaling Pathway of Histamine H 1 Receptor-Mediated Histamine H 1 Receptor Gene Upregulation Induced by Histamine in U-373 MG Cells. Curr Issues Mol Biol 2021; 43:1243-1254. [PMID: 34698097 PMCID: PMC8929123 DOI: 10.3390/cimb43030088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Histamine H1 receptor (H1R) is one of the targets of histamine in the nervous system and the peripheral tissues. Protein kinase Cδ (PKCδ) signaling is involved in histamine-induced upregulation of H1R gene expression in HeLa cells. Histamine also upregulates H1R gene expression in U-373 MG cells. However, the molecular signaling of this upregulation is still unclear. Here, we investigated the molecular mechanism of histamine-induced H1R gene upregulation in U-373 MG cells. Histamine-induced H1R gene upregulation was inhibited by H1R antagonist d-chlorpheniramine, but not by ranitidine, ciproxifan, or JNJ77777120, and H2R, H3R, or H4R antagonists, respectively. Ro-31-8220 and Go6976 also suppressed this upregulation, however, the PKCδ selective inhibitor rottlerin and the PKCβ selective inhibitor Ly333531 did not. Time-course studies showed distinct kinetics of H1R gene upregulation in U-373 MG cells from that in HeLa cells. A promoter assay revealed that the promoter region responsible for H1R gene upregulation in U-373 MG cells was different from that of HeLa cells. These data suggest that the H1R-activated H1R gene expression signaling pathway in U-373 MG cells is different from that in HeLa cells, possibly by using different promoters. The involvement of PKCα also suggests that compounds that target PKCδ could work as peripheral type H1R-selective inhibitors without a sedative effect.
Collapse
|
4
|
Hishinuma S, Komazaki H, Tsukamoto H, Hatahara H, Fukui H, Shoji M. Ca 2+ -dependent down-regulation of human histamine H 1 receptors in Chinese hamster ovary cells. J Neurochem 2017; 144:68-80. [PMID: 29063596 DOI: 10.1111/jnc.14245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/27/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
Gq/11 protein-coupled human histamine H1 receptors in Chinese hamster ovary cells stimulated with histamine undergo clathrin-dependent endocytosis followed by proteasome/lysosome-mediated down-regulation. In this study, we evaluated the effects of a sustained increase in intracellular Ca2+ concentrations induced by a receptor-bypassed stimulation with ionomycin, a Ca2+ ionophore, on the endocytosis and down-regulation of H1 receptors in Chinese hamster ovary cells. All cellular and cell-surface H1 receptors were detected by the binding of [3 H]mepyramine to intact cells sensitive to the hydrophobic and hydrophilic H1 receptor ligands, mepyramine and pirdonium, respectively. The pretreatment of cells with ionomycin markedly reduced the mepyramine- and pirdonium-sensitive binding sites of [3 H]mepyramine, which were completely abrogated by the deprivation of extracellular Ca2+ and partially by a ubiquitin-activating enzyme inhibitor (UBEI-41), but were not affected by inhibitors of calmodulin (W-7 or calmidazolium) and protein kinase C (chelerythrine or GF109203X). These ionomycin-induced changes were also not affected by inhibitors of receptor endocytosis via clathrin (hypertonic sucrose) and caveolae/lipid rafts (filipin or nystatin) or by inhibitors of lysosomes (E-64, leupeptin, chloroquine, or NH4 Cl), proteasomes (lactacystin or MG-132), and a Ca2+ -dependent non-lysosomal cysteine protease (calpain) (MDL28170). Since H1 receptors were normally detected by confocal immunofluorescence microscopy with an antibody against H1 receptors, even after the ionomycin treatment, H1 receptors appeared to exist in a form to which [3 H]mepyramine was unable to bind. These results suggest that H1 receptors are apparently down-regulated by a sustained increase in intracellular Ca2+ concentrations with no process of endocytosis and lysosomal/proteasomal degradation of receptors.
