1
|
Pellei M, Del Gobbo J, Caviglia M, Gandin V, Marzano C, Karade DV, Noonikara Poyil A, Dias HVR, Santini C. Synthesis and Investigations of the Antitumor Effects of First-Row Transition Metal(II) Complexes Supported by Two Fluorinated and Non-Fluorinated β-Diketonates. Int J Mol Sci 2024; 25:2038. [PMID: 38396717 PMCID: PMC10889438 DOI: 10.3390/ijms25042038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The 3d transition metal (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes, supported by anions of sterically demanding β-diketones, 1,3-dimesitylpropane-1,3-dione (HLMes) and 1,3-bis(3,5-bis(trifluoromethyl)phenyl)-3-hydroxyprop-2-en-1-one (HLCF3), were synthesized and evaluated for their antitumor activity. To assess the biological effects of substituents on phenyl moieties, we also synthesized and investigated the analogous metal(II) complexes of the anion of the less bulky 1,3-diphenylpropane-1,3-dione (HLPh) ligand. The compounds [Cu(LCF3)2], [Cu(LMes)2] and ([Zn(LMes)2]) were characterized by X-ray crystallography. The [Cu(LCF3)2] crystallizes with an apical molecule of solvent (THF) and features a rare square pyramidal geometry at the Cu(II) center. The copper(II) and zinc(II) complexes of diketonate ligands, derived from the deprotonated 1,3-dimesitylpropane-1,3-dione (HLMes), adopt a square planar or a tetrahedral geometry at the metal, respectively. We evaluated the antitumor properties of the newly synthesized (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes against a series of human tumor cell lines derived from different solid tumors. Except for iron derivatives, cellular studies revealed noteworthy antitumor properties, even towards cancer cells endowed with poor sensitivity to the reference drug cisplatin.
Collapse
Affiliation(s)
- Maura Pellei
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| | - Jo’ Del Gobbo
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| | - Miriam Caviglia
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Deepika V. Karade
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, P.O. Box 19065, Arlington, TX 76019, USA; (D.V.K.); (H.V.R.D.)
| | - Anurag Noonikara Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, P.O. Box 19065, Arlington, TX 76019, USA; (D.V.K.); (H.V.R.D.)
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, P.O. Box 19065, Arlington, TX 76019, USA; (D.V.K.); (H.V.R.D.)
| | - Carlo Santini
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| |
Collapse
|
2
|
Han YH, Wang Y, Lee SJ, Jin MH, Sun HN, Kwon T. Regulation of anoikis by extrinsic death receptor pathways. Cell Commun Signal 2023; 21:227. [PMID: 37667281 PMCID: PMC10478316 DOI: 10.1186/s12964-023-01247-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023] Open
Abstract
Metastatic cancer cells can develop anoikis resistance in the absence of substrate attachment and survive to fight tumors. Anoikis is mediated by endogenous mitochondria-dependent and exogenous death receptor pathways, and studies have shown that caspase-8-dependent external pathways appear to be more important than the activity of the intrinsic pathways. This paper reviews the regulation of anoikis by external pathways mediated by death receptors. Different death receptors bind to different ligands to activate downstream caspases. The possible mechanisms of Fas-associated death domain (FADD) recruitment by Fas and TNF receptor 1 associated-death domain (TRADD) recruitment by tumor necrosis factor receptor 1 (TNFR1), and DR4- and DR5-associated FADD to induce downstream caspase activation and regulate anoikis were reviewed. This review highlights the possible mechanism of the death receptor pathway mediation of anoikis and provides new insights and research directions for studying tumor metastasis mechanisms. Video Abstract.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Yuan Wang
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Seung-Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56212, Republic of Korea
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Pellei M, Del Gobbo J, Caviglia M, Karade DV, Gandin V, Marzano C, Noonikara Poyil A, Dias HVR, Santini C. Synthesis and cytotoxicity studies of Cu(I) and Ag(I) complexes based on sterically hindered β-diketonates with different degrees of fluorination. Dalton Trans 2023; 52:12098-12111. [PMID: 37581477 DOI: 10.1039/d3dt02179c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Design, synthesis, and in vitro antitumor properties of Cu(I) and Ag(I) phosphane complexes supported by the anions of sterically hindered β-diketone ligands, 1,3-dimesitylpropane-1,3-dione (HLMes) and 1,3-bis(3,5-bis(trifluoromethyl)phenyl)-3-hydroxyprop-2-en-1-one (HLCF3) featuring trifluoromethyl or methyl groups on the phenyl moieties have been reported. In order to compare the biological effects of substituents on the phenyl moieties, the analogous copper(I) and silver(I) complexes of the anion of the parent 1,3-diphenylpropane-1,3-dione (HLPh) ligand were also synthesized and included in the study. In the syntheses of the Cu(I) and Ag(I) complexes, the phosphane coligands triphenylphosphine (PPh3) and 1,3,5-triaza-7-phosphaadamantane (PTA) were used to stabilize silver and copper in the +1 oxidation state, preventing the metal ion reduction to Ag(0) or oxidation to Cu(II), respectively. X-ray crystal structures of HLCF3 and the metal adducts [Cu(LCF3)(PPh3)2] and [Ag(LPh)(PPh3)2] are also presented. The antitumor properties of both classes of metal complexes were evaluated against a series of human tumor cell lines derived from different solid tumors, by means of both 2D and 3D cell viability studies. They display noteworthy antitumor properties and are more potent than cisplatin in inhibiting cancer cell growth.
Collapse
Affiliation(s)
- Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy.
| | - Jo' Del Gobbo
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy.
| | - Miriam Caviglia
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy.
| | - Deepika V Karade
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Box 19065, Arlington, Texas 76019-0065, USA.
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Anurag Noonikara Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Box 19065, Arlington, Texas 76019-0065, USA.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Box 19065, Arlington, Texas 76019-0065, USA.
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy.
| |
Collapse
|
4
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Huang LT, Kuo CH, Tseng L, Li YS, Cheng LH, Cheng CY, Sheu SR, Chang WT, Chen CC, Cheng HC. Alpha-Mangostin Reduces Pericellular Fibronectin on Suspended Tumor Cells and Therapeutically, but Not Prophylactically, Suppresses Distant Metastasis. Life (Basel) 2022; 12:life12091375. [PMID: 36143411 PMCID: PMC9503692 DOI: 10.3390/life12091375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 12/23/2022] Open
Abstract
Major cancer deaths can be ascribed to distant metastasis to which the assembly of pericellular fibronectin (periFN) on suspended tumor cells (STCs) in the bloodstream that facilitate endothelial attachment can lead. Even though mangosteen pericarps (MP) extracts and the major component α-mangostin (α-MG) exhibit potent cancer chemopreventive properties, whether they can prophylactically and therapeutically be used as dietary nutraceuticals to prevent distant metastasis by suppressing periFN assembly on STCs within the circulation remains obscure. Immunofluorescence staining, MTT assays, flow cytometric assays, immunoblotting, and experimental metastasis mouse models were used to detect the effects of MP extracts or α-MG on periFN on STCs, tumor cell proliferation and apoptosis, the AKT activity, and tumor lung metastasis. The periFN assembly on STCs was significantly diminished upon treatments of STCs with either α-MG or MP extracts in a dose-dependent manner without inhibiting cell proliferation and viability due to increased AKT activity. Pretreatment of STCs with α-MG appeared to suppress tumor lung metastasis and prolong mouse survival rates. Oral gavage with MP extracts could therapeutically, but not prophylactically, prevent lung metastasis of STCs. We concluded that MP extracts or the major component α-MG may therapeutically serve as a potent anti-metastatic nutraceutical.
