1
|
Mosconi MG, Paciaroni M, Ageno W. Investigational drugs for ischemic stroke: what's in the clinical development pipeline for acute phase and prevention? Expert Opin Investig Drugs 2022; 31:645-667. [PMID: 35486110 DOI: 10.1080/13543784.2022.2072725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Stroke is a leading cause of disability and mortality and its burden expected to increase. The only approved drug for acute ischemic stroke is the intravenous thrombolytic alteplase. The risk of bleeding complications is one of the reasons for the undertreatment of eligible patients. Numerous drugs are currently being developed to improve safety-efficacy. AREAS COVERED We reviewed literature from January 1st, 2000, to 15th January 2022 for the development and testing of novel drugs with the aim of targeting treatment at prevention of ischemic stroke: PubMed, MEDLINE, Google Scholar, and ClinicalTrial.gov. EXPERT OPINION The pathophysiology of ischemic stroke involves multiple pathways causing cerebral artery obstruction and brain tissue ischemia. Data suggest that tenecteplase is a more promising fibrinolytic agent with a superior efficacy-safety profile, compared to the currently approved alteplase. Current guidelines consider a short-term cycle of mannitol or hypertonic saline to be advisable in patients with space-occupying hemispheric infarction. Regarding primary and secondary prevention, research is primarily focused on identifying mechanisms to improve the safety-efficacy profile using a "hemostasis-sparing" approach. Further evaluation on those agents that have already shown promise for their risk/benefit profiles, would benefit greatly a neurologist's capacity to successfully prevent and treat ischemic stroke patients.
Collapse
Affiliation(s)
- Maria Giulia Mosconi
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Maurizio Paciaroni
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
2
|
Piechowski-Jozwiak B, Abidi E, El Nekidy WS, Bogousslavsky J. Clinical Pharmacokinetics and Pharmacodynamics of Desmoteplase. Eur J Drug Metab Pharmacokinet 2022; 47:165-176. [PMID: 34893967 PMCID: PMC8664670 DOI: 10.1007/s13318-021-00743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 11/20/2022]
Abstract
Desmoteplase is a bat (Desmodus rotundus) saliva-derived fibrinolytic enzyme resembling a urokinase and tissue plasminogen activator. It is highly dependent on fibrin and has some neuroprotective attributes. Intravenous administration of desmoteplase is safe and well tolerated in healthy subjects. Plasma fibrinolytic activity is linearly related to its blood concentration, its terminal elimination half-life ranges from 3.8 to 4.92 h (50 vs. 90 μg/kg dose). Administration of desmoteplase leads to transitory derangement of fibrinogen, D-dimer, alpha2-antiplasmin, and plasmin and antiplasmin complex which normalize within 4-12 h. It does not alter a prothrombin test, international normalized ratio, activated partial thromboplastin time, and prothrombin fragment 1.2. Desmoteplase was tested in myocardial infarction and pulmonary embolism and showed promising results versus alteplase. In ischemic stroke trials, desmoteplase was linked to increased rates of symptomatic intracranial hemorrhages and case fatality. However, data from "The desmoteplase in Acute Ischemic Stroke" Trials, DIAS-3 and DIAS-J, suggest that the drug is well tolerated and its safety profile is comparable to placebo. Desmoteplase is theoretically a superior thrombolytic because of high fibrin specificity, no activation of beta-amyloid, and lack of neurotoxicity. It was associated with better outcomes in patients with significant stenosis or occlusion of a proximal precerebral vessels. However, DIAS-4 was stopped as it might have not reached its primary endpoint. Due to its promising properties, desmoteplase may be added into treatment of ischemic stroke with extension of the time window and special emphasis on patients presenting outside the 4.5-h thrombolysis window, with wake-up strokes and strokes of unknown onset.