Collapse
Affiliation(s)
- Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hiroshi Komazaki
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hayato Tsukamoto
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hirokazu Hatahara
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masaru Shoji
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
5
|
Histamine type 1-receptor activation by low dose of histamine undermines human glomerular slit diaphragm integrity. Pharmacol Res 2016; 114:27-38. [DOI: 10.1016/j.phrs.2016.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 11/20/2022]
|
6
|
Hishinuma S, Nozawa H, Akatsu C, Shoji M. C-terminal of human histamine H 1 receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling. J Neurochem 2016; 139:552-565. [PMID: 27566099 DOI: 10.1111/jnc.13834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 08/02/2016] [Accepted: 08/25/2016] [Indexed: 02/06/2023]
Abstract
It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that Gq/11 -protein-coupled human histamine H1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [3 H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [3 H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively.
Collapse
Affiliation(s)
- Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hiroki Nozawa
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Chizuru Akatsu
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Masaru Shoji
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
7
|
Differential thermodynamic driving force of first- and second-generation antihistamines to determine their binding affinity for human H1 receptors. Biochem Pharmacol 2014; 91:231-41. [PMID: 25065879 DOI: 10.1016/j.bcp.2014.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 01/03/2023]
Abstract
Differential binding sites for first- and second-generation antihistamines were indicated on the basis of the crystal structure of human histamine H1 receptors. In this study, we evaluated differences between the thermodynamic driving forces of first- and second-generation antihistamines for human H1 receptors and their structural determinants. The binding enthalpy and entropy of 20 antihistamines were estimated with the van't Hoff equation using their dissociation constants obtained from their displacement curves against the binding of [(3)H]mepyramine to membrane preparations of Chinese hamster ovary cells expressing human H1 receptors at various temperatures from 4°C to 37°C. Structural determinants of antihistamines for their thermodynamic binding properties were assessed by quantitative structure-activity relationship (QSAR) analyses. We found that entropy-dependent binding was more evident in second- than first-generation antihistamines, resulting in enthalpy-entropy compensation between the binding forces of first- and second-generation antihistamines. QSAR analyses indicated that enthalpy-entropy compensation was determined by the sum of degrees, maximal electrostatic potentials, water-accessible surface area and hydrogen binding acceptor count of antihistamines to regulate their affinity for receptors. In conclusion, it was revealed that entropy-dependent hydrophobic interaction was more important in the binding of second-generation antihistamines, even though the hydrophilicity of second-generation antihistamines is generally increased. Furthermore, their structural determinants responsible for enthalpy-entropy compensation were explored by QSAR analyses. These findings may contribute to understanding the fundamental mechanisms of how the affinity of ligands for their receptors is regulated.
Collapse
|
8
|
Uesawa Y, Hishinuma S, Shoji M. Molecular Determinants Responsible for Sedative and Non-sedative Properties of Histamine H1–Receptor Antagonists. J Pharmacol Sci 2014; 124:160-8. [DOI: 10.1254/jphs.13169fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
9
|
Rose RH, Briddon SJ, Hill SJ. A novel fluorescent histamine H(1) receptor antagonist demonstrates the advantage of using fluorescence correlation spectroscopy to study the binding of lipophilic ligands. Br J Pharmacol 2012; 165:1789-1800. [PMID: 21880035 DOI: 10.1111/j.1476-5381.2011.01640.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Fluorescent ligands facilitate the study of ligand-receptor interactions at the level of single cells and individual receptors. Here, we describe a novel fluorescent histamine H(1) receptor antagonist (mepyramine-BODIPY630-650) and use it to monitor the membrane diffusion of the histamine H(1) receptor. EXPERIMENTAL APPROACH The human histamine H(1) receptor fused to yellow fluorescent protein (YFP) was transiently expressed in CHO-K1 cells. The time course of binding of mepyramine-BODIPY630-650 to the H(1) receptor was determined by confocal microscopy. Additionally, fluorescence correlation spectroscopy (FCS) was used to characterize the diffusion coefficient of the H(1) receptor in cell membranes both directly (YFP fluorescence) and in its antagonist-bound state (with mepyramine-BODIPY630-650). KEY RESULTS Mepyramine-BODIPY630-650 was a high-affinity antagonist at the histamine H(1) receptor. Specific membrane binding, in addition to significant intracellular uptake of the fluorescent ligand, was detected by confocal microscopy. However, FCS was able to quantify the receptor-specific binding in the membrane, as well as the diffusion coefficient of the antagonist-H(1) receptor-YFP complexes, which was significantly slower than when determined directly using YFP. FCS also detected specific binding of mepyramine-BODIPY630-650 to the endogenous H(1) receptor in HeLa cells. CONCLUSIONS AND IMPLICATIONS Mepyramine-BODIPY630-650 is a useful tool for localizing the H(1) receptor using confocal microscopy. However, its use in conjunction with FCS allows quantification of ligand binding at the membrane, as well as determining receptor diffusion in the absence of significant bleaching effects. Finally, these methods can be successfully extended to endogenously expressed untagged receptors in HeLa cells.