Collapse
Affiliation(s)
- Li-Tzu Huang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chin-Ho Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetology and Health Care, Min-Hwei Junior College of Health Care Management, Tainan 736, Taiwan
| | - Lin Tseng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Yi-Syuan Li
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Li-Hsin Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chin-Yun Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- The Institute of Biotechnology Research Center, Far East University, Tainan 74448, Taiwan
| | - Shane-Rong Sheu
- The Institute of Biotechnology Research Center, Far East University, Tainan 74448, Taiwan
| | - Wen-Tsan Chang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Hung-Chi Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Stefàno E, Muscella A, Benedetti M, De Castro F, Fanizzi FP, Marsigliante S. Antitumor and antimigration effects of a new Pt compound on neuroblastoma cells. Biochem Pharmacol 2022; 202:115124. [PMID: 35688179 DOI: 10.1016/j.bcp.2022.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
Among the new Pt complexes with anticancer properties, phenanthroline derivatives have aroused great interest due to their different mode of action compared to cisplatin. We previously examined cytotoxic effects of a new Pt(II)-complex containing 1,10-phenantroline (phen), [Pt(η1-C2H4OMe)(DMSO)(phen)]Cl, in a panel of eight human cancer cell lines, and showed that it exerted the greatest cytotoxic effect in the neuroblastoma SH-SY5Y cell line. In this study, the antiproliferative and antimetastatic potential of [Pt(η1-C2H4OMe)(DMSO)(phen)]+ (in short Pt-EtOMeSOphen) was investigated in neuroblastoma SH-SY5Y, SK-N-SH and SK-N-BE(2) cells. Pt-EtOMeSOphen provoked the early signs of apoptosis induction (cleavage of PARP and activation of caspases-9 and -7); it also increased the level of proapoptotic Bax protein whereas it decreased the level of the antiapoptotic Bcl-2 protein. The effects of Pt-EtOMeSOphen on migration and invasion processes were also evaluated. A decrease of cell migration/invasion by Pt-EtOMeSOphen was observed through 2D and 3D in vitro assays. Pt-EtOMeSOphen was found to exert its actions by decreasing MMP-9 and MMP-2 expressions and activities. Pt-EtOMeSOphen provoked the phosphorylation of both ERK1/2 and p38 MAPKs. All the effects of Pt-EtOMeSOphen on SH-SY5Y cell vitality, migration and metalloproteases activities described here were due to the activation of p38 MAPK since pharmacological p38 MAPK inhibition or small interfering RNAs to p38 MAPK mRNA blocked such effects. Results suggest that Pt-EtOMeSOphen inhibits neuroblastoma cancer cells survival, motility, and invasion. This could lead to the reduction of neuroblastoma metastatic potential.
Collapse
Affiliation(s)
- Erika Stefàno
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | - Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy.
| | - Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy.
| | - Federica De Castro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | - Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
7
|
Lu Z, Yuan S, Ruan L, Tu Z, Liu H. Partitioning defective 6 homolog alpha (PARD6A) promotes epithelial–mesenchymal transition via integrin β1-ILK-SNAIL1 pathway in ovarian cancer. Cell Death Dis 2022; 13:304. [PMID: 35379775 PMCID: PMC8980072 DOI: 10.1038/s41419-022-04756-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
Partitioning-defective protein 6 (Par6) family proteins have been demonstrated to be closely associated with the occurrence and development of cancers. It is well accepted that dysregulation of epithelial–mesenchymal transition (EMT) greatly contributes to carcinogenesis and metastases of ovarian cancer. So far, the roles of Par6 in EMT of ovarian cancer are not clear. Functional experiments were carried out to study the roles of PARD6A in EMT of ovarian cancer in vitro and in vivo, and EMT pathways potentially affected by PARD6A expression were screened. We found that PARD6A was significantly highly expressed in tissues of ovarian cancer patients in III-IV stages, poorly differentiated or with lymphatic metastases versus I-II stages, moderately or well differentiated, or without lymphatic metastases, respectively. PARD6A knockdown suppressed EMT of SKOV3 and A2780 cells in vitro and ovarian cancer metastasis in vivo, while overexpression of PARD6A promoted EMT in HO8910 and OVCAR8 cells. It was indicated that PARD6A affected EMT of ovarian cancer cells through SNAIL1 signaling pathway and subsequently modulated the expression of VIMENTIN and E-cadherin, which was further confirmed by knockdown and overexpression of SNAIL1 experiments. PARD6A was also demonstrated to regulate expression of SNAIL1 by modulating integrin β1 and ILK proteins, specifically it was shown that the transcription of SNAIL1 was regulated by ILK in this study. In addition, expression of ILK in ovarian cancer tissues was demonstrated to be correlated with tumor stages and lymphatic metastases clinically. In this study, we identified a novel role of PARD6A as an inducer of cell migration and invasion, which is likely to play an important role in metastasis of ovarian cancer. The molecular pathways of EMT mediated by PARD6A-Integrin β1-ILK-SNAIL1 and finally implemented by E-cadherin and VIMENTIN may provide a novel strategy for drug development for ovarian cancer therapy in the near future.