Collapse
Affiliation(s)
- Bartlomiej Piechowski-Jozwiak
- Neurological Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
- Cleveland Clinic Lerner College of Medicine of Case Western University, Cleveland, OH, USA
- Department of Neurology, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Emna Abidi
- Department of Pharmacy, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE.
| | - Wasim S El Nekidy
- Cleveland Clinic Lerner College of Medicine of Case Western University, Cleveland, OH, USA
- Department of Pharmacy, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Julien Bogousslavsky
- Center for Brain and Nervous System Diseases (Neurocenter), Genolier Swiss Medical Network (Geneva, Lausanne, Glion, Genolier, Fribourg, Zurich), Clinique Valmont, 1823, Glion/Montreux, Switzerland
| |
Collapse
|
3
|
Bobrovsky P, Manuvera V, Baskova I, Nemirova S, Medvedev A, Lazarev V. Recombinant Destabilase from Hirudo medicinalis Is Able to Dissolve Human Blood Clots In Vitro. Curr Issues Mol Biol 2021; 43:2068-2081. [PMID: 34889897 PMCID: PMC8929072 DOI: 10.3390/cimb43030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Leeches are amazing animals that can be classified as conditionally poisonous animals since the salivary cocktail they produce is injected directly into the victim, and its components have strictly defined biological purposes, such as preventing blood clot formation. Thrombolytic drugs are mainly aimed at treating newly formed blood clots. Aged clots are stabilized by a large number of isopeptide bonds that prevent the action of thrombolytics. These bonds are destroyed by destabilase, an enzyme of the leech’s salivary glands. Here, we conducted a pilot study to evaluate the feasibility and effectiveness of the use of destabilase in relation to blood clots formed during real pathological processes. We evaluated the isopeptidase activity of destabilase during the formation of a stabilized fibrin clot. We showed that destabilase does not affect the internal and external coagulation cascades. We calculated the dose–response curve and tested the ability of destabilase to destroy isopeptide bonds in natural blood clots. The effect of aged and fresh clots dissolving ability after treatment with destabilase coincided with the morphological characteristics of clots during surgery. Thus, recombinant destabilase can be considered as a potential drug for the treatment of aged clots, which are difficult to treat with known thrombolytics.
Collapse
Affiliation(s)
- Pavel Bobrovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.M.); (V.L.)
- Correspondence: ; Tel.: +7-9166047849
| | - Valentin Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.M.); (V.L.)
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Izolda Baskova
- Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Svetlana Nemirova
- Federal State Budgetary Educational Institution of Higher Education “Privolzhsky Research Medical University” of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (S.N.); (A.M.)
| | - Alexandr Medvedev
- Federal State Budgetary Educational Institution of Higher Education “Privolzhsky Research Medical University” of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (S.N.); (A.M.)
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.M.); (V.L.)
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
4
|
Cioni P, Gabellieri E, Campanini B, Bettati S, Raboni S. Use of Exogenous Enzymes in Human Therapy: Approved Drugs and Potential Applications. Curr Med Chem 2021; 29:411-452. [PMID: 34259137 DOI: 10.2174/0929867328666210713094722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
The development of safe and efficacious enzyme-based human therapies has increased greatly in the last decades, thanks to remarkable advances in the understanding of the molecular mechanisms responsible for different diseases, and the characterization of the catalytic activity of relevant exogenous enzymes that may play a remedial effect in the treatment of such pathologies. Several enzyme-based biotherapeutics have been approved by FDA (the U.S. Food and Drug Administration) and EMA (the European Medicines Agency) and many are undergoing clinical trials. Apart from enzyme replacement therapy in human genetic diseases, which is not discussed in this review, approved enzymes for human therapy find applications in several fields, from cancer therapy to thrombolysis and the treatment, e.g., of clotting disorders, cystic fibrosis, lactose intolerance and collagen-based disorders. The majority of therapeutic enzymes are of microbial origin, the most convenient source due to fast, simple and cost-effective production and manipulation. The use of microbial recombinant enzymes has broadened prospects for human therapy but some hurdles such as high immunogenicity, protein instability, short half-life and low substrate affinity, still need to be tackled. Alternative sources of enzymes, with reduced side effects and improved activity, as well as genetic modification of the enzymes and novel delivery systems are constantly searched. Chemical modification strategies, targeted- and/or nanocarrier-mediated delivery, directed evolution and site-specific mutagenesis, fusion proteins generated by genetic manipulation are the most explored tools to reduce toxicity and improve bioavailability and cellular targeting. This review provides a description of exogenous enzymes that are presently employed for the therapeutic management of human diseases with their current FDA/EMA-approved status, along with those already experimented at the clinical level and potential promising candidates.