Collapse
Affiliation(s)
- Rachel H Rose
- Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Briddon
- Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Hill
- Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Hishinuma S, Sato Y, Akatsu C, Shoji M. The affinity of histamine for Gq protein-coupled histamine H(1)-receptors is predominantly regulated by their internalization in human astrocytoma cells. J Pharmacol Sci 2012; 119:233-42. [PMID: 22786583 DOI: 10.1254/jphs.11054fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
We examined the regulatory mechanisms of the affinity of Gq protein-coupled histamine H(1)-receptors for histamine after histamine pretreatment in intact human U373 MG astrocytoma cells. In control cells, the displacement curves for histamine against the binding of 5 nM [(3)H]mepyramine, a radioligand for H(1)-receptors, showed the presence of two binding sites for histamine, that is, high and low affinity sites. Pretreatment with 0.1 mM histamine for 30 min at 37°C induced a significant reduction in the percentage of high affinity sites for histamine and a concomitant increase in the percentage of low affinity sites with no change in their pIC(50) values. These histamine-induced changes were insensitive to 30 µM KN-62, an inhibitor of Ca(2+)/calmodulin-dependent protein kinase II, but they were completely inhibited either by 0.4 mM ZnCl(2), an inhibitor of G protein-coupled receptor kinases (GRKs), or under hypertonic conditions, where clathrin-mediated endocytosis is known to be inhibited. These results suggest that histamine-induced conversion of high to low affinity sites for histamine is predominantly regulated by GRK/clathrin-mediated internalization of H(1)-receptors in human astrocytoma cells.
Collapse
Affiliation(s)
- Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan.
| | | | | | | |
Collapse
|
11
|
Kast RE, Karpel-Massler G, Halatsch ME. Can the therapeutic effects of temozolomide be potentiated by stimulating AMP-activated protein kinase with olanzepine and metformin? Br J Pharmacol 2012; 164:1393-6. [PMID: 21410456 DOI: 10.1111/j.1476-5381.2011.01320.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
As current treatments for glioblastoma commonly fail to cure, the need for more effective therapeutic options is overwhelming. Here, we summarize experimental evidence in support of the suggestion that metformin and olanzepine have potential to enhance the cytotoxic effects of temozolomide, an alkylating chemotherapeutic agent commonly used to treat glioblastoma. Although the primary path leading to temozolomide-induced cell death is formation of O-6-methylguanine and apoptotic signalling triggered by O-6-methyl G:T mispairs, that apoptotic signalling goes through a step mediated by AMP-activated protein kinase (AMPK). Metformin or olanzapine have been shown independently to enhance AMPK activation. Metformin to treat diabetes and olanzapine to treat psychiatric disorders are well tolerated and have been used clinically for many years. Thus it should be feasible to increase AMPK activation and add to the pro-apoptotic effects of temozolomide, by adding metformin and olanzapine to the therapeutic regimen. Clinical assessment of the potential benefit of such combined therapy against glioblastoma is warranted.