Collapse
|
8
|
Muscella A, Stefàno E, Calabriso N, De Pascali SA, Fanizzi FP, Marsigliante S. Role of epidermal growth factor receptor signaling in a Pt(II)-resistant human breast cancer cell line. Biochem Pharmacol 2021; 192:114702. [PMID: 34324869 DOI: 10.1016/j.bcp.2021.114702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Platinum complexes are currently used for breast cancer therapy, but, as with other drug classes, a series of intrinsic and acquired resistance mechanisms hinder their efficacy. To better understand the mechanisms underlying platinum complexes resistance in breast cancer, we generated a [Pt(O,O'-acac)(γ-acac)(DMS)]-resistant MCF-7, denoted as [Pt(acac)2]R. [Pt(O,O'-acac)(γ-acac)(DMS)] was chosen as previous works showed that it has distinct mechanisms of action from cisplatin, especially with regard to cellular targets. [Pt(acac)2]R cells are characterized by increased proliferation rates and aggressiveness with higher PKC-δ, BCL-2, MMP-9 and EGFR protein expressions and also by increased expression of various genes covering cell cycle regulation, invasion, survival, and hormone receptors. These [Pt(acac)2]R cells also displayed high levels of activated signaling kinases Src, AKT and ERK/2. [Pt(acac)2]R cells incubated with [Pt(O,O'-acac)(γ-acac)(DMS)], showed a relevant EGFR activation due to PKC-δ and Src phosphorylation that provoked proliferation and survival through MERK1/2/ERK1/2 and PI3K/Akt pathways. In addition, EGFR shuttled from the plasma membrane to the nucleus maybe acting as co-transcriptional factor. The data suggest that growth and survival of resistant cells rely upon a remarkable increase in EGFR level which, in collaboration with an enhanced role of PKC-δ and Src kinases support [Pt(acac)2]R cell. It could therefore be assumed that combination treatments targeting both EGFR and PKC-δ/Src can improve therapy for breast cancer patients.
Collapse
Affiliation(s)
- A Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy.
| | - E Stefàno
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| | - N Calabriso
- National Research Council (CNR), Campus Ecotekne, Institute of Clinical Physiology (IFC), University of Salento, Via Prov le Lecce-Monteroni, 73100 Lecce, Italy
| | - S A De Pascali
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| | - F P Fanizzi
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| | - S Marsigliante
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
9
|
Geohagen BC, Weiser DA, Loeb DM, Nordstroem LU, LoPachin RM. Enolate-forming compounds provide protection from platinum neurotoxicity. Chem Biol Interact 2020; 317:108961. [PMID: 31978392 PMCID: PMC7069230 DOI: 10.1016/j.cbi.2020.108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 11/16/2022]
Abstract
Cisplatin (CisPt) and other platinum (Pt)-based antineoplastic drugs (e.g., carboplatin, oxaliplatin) are highly effective and widely used in the treatment of solid tumors in both pediatric and adult patients. Although considered to be life-saving as a cancer treatment, Pt-based drugs frequently result in dose-limiting toxicities such as chemotherapy-induced peripheral neuropathies (CIPN). Specifically, irreversible damage to outer hair cells and injury of sensory neurons are linked to profound sensorineural hearing loss (ototoxicity), which complicates tumor management and can lead to a poor clinical prognosis. Given the severity of CIPN, substantial effort has been devoted to the development of neuroprotective compounds, regardless clinical results have been underwhelming. It is noteworthy that Pt is a highly reactive electrophile (electron deficient) that causes toxicity by forming adducts with nucleophilic (electron rich) targets on macromolecules. In this regard, we have discovered a series of carbon-based enol nucleophiles; e.g., N-(4-acetyl-3,5-dihydroxyphenyl)-2-oxocytclopentane-1-carboxamide (Gavinol), that can prevent neurotoxicity by scavenging the platinum ion. The chemistry of enol compounds is well understood and mechanistic research has demonstrated the role of this chemistry in cytoprotection. Our cell-derived data were corroborated by calculations of hard and soft, acids and bases (HSAB) parameters that describe the electronic character of interacting electrophiles and nucleophiles. Together, these observations indicate that the respective mechanisms of Pt neurotoxicity and antitumor activity are separable and can therefore be affected independently.
Collapse
Affiliation(s)
- Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Daniel A Weiser
- Departments of Pediatrics and Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA.
| | - David M Loeb
- Departments of Pediatrics and Developmental & Molecular Biology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Lars U Nordstroem
- The Chemical Synthesis & Biology Core Facility, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| |
Collapse
|
10
|
Muscella A, Vetrugno C, Cossa LG, Marsigliante S. TGF-β1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities. J Neurochem 2019; 153:525-538. [PMID: 31729763 DOI: 10.1111/jnc.14913] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Abstract
Following peripheral nerve injury, remnant Schwann cells adopt a migratory phenotype and remodel the extracellular matrix allowing axonal regrowth. Although much evidence has demonstrated that TGF-β1 promotes glioma cell motility and induces the expression of extracellular matrix proteins, the effects of TGF-β1 on Schwann cell migration has not yet been studied. We therefore investigated the cellular effects and the signal transduction pathways evoked by TGF-β1 in rattus norvegicus neuronal Schwann RSC96 cell. TGF-β1 significantly increased migration and invasion of Schwann cells assessed by the wound-healing assay and by cell invasion assay. TGF-β1-enhanced migration/invasion was blocked by inhibition of MMP-2 and MMP-9. Consistently, by real-time and western blot analyses, we demonstrated that TGF-β1 increased MMP-2 and MMP-9 mRNA and protein levels. TGF-β1 also increased MMPs activities in cell growth medium, as shown by gelatin zymography. The selective TGF-β Type I receptor inhibitor SB431542 completely abrogated any effects by TGF-β1. Indeed, TGF-β1 Type I receptor activation provoked the cytosol-to-nucleus translocation of SMAD2 and SMAD3. SMAD2 knockdown by siRNA blocked MMP-2 induction and cell migration/invasion due to TGF-β1. TGF-β1 also provoked phosphorylation of MAPKs extracellular regulated kinase 1/2 and JNK1/2. Both MAPKs were upstream to p65/NF-kB inasmuch as both MAPKs' inhibitors PD98059 and SP600125 or their down-regulation by siRNA significantly blocked the TGF-β1-induced nuclear translocation of p65/NF-kB. In addition, p65/NF-κB siRNA knockdown inhibited the effects of TGF-β1 on both MMP-9 and cell migration/invasion. We conclude that TGF-β1 controls RSC96 Schwann cell migration and invasion through MMP-2 and MMP-9 activities. MMP-2 is controlled by SMAD2 whilst MMP-9 is controlled via an ERK1/2-JNK1/2-NF-κB dependent pathway.