Collapse
Affiliation(s)
- Patrizia Cioni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma. Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Samanta Raboni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| |
Collapse
|
5
|
Li C, Sun T, Jiang C. Recent advances in nanomedicines for the treatment of ischemic stroke. Acta Pharm Sin B 2021; 11:1767-1788. [PMID: 34386320 PMCID: PMC8343119 DOI: 10.1016/j.apsb.2020.11.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/27/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a cerebrovascular disease normally caused by interrupted blood supply to the brain. Ischemia would initiate the cascade reaction consisted of multiple biochemical events in the damaged areas of the brain, where the ischemic cascade eventually leads to cell death and brain infarction. Extensive researches focusing on different stages of the cascade reaction have been conducted with the aim of curing ischemic stroke. However, traditional treatment methods based on antithrombotic therapy and neuroprotective therapy are greatly limited for their poor safety and treatment efficacy. Nanomedicine provides new possibilities for treating stroke as they could improve the pharmacokinetic behavior of drugs in vivo, achieve effective drug accumulation at the target site, enhance the therapeutic effect and meanwhile reduce the side effect. In this review, we comprehensively describe the pathophysiology of stroke, traditional treatment strategies and emerging nanomedicines, summarize the barriers and methods for transporting nanomedicine to the lesions, and illustrate the latest progress of nanomedicine in treating ischemic stroke, with a view to providing a new feasible path for the treatment of cerebral ischemia.
Collapse
Key Words
- AEPO, asialo-erythropoietin
- APOE, apolipoprotein E
- BBB, blood‒brain barrier
- BCECs, brain capillary endothelial cells
- Blood‒brain barrier
- CAT, catalase
- COX-1, cyclooxygenase-1
- CXCR-4, C-X-C chemokine receptor type 4
- Ce-NPs, ceria nanoparticles
- CsA, cyclosporine A
- DAMPs, damage-associated molecular patterns
- GFs, growth factors
- GPIIb/IIIa, glycoprotein IIb/IIIa
- HMGB1, high mobility group protein B1
- Hb, hemoglobin
- ICAM-1, intercellular adhesion molecule-1
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- Ischemic cascade
- LFA-1, lymphocyte function-associated antigen-1
- LHb, liposomal Hb
- MCAO, middle cerebral artery occlusion
- MMPs, matrix metalloproteinases
- MSC, mesenchymal stem cell
- NF-κB, nuclear factor-κB
- NGF, nerve growth factor
- NMDAR, N-methyl-d-aspartate receptor
- NOS, nitric oxide synthase
- NPs, nanoparticles
- NSCs, neural stem cells
- Nanomedicine
- Neuroprotectant
- PBCA, poly-butylcyanoacrylate
- PCMS, poly (chloromethylstyrene)
- PEG, poly-ethylene-glycol
- PEG-PLA, poly (ethylene-glycol)-b-poly (lactide)
- PLGA NPs, poly (l-lactide-co-glycolide) nanoparticles
- PSD-95, postsynaptic density protein-95
- PSGL-1, P-selectin glycoprotein ligand-1
- RBCs, red blood cells
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp
- ROS, reactive oxygen species
- Reperfusion
- SDF-1, stromal cell-derived factor-1
- SHp, stroke homing peptide
- SOD, superoxide dismutase
- SUR1-TRPM4, sulfonylurea receptor 1-transient receptor potential melastatin-4
- Stroke
- TEMPO, 2,2,6,6-tetramethylpiperidine-1-oxyl
- TIA, transient ischemic attack
- TNF-α, tumor necrosis factor-α
- Thrombolytics
- cRGD, cyclic Arg-Gly-Asp
- e-PAM-R, arginine-poly-amidoamine ester
- iNOS, inducible nitric oxide synthase
- miRNAs, microRNAs
- nNOS, neuron nitric oxide synthase
- siRNA, small interfering RNA
Collapse
|
6
|