Collapse
Affiliation(s)
- R E Kast
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA.
| | | | | |
Collapse
|
12
|
Fioretti B, Catacuzzeno L, Sforna L, Aiello F, Pagani F, Ragozzino D, Castigli E, Franciolini F. Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel. Am J Physiol Cell Physiol 2009; 297:C102-10. [PMID: 19420000 DOI: 10.1152/ajpcell.00354.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The effects of histamine on the membrane potential and currents of human glioblastoma (GL-15) cells were investigated. In perforated whole cell configuration, short (3 s) applications of histamine (100 microM) hyperpolarized the membrane by activating a K(+)-selective current. The response involved the activation of the pyrilamine-sensitive H(1) receptor and Ca(2+) release from thapsigargin-sensitive intracellular stores. The histamine-activated current was insensitive to tetraethylammonium (3 mM), iberiotoxin (100 nM), and d-tubocurarine (100 microM) but was markedly inhibited by charybdotoxin (100 nM), clotrimazole (1 microM), and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34, 1 microM), a pharmacological profile congruent with the intermediate conductance Ca(2+)-activated K(+) (IK(Ca)) channel. Cell-attached recordings confirmed that histamine activated a K(+) channel with properties congruent with the IK(Ca) channel (voltage independence, 22 pS unitary conductance and slight inward rectification in symmetrical 140 mM K(+)). More prolonged histamine applications (2-3 min) often evoked a sustained IK(Ca) channel activity, which depended on a La(2+) (10 microM)-sensitive Ca(2+) influx. Intracellular Ca(2+) measurements revealed that the sustained IK(Ca) channel activity enhanced the histamine-induced Ca(2+) signal, most likely by a hyperpolarization-induced increase in the driving force for Ca(2+) influx. In virtually all cells examined we also observed the expression of the large conductance Ca(2+)-activated K(+) (BK(Ca)) channel, with a unitary conductance of ca. 230 pS in symmetrical 140 mM K(+), and a Ca(2+) dissociation constant [K(D(Ca))] of ca. 3 microM, at -40 mV. Notably in no instance was the BK(Ca) channel activated by histamine under physiological conditions. The most parsimonious explanation based on the different K(D(Ca)) for the two K(Ca) channels is provided.
Collapse
Affiliation(s)
- Bernard Fioretti
- Dip. Biologia Cellulare e Ambientale, Universita' di Perugia, 1 I-06123 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hishinuma S, Sato Y, Kobayashi Y, Komazaki H, Saito M. Intact Cell Binding for In Vitro Prediction of Sedative and Non-sedative Histamine H1–Receptor Antagonists Based on Receptor Internalization. J Pharmacol Sci 2008; 107:66-79. [DOI: 10.1254/jphs.fp0071865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Hishinuma S, Saito M. [Agonist-mediated internalization of histamine H1 receptors and changes in the drug sensitivity]. Nihon Yakurigaku Zasshi 2005; 125:251-8. [PMID: 15997160 DOI: 10.1254/fpj.125.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
15
|
De Man JG, Moreels TG, De Winter BY, Bogers JJ, Van Marck EA, Herman AG, Pelckmans PA. Disturbance of the prejunctional modulation of cholinergic neurotransmission during chronic granulomatous inflammation of the mouse ileum. Br J Pharmacol 2001; 133:695-707. [PMID: 11429394 PMCID: PMC1572829 DOI: 10.1038/sj.bjp.0704115] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The effect of chronic granulomatous inflammation of the intestine was studied on the prejunctional modulation of cholinergic nerve activity in the mouse ileum. Contractions to carbachol (0.01 - 0.3 microM) and to electrical field stimulation (EFS, 0.25 - 8 Hz) of enteric neurons were higher in inflamed ileum as compared to control ileum. However, when the neurally-mediated contractions to EFS were expressed as percentage of the direct smooth muscle contraction to carbachol, the responses to EFS were similar in control and inflamed ileum. Atropine (1 microM) abolished all contractions to EFS and carbachol in control and inflamed ileum. DMPP (3 - 30 microM), a nicotinic receptor agonist, induced concentration-dependent contractions that were more