Collapse
Affiliation(s)
- Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Carla Vetrugno
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Luca Giulio Cossa
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| |
Collapse
|
11
|
Wei X, Yang Y, Ge J, Lin X, Liu D, Wang S, Zhang J, Zhou G, Li S. Synthesis, characterization, DNA/BSA interactions and in vitro cytotoxicity study of palladium(II) complexes of hispolon derivatives. J Inorg Biochem 2019; 202:110857. [PMID: 31669695 DOI: 10.1016/j.jinorgbio.2019.110857] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/17/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
Thirteen novel palladium(II) complexes of the general formula [Pd(bipy)(O,O'-dkt)](PF6), (where bipy is 2,2'-bipyridine and O,O'-dkt is β-diketonate ligand hispolon or its derivative) have been prepared through a metal-ligand coordination method that involves spontaneous formation of the corresponding diketonate scaffold. The obtained palladium(II) complexes have been characterized by NMR spectroscopy, ESI-mass spectrometry as well as elemental analysis. The cytotoxicity analysis indicates that most of the obtained palladium(II) complexes show promising growth inhibition in three human cancer cell lines. Flow cytometry analysis shows complex 3e could promote intracellular reactive oxygen species (ROS) accumulation and lead cancer cell death. And the suppression of ROS accumulation and the rescue of cell viability in HeLa cells by N-acetyl-L-cysteine (NAC) suggest the possible link between the increase in ROS generation and cytotoxicity of complex 3e. Flow cytometry analysis also reveal that complex 3e cause cell cycle arrest in the G2/M phase and collapse of the mitochondrial membrane potential, promote the generation of ROS and lead to tumor cell apoptosis. The interactions of complex 3e with calf thymus DNA (CT-DNA) have been evaluated by UV-Vis spectroscopy, fluorescence quenching experiments and viscosity measurements, which reveal that the complex interact with CT-DNA through minor groove binding and/or electrostatic interactions. Further, the results of fluorescence titration and site marker competitive experiment on bovine serum albumin (BSA) suggest that complex 3e can quench the fluorescence of BSA via a static quenching process and bind to BSA in Sudlow's site II.
Collapse
Affiliation(s)
- Xiaonan Wei
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yaxing Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jiangfeng Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Xue Lin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Shuxiang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Shenghui Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
12
|
Tajbakhsh A, Rivandi M, Abedini S, Pasdar A, Sahebkar A. Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): A review. Crit Rev Oncol Hematol 2019; 140:17-27. [DOI: 10.1016/j.critrevonc.2019.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/13/2018] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
|
13
|
Apoptosis by [Pt(O,O'-acac)(γ-acac)(DMS)] requires PKC-δ mediated p53 activation in malignant pleural mesothelioma. PLoS One 2017; 12:e0181114. [PMID: 28704484 PMCID: PMC5507537 DOI: 10.1371/journal.pone.0181114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022] Open
Abstract
Mesothelioma cancer cells have epithelioid or sarcomatoid morphology. The worst prognosis is associated with sarcomatoid phenotype and resistance to therapy is affected by cells heterogeneity. We recently showed that in ZL55 mesothelioma cell line of epithelioid origin [Pt(O,O'-acac)(γ-acac)(DMS)] (Ptac2S) has an antiproliferative effect in vitro and in vivo. Aim of this work was to extend the study on the effects of Ptac2S on ZL34 cell line, representative of sarcomatoid mesothelioma. ZL34 cells were used to assay the antitumor activity of Ptac2S in a mouse xenograft model in vivo. Then, both ZL34 and ZL55 cells were used in order to assess the involvement of p53 protein in (a) the processes underlying the sensitivity to chemotherapy and (b) the activation of various transduction proteins involved in apoptosis/survival processes. Ptac2S increases ZL34 cell death in vivo compared with cisplatin and, in vitro, Ptac2S was more efficacious than cisplatin in inducing apoptosis. In Ptac2S-treated ZL34 and ZL55 cells, p53 regulated gene products of apoptotic BAX and anti-apoptotic Bcl-2 proteins via transcriptional activation. Ptac2S activated PKC-δ and PKC-ε; their inhibition by PKC-siRNA decreased the apoptotic death of cells. PKC-δ was responsible for JNK1/2 activation that has a role in p53 activation. In addition, PKC-ε activation provoked phosphorylation of p38MAPK, concurring to apoptosis. In ZL34 cells, Ptac2S also activated PKC-α thus provoking ERK1/2 activation; inhibition of PKC-α, or ERK1/2, increased Ptac2S cytotoxicity. Results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, giving a substantial starting point for its further validation.
Collapse
|
14
|
Muscella A, Vetrugno C, Marsigliante S. CCL20 promotes migration and invasiveness of human cancerous breast epithelial cells in primary culture. Mol Carcinog 2017; 56:2461-2473. [PMID: 28618084 DOI: 10.1002/mc.22693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/25/2017] [Accepted: 06/13/2017] [Indexed: 11/06/2022]
Abstract
The relation between the tumor and its microenvironment is one of the most interesting and less understood issues. Recently, we showed a role of CCL20 chemokine in proning the healthy tissue neighboring the tumor to carcinogenesis. Besides, tumor-secreted CCL20 induced proliferation, migration, and EMT of healthy cells. In this context, we have studied here if CCL20 had effects on the migration of cancer cells and the intracellular pathways used in breast epithelial cells in primary culture. Using molecular (siRNA) and pharmacological (inhibitors) techniques, we found multiple signaling kinases to be activated and involved in CCL20-induced tumor breast cell migration. CCL20 provoked a 2.5-fold increase of cell migration and invasion; CCL20 also enhanced MMP- 2 and MMP-9 mRNAs/protein expression and activities. Cell migration and invasiveness due to CCL20 significantly decreased when MMP-2 and MMP-9 were inhibited in CCL20-stimulated cells. CCL20 controlled MMP-2 expression through the JAK2/STAT3 pathway, while the expression of MMP-9 occurred by PKC-α that activated, consequently, c-Src, Akt, and finally NF-kB. These results reveal a role for CCL20 also in tumor breast cell and point to CCL20 as a novel therapeutic target in cancer.
Collapse
Affiliation(s)
- Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Carla Vetrugno
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| |
Collapse
|
15
|
Muscella A, Vetrugno C, Cossa LG, Antonaci G, De Nuccio F, De Pascali SA, Fanizzi FP, Marsigliante S. In Vitro and In Vivo Antitumor Activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in Malignant Pleural Mesothelioma. PLoS One 2016; 11:e0165154. [PMID: 27806086 PMCID: PMC5091852 DOI: 10.1371/journal.pone.0165154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/09/2016] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy highly resistant to chemotherapy. There is an urgent need for effective therapy inasmuch as resistance, intrinsic and acquired, to conventional therapies is common. Among Pt(II) antitumor drugs, [Pt(O,O′-acac)(γ-acac)(DMS)] (Ptac2S) has recently attracted considerable attention due to its strong in vitro and in vivo antiproliferative activity and reduced toxicity. The purpose of this study was to examine the efficacy of Ptac2S treatment in MPM. We employed the ZL55 human mesothelioma cell line in vitro and in a murine xenograft model in vivo, to test the antitumor activity of Ptac2S. Cytotoxicity assays and Western blottings of different apoptosis and survival proteins were thus performed. Ptac2S increases MPM cell death in vitro and in vivo compared with cisplatin. Ptac2S was more efficacious than cisplatin also in inducing apoptosis characterized by: (a) mitochondria depolarization, (b) increase of bax expression and its cytosol-to-mitochondria translocation and decrease of Bcl-2 expression, (c) activation of caspase-7 and -9. Ptac2S activated full-length PKC-δ and generated a PKC-δ fragment. Full-length PKC-δ translocated to the nucleus and membrane, whilst PKC-δ fragment concentrated to mitochondria. Ptac2S was also responsible for the PKC-ε activation that provoked phosphorylation of p38. Both PKC-δ and PKC-ε inhibition (by PKC–siRNA) reduced the apoptotic death of ZL55 cells. Altogether, our results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, providing a solid starting point for its validation as a suitable candidate for further pharmacological testing.