pronounced in inflamed ileum as compared to control ileum. Hexamethonium (100 microM), a nicotinic receptor blocker, significantly inhibited the contractions to EFS in inflamed ileum but not in control ileum. In control ileum, histamine (10 - 100 microM) and the histamine H(1) receptor agonist HTMT (3 - 10 microM) inhibited the contractions to EFS concentration-dependently without affecting the contractions to carbachol. The inhibitory effect of histamine and HTMT was prevented by the histamine H(1) antagonist mepyramine (5 - 10 microM) but not by the H(2)- and H(3)-receptor antagonists cimetidine and thioperamide (both 10 microM). In chronically inflamed ileum however, histamine (10 - 100 microM) and HTMT (3 - 10 microM) failed to inhibit the contractions to EFS. The histamine H(2) and H(3) receptor agonists dimaprit and R(-)-alpha-methylhistamine did not affect the contractions to EFS in control and inflamed ileum. The alpha(2)-receptor agonist UK 14.304 (0.01 - 0.1 microM) inhibited the contractions to EFS in control and inflamed ileum without affecting the contractions to carbachol. The effect of UK 14.304 was reversed by the alpha(2)-receptor antagonist yohimbine (1 microM). The inhibitory effect of UK 14.304 on contractions to EFS was of similar potency in control and inflamed ileum. Our results suggest that the prejunctional modulation of cholinergic nerve activity by nicotinic and histaminic H(1) receptors is disturbed during chronic intestinal inflammation whereas the modulation by alpha(2)-receptors is preserved. Such a disturbance of cholinergic nerve activity may contribute to the motility disturbances that are often observed during chronic intestinal diseases in humans.
Collapse
Affiliation(s)
- Joris G De Man
- Division of Gastroenterology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Tom G Moreels
- Division of Gastroenterology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Benedicte Y De Winter
- Division of Gastroenterology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Johannes J Bogers
- Division of Pathology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Eric A Van Marck
- Division of Pathology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Arnold G Herman
- Division of Pharmacology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Paul A Pelckmans
- Division of Gastroenterology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Author for correspondence: .
| |
Collapse
|
16
|
Megson AC, Walker EM, Hill SJ. Role of protein kinase Calpha in signaling from the histamine H(1) receptor to the nucleus. Mol Pharmacol 2001; 59:1012-21. [PMID: 11306682 DOI: 10.1124/mol.59.5.1012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stimulation of histamine H(1) receptors produced a marked activation of inositol phospholipid hydrolysis, intracellular calcium mobilization, and stimulation of the c-fos promoter in CHO-H1 cells expressing the H(1) receptor at a level of 3 pmol/mg protein. The latter response was determined using a luciferase-based reporter gene (pGL3). This response to histamine was not sensitive to inhibition by pertussis toxin but could be completely attenuated by the protein kinase C (PKC) inhibitor Ro-31-8220, or by 24-h pretreatment with the phorbol esters phorbol 12,13-dibutyrate or phorbol-12-myristate-13-acetate. Several isoforms of PKC can be detected in CHO-H1 cells (alpha, delta, epsilon, mu, iota, zeta) but only PKCalpha and PKCdelta were down-regulated by prolonged treatment with phorbol esters. Of the two isoforms that were down-regulated, only protein kinase Calpha was translocated to CHO-H1 cell membranes after stimulation with either histamine or phorbol esters. The PKC inhibitor Gö 6976, which inhibits PKCalpha but not PKCdelta, was also able to significantly attenuate the c-fos-luciferase response to histamine. The mitogen-activated protein kinase kinase inhibitor PD 98059 markedly inhibited the response to histamine, suggesting that the likely major target for PKCalpha was the mitogen-activated protein kinase pathway. These data suggest that the histamine H(1) receptor can signal to the nucleus via PKCalpha after activation of phospholipase Cbeta.