Collapse
Affiliation(s)
- Antonella Muscella
- Laboratory of Cell Pathology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
- * E-mail:
| | - Carla Vetrugno
- Laboratory of Cell Pathology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Luca Giulio Cossa
- Laboratory of Cell Physiology Di.S.Te.B.A., University of Salento, Lecce, Italy
| | - Giovanna Antonaci
- Laboratory of Cell Physiology Di.S.Te.B.A., University of Salento, Lecce, Italy
| | - Francesco De Nuccio
- Laboratory of Human Anatomy and Neuroscience, Di.S.Te.B.A., University of Salento, Lecce, Italy
| | | | | | - Santo Marsigliante
- Laboratory of Cell Physiology Di.S.Te.B.A., University of Salento, Lecce, Italy
| |
Collapse
|
16
|
Muscella A, Vetrugno C, Biagioni F, Calabriso N, Calierno MT, Fornai F, De Pascali SA, Marsigliante S, Fanizzi FP. Antitumour and antiangiogenic activities of [Pt(O,O'-acac)(γ-acac)(DMS)] in a xenograft model of human renal cell carcinoma. Br J Pharmacol 2016; 173:2633-44. [PMID: 27351124 DOI: 10.1111/bph.13543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non-genomic targets, on human renal carcinoma and compared them with those of the well-established anticancer drug, cisplatin. EXPERIMENTAL APPROACH Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki-1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. KEY RESULTS Treatment of the Caki-1 cells with cisplatin or [Pt(DMS)] resulted in a dose-dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. CONCLUSIONS AND IMPLICATIONS The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing.
Collapse
Affiliation(s)
- A Muscella
- Laboratory of Cell Pathology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - C Vetrugno
- Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - F Biagioni
- Laboratory of Neurobiology of Movement Disorders, Department of Molecular Pathology, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - N Calabriso
- Laboratory of Nutrigenomics and Vascular Biology, Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - M T Calierno
- Laboratory of Neurobiology of Movement Disorders, Department of Molecular Pathology, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - F Fornai
- Laboratory of Neurobiology of Movement Disorders, Department of Molecular Pathology, I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - S A De Pascali
- Laboratory of Inorganic Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - S Marsigliante
- Laboratory of Cell Physiology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - F P Fanizzi
- Laboratory of Inorganic Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| |
Collapse
|
17
|
Raza MK, Mitra K, Shettar A, Basu U, Kondaiah P, Chakravarty AR. Photoactive platinum(ii) β-diketonates as dual action anticancer agents. Dalton Trans 2016; 45:13234-43. [DOI: 10.1039/c6dt02590k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclometallated platinum(ii) β-diketonates show significant photocytotoxicity in skin-keratinocyte HaCaT cells [IC50: ∼10 μM (visible light, 400–700 nm), ≥60 μM (dark)].
Collapse
Affiliation(s)
- Md Kausar Raza
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Koushambi Mitra
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Abhijith Shettar
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bangalore 560012
- India
| | - Uttara Basu
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Paturu Kondaiah
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bangalore 560012
- India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
18
|
Muscella A, Vetrugno C, Antonaci G, Cossa LG, Marsigliante S. PKC-δ/PKC-α activity balance regulates the lethal effects of cisplatin. Biochem Pharmacol 2015; 98:29-40. [DOI: 10.1016/j.bcp.2015.08.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/17/2015] [Indexed: 01/24/2023]
|
19
|
Bergamo A, Sava G. Linking the future of anticancer metal-complexes to the therapy of tumour metastases. Chem Soc Rev 2015; 44:8818-35. [DOI: 10.1039/c5cs00134j] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer chemotherapy is almost always applied to patients with one or more diagnosed metastases and is expected to impact these lesions, thus providing significant benefits to the patient.
Collapse
Affiliation(s)
| | - Gianni Sava
- Callerio Foundation Onlus
- 34127 Trieste
- Italy
- Department of Life Sciences
- University of Trieste
| |
Collapse
|
20
|
Piccolini VM, Esposito A, Dal Bo V, Insolia V, Bottone MG, De Pascali SA, Fanizzi FP, Bernocchi G. Cerebellum neurotransmission during postnatal development: [Pt(O,O'-acac)(γ-acac)(DMS)] vs cisplatin and neurotoxicity. Int J Dev Neurosci 2014; 40:24-34. [PMID: 25450526 DOI: 10.1016/j.ijdevneu.2014.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022] Open
Abstract
Several chemotherapeutic drugs are known to cause neurotoxicity. Platinum-based agents in use or in clinical trials display neurotoxic potential accompanied by neurological complications; recent studies have identified a large number of behavioural issues in paediatric oncology patients. To understand the toxicity of platinum drugs at the molecular and cellular levels, this study compares the possible cytotoxic effects of an older platinum compound, cisplatin and a new platinum compound, [Pt(O,O'-acac)(γ-acac)(DMS)], on the CNS of postnatally developing rats, which is much more vulnerable to injury than the CNS of adult rats. Since several drugs interact with neurotransmitters during neuronal maturation, we performed immunostainings with antibodies raised against markers of glutamate and GABA, the major neurotransmitters in the cerebellum. After a single injection of cisplatin at postnatal day 10 (PD10), the labelling of Purkinje cells with the neurotransmitter markers evidenced alterations between PD11 and PD30, i.e. atrophy of the dendrite tree, changes in the distribution of synaptic contacts of parallel and climbing fibres, delay in the elimination of transient synapses on cell soma and severely impaired pinceau formation at the axon hillock. After treatment with [Pt(O,O'-acac)(γ-acac)(DMS)], the sole relevant change concerned the timing of climbing fibres elimination; the transient synapses disappearance on the Purkinje cell soma was delayed in some cells; instead, the growth of Purkinje cell dendrite tree was normal as was the formation of inhibitory synaptic contacts on these neurons. These findings add new evidence not only on the lower neurotoxicity of [Pt(O,O'-acac)(γ-acac)(DMS)] vs cisplatin but also on the involvement of neurotransmitters and relative synaptic connections in the maturation of central nerve tissue.
Collapse
Affiliation(s)
- Valeria Maria Piccolini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, via Ferrata 9, 27100 Pavia, Italy; Istituto di Genetica Molecolare del CNR, Sezione di Istochimica e Citometria, via Ferrata 9, 27100 Pavia, Italy.
| | - Alessandra Esposito
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Veronica Dal Bo
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Violetta Insolia
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Maria Grazia Bottone
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, via Ferrata 9, 27100 Pavia, Italy; Istituto di Genetica Molecolare del CNR, Sezione di Istochimica e Citometria, via Ferrata 9, 27100 Pavia, Italy.
| | - Sandra Angelica De Pascali
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy.
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy.
| | - Graziella Bernocchi
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
21
|
Muscella A, Vetrugno C, Calabriso N, Cossa LG, De Pascali SA, Fanizzi FP, Marsigliante S. [Pt(O,O'-acac)(γ-acac)(DMS)] alters SH-SY5Y cell migration and invasion by the inhibition of Na+/H+ exchanger isoform 1 occurring through a PKC-ε/ERK/mTOR Pathway. PLoS One 2014; 9:e112186. [PMID: 25372487 PMCID: PMC4221608 DOI: 10.1371/journal.pone.0112186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
We previously showed that [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(acac)2(DMS)]) exerted substantial cytotoxic effects in SH-SY5Y neuroblastoma cells, and decreased metalloproteases (MMPs) production and cells migration in MCF-7 breast cancer cells. The ubiquitously distributed sodium-hydrogen antiporter 1 (NHE1) is involved in motility and invasion of many solid tumours. The present study focuses on the effects of [Pt(acac)2(DMS)] in SH-SY5Y cell migration and also on the possibility that NHE1 may be involved in such effect. After sublethal [Pt(acac)2(DMS)] treatment cell migration was examined by wounding assay and cell invasion by transwell assay. NHE1 activity was measured in BCECF-loaded SH-SY5Y as the rate of Na+-dependent intracellular pH recovery in response to an acute acid pulse. Gelatin zymography for MMP-2/9 activities, Western blottings of MMPs, MAPKs, mTOR, S6 and PKCs and small interfering RNAs to PKC-ε/-δ mRNA were performed. Sublethal concentrations of [Pt(acac)2(DMS)] decreases NHE1 activity, inhibits cell migration and invasion and decreases expression and activity of MMP-2 and -9. [Pt(acac)2(DMS)] administered to SH-SY5Y cells provokes the increment of ROS, generated by NADPH oxidase, responsible for the PKC-ε and PKC-δ activation. Whilst PKC-δ activates p38/MAPK, responsible for the inhibition of MMP-2 and -9 secretion, PKC-ε activates a pathway made of ERK1/2, mTOR and S6K responsible for the inhibition of NHE1 activity and cell migration. In conclusion, we have shown a drastic impairment in tumour cell metastatization in response to inhibition of NHE1 and MMPs activities by [Pt(acac)2(DMS)] occurring through a novel mechanism mediated by PKC-δ/-ε activation.
Collapse
Affiliation(s)
- Antonella Muscella
- Cell Pathology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Carla Vetrugno
- Neuropathology Unit, Istituto di Neurologia sperimentale e Divisione di Neuroscienze, Istituto Scientifico IRCCS San Raffaele (sezione di Lecce), Milano, Italy
| | - Nadia Calabriso
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Luca Giulio Cossa
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Sandra Angelica De Pascali
- General and Inorganic Chemistry Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Francesco Paolo Fanizzi
- General and Inorganic Chemistry Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Santo Marsigliante
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
- * E-mail:
| |
Collapse
|
22
|
Vetrugno C, Muscella A, Fanizzi FP, Cossa LG, Migoni D, De Pascali SA, Marsigliante S. Different apoptotic effects of [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin on normal and cancerous human epithelial breast cells in primary culture. Br J Pharmacol 2014; 171:5139-53. [PMID: 24990093 DOI: 10.1111/bph.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to determine whether [platinum (Pt)(O,O'-acetylacetonate (acac))(γ-acac)(dimethylsulphide (DMS))] is differentially cytotoxic in normal and cancer cells, and to measure comparative levels of cytotoxicity compared with cisplatin in the same cells. EXPERIMENTAL APPROACH We performed experiments on cancerous and normal epithelial breast cells in primary culture obtained from the same patients. The apoptotic effects [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin in cancerous and normal breast cells were compared. KEY RESULTS Cancer cells were more sensitive to [Pt(O,O'-acac)(γ-acac)(DMS)] (IC50 = 5.22 ± 1.2 μmol·L(-1)) than normal cells (IC50 = 116.9 ± 8.8 μmol·L(-1)). However, the difference was less strong when cisplatin was used (IC50 = 96.0 ± 6.9 and 61.9 ± 6.1 μmol·L(-1) for cancer and normal cells respectively). Both compounds caused reactive oxygen species (ROS) production with different mechanisms: [Pt(O,O'-acac)(γ-acac)(DMS)] quickly activated NAD(P)H oxidase while cisplatin caused a slower formation of mitochondrial ROS. Cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] caused activation of caspases, proteolysis of PARP and modulation of Bcl-2, Bax and Bid. [Pt(O,O'-acac)(γ-acac)(DMS)] also caused leakage of cytochrome c from the mitochondria. Overall, these processes proceeded more quickly in cells treated with [Pt(O,O'-acac)(γ-acac)(DMS)] compared with cisplatin. [Pt(O,O'-acac)(γ-acac)(DMS)] effects were faster and quantitatively greater in cancer than in normal cells. [Pt(O,O'-acac)(γ-acac)(DMS)] caused a fast decrease of mitochondrial membrane potential, especially in cancer cells. CONCLUSIONS AND IMPLICATIONS [Pt(O,O'-acac)(γ-acac)(DMS)] was specific to breast cancer cells in primary culture, and this observation makes this compound potentially more interesting than cisplatin.