Collapse
Affiliation(s)
- A C Megson
- Institute of Cell Signalling and School of Biomedical Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | | | | |
Collapse
|
17
|
Hishinuma S, Ogura K. Ca(2+)/calmodulin-mediated regulation of the desensitizing process in G(q) protein-coupled histamine H(1) receptor-mediated Ca(2+) responses in human U373 MG astrocytoma cells. J Neurochem 2000; 75:772-81. [PMID: 10899954 DOI: 10.1046/j.1471-4159.2000.0750772.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We investigated Ca(2+)/calmodulin (CaM)-mediated regulation of the desensitizing process of the histamine H(1) receptor-mediated increase in intracellular Ca(2+) concentration in human U373 MG astrocytoma cells. The desensitizing process was evaluated by measuring the histamine-induced Ca(2+) responses in cells pretreated with histamine for 15 s-30 min under various conditions. Under normal physiological conditions, desensitization developed with three successive phases : a fast desensitization within 15 s, a transient resensitization at 45 s, and a prompt and sustained redesensitization from 1 to 30 min. Similar processes of desensitization/resensitization occurred even under hypertonic conditions, where histamine-mediated internalization of the histamine H(1) receptor is inhibited. The transient resensitization phase was selectively prevented by deprivation of extracellular Ca(2+) and, even more strikingly, by the presence of W-7 (a CaM antagonist). FK506 and cyclosporin A, Ca(2+)/CaM-dependent protein phosphatase (PP2B) inhibitors, mimicked such effects. In the presence of KN-62, a Ca(2+)/CaM-dependent protein kinase II (CaM kinase II) inhibitor, the early development of desensitization disappeared, allowing a slow and simple development of desensitization. The early processes of desensitization and resensitization were unaffected by W-5, okadaic acid, and KN-04 (less potent inhibitors against CaM, PP2B, and CaM kinase II, respectively) or by GF109203X and chelerythrine (protein kinase C inhibitors). The high-affinity site for histamine was converted to a lower-affinity site by histamine treatment, which also showed a transient restoration phase at 45 s in a manner sensitive to KN-62 and FK506. These results provide the first evidence that Ca(2+)/CaM plays a crucial role in determining the early phase of the desensitizing process via activation of CaM kinase II and PP2B, by regulating agonist affinity for histamine H(1) receptors.
Collapse
Affiliation(s)
- S Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan.
| | | |
Collapse
|
18
|
Young KW, Pinnock RD, Nahorski SR. Determination of the inositol (1,4,5) trisphosphate requirement for histamine- and substance P-induced Ca2+ mobilisation in human U373 MG astrocytoma cells. Cell Calcium 1998; 24:59-70. [PMID: 9793689 DOI: 10.1016/s0143-4160(98)90089-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In human U373 MG astrocytoma cells, histamine and substance P stimulated similar peak increases in intracellular free calcium concentrations ([Ca2+]i), as measured by single cell imaging of Fura-2 fluorescence. Best-fit EC50 values for the peak Ca2+ response were 1.86 microM for histamine and 0.93 nM for substance P. The histamine Ca2+ response was manifest as either a series of repetitive spikes, or, at higher concentrations, a peak followed by a lower plateau level of Ca2+. In contrast, the substance P response became more transient at higher agonist concentrations. Substance P (10 nM) stimulated a biphasic increase in levels of inositol (1,4,5) trisphosphate (Ins(1,4,5)P3) with a peak of 97 +/- 5 pmoles/mg protein at 10 s. In contrast, the Ins(1,4,5)P3 response to 100 microM histamine was only marginally above basal levels of around 12 pmoles/mg protein. However, concentrations of histamine and substance P giving similar Ins(1,4,5)P3 responses produce similar peak increases in [Ca2+]i. HPLC analysis indicated that histamine stimulated the production of [3H]-Ins(1,4,5)P3 and its metabolites, although the magnitude of response was smaller than that observed with substance P. The initial Ca2+ responses to histamine and substance P did not require the presence of extracellular Ca2+. The Ca2+ response to histamine was unaffected by treatment with ryanodine, and was shifted to areas of lower agonist concentration by thimerosal. These results demonstrate that extremely small increases in Ins(1,4,5)P3 can stimulate large increases in [Ca2+]i in U373 MG cells, and suggest a marked redundancy for Ins(1,4,5)P3 production in the Ca2+ signalling pathway.
Collapse
Affiliation(s)
- K W Young
- Department of Cell Physiology and Pharmacology, University of Leicester, UK.
| | | | | |
Collapse
|