Collapse
Affiliation(s)
- Carla Vetrugno
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Universita' del Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
De Pascali SA, Muscella A, Vetrugno C, Marsigliante S, Fanizzi FP. Synthesis, characterization and cytotoxicity of novel Pt(II) κ2O,O′-acetylacetonate complexes with nitrogen ligands. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Synthesis, Crystal Structure, and Biological Study of PtIIComplexes with 4-Acyl-5-pyrazolones. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201301479] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Biological evaluation of transdichloridoplatinum(II) complexes with 3- and 4-acetylpyridine in comparison to cisplatin. Radiol Oncol 2013; 47:346-57. [PMID: 24294179 PMCID: PMC3814279 DOI: 10.2478/raon-2013-0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/25/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In our previous study we reported the synthesis and cytotoxicity of two trans-platinum(II) complexes: trans-[PtCl2(3-acetylpyridine)2] (1) and trans-[PtCl2(4-acetylpyridine)2] (2), revealing significant cytotoxic potential of 2. In order to evaluate the mechanism underlying biological activity of both trans-Pt(II) isomers, comparative studies versus cisplatin were performed in HeLa, MRC-5 and MS1 cells. MATERIALS AND METHODS The cytotoxic activity of the investigated complexes was determined using SRB assay. The colagenolytic activity was determined using gelatin zymography, while the effect of platinum complexes on matrix metalloproteinases 2 and 9 mRNA expression was evaluated by quantitative real-time PCR. Apoptotic potential and cell cycle alterations were determined by FACS analyses. Western blot analysis was used to evaluate the effect on expression of DNA-repair enzyme ERCC1, and quantitative real-time PCR was used for the ERCC1 mRNA expression analysis. In vitro antiangiogenic potential was determined by tube formation assay. Platinum content in intracellular DNA and proteins was determined by inductively coupled plasma-optical emission spectrometry. RESULTS Compound 2 displayed an apparent cytoselective profile, and flow cytometry analysis in HeLa cells indicated that 2 exerted antiproliferative effect through apoptosis induction, while 1 induced both apoptosis and necrosis. Action of 1 and 2, as analyzed by quantitative real-time PCR and Western blot, was associated with down-regulation of ERCC1. Both trans-complexes inhibited MMP-9 mRNA expression in HeLa, while 2 significantly abrogated in vitro tubulogenesis in MS1 cells. CONCLUSIONS The ability of 2 to induce multiple and selective in vitro cytotoxic effects encourages further investigations of trans-platinum(II) complexes with substituted pyridines.
Collapse
|
26
|
A new platinum(II) compound anticancer drug candidate with selective cytotoxicity for breast cancer cells. Cell Death Dis 2013; 4:e796. [PMID: 24030148 PMCID: PMC3789173 DOI: 10.1038/cddis.2013.315] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 01/12/2023]
Abstract
[Pt(O,O′-acac)(γ-acac)(DMS)] (PtAcD) is able to induce apoptosis in various human cancer cells, including the cisplatin-resistant human breast carcinoma MCF-7 cells. Here, to confirm that PtAcD has the potentiality for therapeutic intervention, we studied its effects in primary cultured epithelial breast cells obtained from cancers and also from the corresponding histologically proven non-malignant tissue adjacent to the tumor. We demonstrated that PtAcD (1) is more cytotoxic in cancer than in normal breast cells; (2) activated NAD(P)H oxidase, leading to PKC-ζ and PKC-α tanslocations; (3) activated antiapoptotic pathways based on the PKC-α, ERK1/2 and Akt kinases; (4) activated PKC-ζ and, only in cancer cell PKC-δ, responsible for the sustained phosphorylation of p38 and JNK1/2, kinases both of which are involved in the mitochondrial apoptotic process. Moreover, crosstalk between ERK/Akt and JNK/p38 pathways affected cell death and survival in PtAcD-treated breast cell. In conclusion, this study adds and extends data that highlight the pharmacological potential of PtAcD as an anti breast cancer drug.
Collapse
|
27
|
Marsigliante S, Vetrugno C, Muscella A. CCL20 induces migration and proliferation on breast epithelial cells. J Cell Physiol 2013; 228:1873-83. [PMID: 23460117 DOI: 10.1002/jcp.24349] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/08/2013] [Indexed: 12/23/2022]
Abstract
The communication between the tumor cells and the surrounding cells helps drive the process of tumor progression. Since the microenvironment of breast cancer includes CCL20 chemokine, the purpose of this study was to determine whether CCL20 modulates the physiology of healthy breast epithelial cells in areas adjacent to the tumor. Therefore, primary cultures of mammary cells taken from normal peritumoral areas were used. We assessed that breast cells expressed CCR6 CCL20 receptor. Using molecular (siRNA) and pharmacological (inhibitors) techniques, we found multiple signaling kinases to be activated by CCR6 and involved in CCL20-induced breast cell proliferation and migration. The binding of 10 ng/ml CCL20 to CCR6 induced cell migration whilst higher concentrations (from 15 to 25 ng/ml) led to cell proliferation. CCL20 controlled cell migration and MMP-9 expression by PKC-alpha that activated Src, which caused the activation of downstream Akt, JNK, and NF-kB pathways. Furthermore, higher CCL20 concentrations increased cycE and decreased p27Kip expression ending in enhanced cell proliferation. Cell proliferation occurred through PKC-epsilon activation that transactivated EGFR and ERK1/2/MAPK pathway. Although activated by different CCL20 concentrations, these pathways function in parallel and crosstalk to some extent, inasmuch as Akt activation was responsible for ERK1/2 nuclear translocation and enhanced the transcription of of c-fos and c-myc, involved in cell proliferation. In summary, tumor cells exchange signals with the surrounding healthy cells modifying the extracellular matrix through enzyme secretion; thus, CCL20 might be a factor involved in the ontogeny of breast carcinoma.
Collapse
Affiliation(s)
- Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | | | | |
Collapse
|
28
|
Platinum drugs and neurotoxicity: effects on intracellular calcium homeostasis. Cell Biol Toxicol 2013; 29:339-53. [DOI: 10.1007/s10565-013-9252-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
|
29
|
Abstract
The products obtained by forcing the reaction with nucleosides (guanosine, Guo, and adenosine, Ado) of potential anticancer drugs for nongenomic targets [PtCl(O,O'-acac)(L)] (L = dimethyl sulfoxide, DMSO; dimethyl sulfide, DMS), closely related to their very powerful organometallic analogues [Pt(O,O'-acac)(γ-acac)(L)], have been studied. [PtCl(O,O'-acac)(L)] and [Pt(O,O'-acac)(γ-acac)(L)] complexes were reported unreactive toward nucleobases. Aquo species [Pt(O,O'-acac)H2O(L)]+, obtained from [PtCl(O,O'-acac)(L)] by Ag+ driven coordinated Cl– removal, gave access to [Pt(O,O'-acac)(L)(nucleoside)]+ ([Pt(O,O'-acac)(DMSO)(Guo)]+, [Pt(O,O'-acac)(DMS)(Guo)]+, [Pt(O,O'-acac)(DMSO)(Ado)]+). The effect of the chelate oxygen donor acac (with respect to a chelate diammine), the role of the sulfur ligand (DMSO, DMS), and the influence of the purinic nucleoside itself on the coordinated Guo or Ado dynamic motions in [Pt(O,O'-acac)(L)(nucleoside)]+ complexes have been investigated by NMR spectroscopy. Interestingly, a slow rotation of nucleobase around the Pt–N(7) bond with formation of two rotamers was observed already at room temperature only in the case of [Pt(O,O'-acac)(DMSO)(Guo)]+. On the other hand, no hindered rotation at room temperature was detected in the analogous [Pt(O,O'-acac)(DMS)(Guo)]+ and [Pt(O,O'-acac)(DMSO)(Ado)]+ complexes. Data suggest that rotation of the nucleoside in [Pt(O,O'-acac)(L)(nucleoside)]+ is very different with respect to the analogous [Pt(diammine)(L)(nucleoside)]2+ systems, due to specific interactions between the acac chelate ligand, the DMSO, and the nucleobase.
Collapse
|
30
|
Maccario C, Savio M, Ferraro D, Bianchi L, Pizzala R, Pretali L, Forti L, Stivala LA. The resveratrol analog 4,4'-dihydroxy-trans-stilbene suppresses transformation in normal mouse fibroblasts and inhibits proliferation and invasion of human breast cancer cells. Carcinogenesis 2012; 33:2172-80. [PMID: 22828135 DOI: 10.1093/carcin/bgs244] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
4,4'-dihydroxy-trans-stilbene (DHS) is a synthetic analog of resveratrol, a phytoalexin known for its biological activities. We previously demonstrated that DHS exerts an antiproliferative effect on normal human fibroblasts that is higher than that of the natural parent molecule. No evidence regarding its role in human cancer cell lines has been found thus far. In this study, we investigated the effects of DHS both on chemical-induced transformation of BALB/c 3T3 mouse fibroblasts and on the proliferation and invasion of human breast cancer MCF-7 cells. The results showed that DHS markedly suppresses the two-stage (3-methylcholanthrene plus 12-O-tetradecanoylphorbol-13-acetate) cell transformation. Compared with resveratrol, DHS inhibited both anchorage-dependent and -independent MCF-7 growth more efficiently. In addition, a reduction in the number of cells in S-phase, characterized by a concomitant increase in the levels of p21 and p53 proteins, together with a strong inhibition of pRb protein phosphorylation, was observed in DHS-treated cells. Furthermore, DHS effected a strong reduction in matrix metalloproteinase-2 and -9 activities, concomitantly with a marked inhibition of cell adhesion to the extracellular matrix components as well as inhibition of cell migration and invasion. Importantly, modulation of the adhesion molecule E-cadherin was also found in DHS-treated cells. Taken together, these results demonstrate that the two 4,4'-hydroxyl groups on the stilbenic backbone make DHS a more active molecule than resveratrol in inhibiting neoplastic transformation, cancer cell proliferation and invasion. In conclusion, this study suggests that DHS could be a promising anticancer agent.
Collapse
Affiliation(s)
- Cristina Maccario
- Dipartimento di Medicina Molecolare, Università degli Studi di Pavia, Pavia, PV 27100, Italia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wilson JJ, Lippard SJ. In vitro anticancer activity of cis-diammineplatinum(II) complexes with β-diketonate leaving group ligands. J Med Chem 2012; 55:5326-36. [PMID: 22606945 DOI: 10.1021/jm3002857] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Five cationic platinum(II) complexes of general formula, [Pt(NH(3))(2)(β-diketonate)]X are reported, where X is a noncoordinating anion and β-diketonate = acetylacetonate (acac), 1,1,1,-trifluoroacetylacetonate (tfac), benzoylacetonate (bzac), 4,4,4-trifluorobenzoylacetonate (tfbz), or dibenzoylmethide (dbm), corresponding, respectively, to complexes 1-5. The log P values and the stabilities of 1-5 in aqueous solution were evaluated. The phenyl ring substituents of 3-5 increase the lipophilicity of the resulting complexes, whereas the trifluoromethyl groups of 2 and 4 decrease the stability of the complexes in aqueous solution. The uptake of 1-5 in HeLa cells increases as the lipophilicity of the investigated complex increases. Cancer cell cytotoxicity studies indicate that 1 and 3 are the least active complexes whereas 2, 4, and 5 are comparable in activity to cisplatin.
Collapse
Affiliation(s)
- Justin J Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
32
|
Birkle T, Carbayo A, Cuevas JV, García-Herbosa G, Muñoz A. Nucleophilic Attack on Coordinated Imines: The Synthesis of C-Bonded Acetylacetonates of Palladium(II) and Mechanistic Insights. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101434] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Muscella A, Calabriso N, Vetrugno C, Fanizzi FP, De Pascali SA, Marsigliante S. The signalling axis mediating neuronal apoptosis in response to [Pt(O,O′-acac)(γ-acac)(DMS)]. Biochem Pharmacol 2011; 81:1271-85. [DOI: 10.1016/j.bcp.2011.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 12/28/2022]
|
34
|
De Pascali SA, Lugoli F, De Donno A, Fanizzi FP. Mutagenic Tests Confirm That New Acetylacetonate Pt(II) Complexes Induce Apoptosis in Cancer Cells Interacting with Nongenomic Biological Targets. Met Based Drugs 2011; 2011:763436. [PMID: 21792272 PMCID: PMC3094815 DOI: 10.1155/2011/763436] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 02/04/2023] Open
Abstract
New platinum(II) complexes [PtCl(O,O'-acac)(L)] (1) and [Pt(O,O'-acac)(γ-acac)(L)] (2) (L = DMSO, a; DMS, b) containing a single chelated (O,O'-acac) (1), or one chelated and one σ-bonded (γ-acac) acetylacetonate (2) have been synthesized. The new Pt(II) complexes exhibited high in vitro cytotoxicity on cisplatin sensitive and resistant cell lines and showed negligible reactivity with nucleobases (Guo and 5'-GMP) but selective substitution of DMSO/DMS with soft biological nucleophiles, such as L-methionine. In order to assess the ability of the new complexes with respect to cisplatin to induce apoptosis by interaction with nongenomic targets, the Ames' test, a standard reverse mutation assay, was carried out on two Salmonella typhimurium strains (TA98 and TA100). Interestingly, the new complexes did not show the well-known mutagenic activity exhibited by cisplatin and are, therefore, able to activate apoptotic pathways without interacting with DNA.
Collapse
Affiliation(s)
- Sandra Angelica De Pascali
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov. le Lecce/Monteroni, 73100 Lecce, Italy
| | - Federica Lugoli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov. le Lecce/Monteroni, 73100 Lecce, Italy
| | - Antonella De Donno
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov. le Lecce/Monteroni, 73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov. le Lecce/Monteroni, 73100 Lecce, Italy
| |
Collapse
|
35
|
Muscella A, Calabriso N, Vetrugno C, Fanizzi FP, De Pascali SA, Storelli C, Marsigliante S. The platinum (II) complex [Pt(O,O′-acac)(γ-acac)(DMS)] alters the intracellular calcium homeostasis in MCF-7 breast cancer cells. Biochem Pharmacol 2011; 81:91-103. [DOI: 10.1016/j.bcp.2010.09.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 12/31/2022]
|