Brütsch DR, Hunziker P, Pot S, Tappeiner C, Voelter K. Corneal and scleral permeability of Desmoteplase in different species. Vet Ophthalmol 2020; 23:785-791. [PMID: 32862517 DOI: 10.1111/vop.12782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/21/2020] [Accepted: 05/02/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Intraocular fibrin clots caused by severe uveitis can be a sight-threatening condition that needs to be resolved quickly and reliably. Intracameral injection of tissue-plasminogen activator (tPA) is commonly used to resolve intraocular fibrin. However, the drug does not reach fibrinolytic concentrations after topical application. Desmoteplase (DSPA) is a structurally similar but smaller fibrinolytic agent with a higher fibrin selectivity, a longer half-life, and better biocompatibility compared with tPA. This study was designed to evaluate the corneal and scleral permeability of DSPA in rabbits, pigs, dogs, horses, and humans ex vivo. PROCEDURES Corneal and scleral tissues (n = 5 per group) were inserted into Franz-type diffusion chambers and exposed to 1.4 mg/mL DSPA for 30 minutes. Drug concentrations on the receiver side were determined by liquid chromatography-tandem mass spectrometry. RESULTS Concentrations of DSPA after corneal and scleral permeation through fresh tissues ranged from 0.0 to 16.3 µg/mL and 0.0 to 11.4 µg/mL (rabbits), 0.3 to 5.6 µg/mL and 3.1 to 9.2 µg/mL (dogs), 2.1 to 14.9 µg/mL and 4 to 8.7 µg/mL (horses), and 0.6 to 3 µg/mL and 2.9 to 18.1 µg/mL (pigs), respectively. A concentration of 0.07-12.9 µg/mL DSPA was detectable after diffusion through tissue culture preserved human donor bank corneas (Table 1). CONCLUSIONS Desmoteplase has the ability to permeate both cornea and sclera ex vivo in all species tested. Implications of the ex vivo permeability of DSPA suggest that in vivo permeability may be possible, and if so, it could lead to a novel topical application for lysing fibrin.
Collapse
Affiliation(s)
- Deborah R Brütsch
- Ophthalmology Section, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Peter Hunziker
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | - Simon Pot
- Ophthalmology Section, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christoph Tappeiner
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katrin Voelter
- Ophthalmology Section, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Bordon KDCF, Cologna CT, Fornari-Baldo EC, Pinheiro-Júnior EL, Cerni FA, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cardoso IA, Ferreira IG, de Oliveira IS, Boldrini-França J, Pucca MB, Baldo MA, Arantes EC. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Front Pharmacol 2020; 11:1132. [PMID: 32848750 PMCID: PMC7396678 DOI: 10.3389/fphar.2020.01132] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Animal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters. Here we go through the pitfalls for a toxin-based potential therapeutic drug to become eligible for clinical trials and marketing. The manuscript also presents an overview of the current picture for several molecules from different animal venoms and poisons (such as those from amphibians, cone snails, hymenopterans, scorpions, sea anemones, snakes, spiders, tetraodontiformes, bats, and shrews) that have been used in clinical trials. Advances and perspectives on the therapeutic potential of molecules from other underexploited animals, such as caterpillars and ticks, are also reported. The challenges faced during the lengthy and costly preclinical and clinical studies and how to overcome these hindrances are also discussed for that drug candidates going to the bedside. It covers most of the drugs developed using toxins, the molecules that have failed and those that are currently in clinical trials. The article presents a detailed overview of toxins that have been used as therapeutic agents, including their discovery, formulation, dosage, indications, main adverse effects, and pregnancy and breastfeeding prescription warnings. Toxins in diagnosis, as well as cosmeceuticals and atypical therapies (bee venom and leech therapies) are also reported. The level of cumulative and detailed information provided in this review may help pharmacists, physicians, biotechnologists, pharmacologists, and scientists interested in toxinology, drug discovery, and development of toxin-based products.
Collapse
Affiliation(s)
- Karla de Castro Figueiredo Bordon
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Takeno Cologna
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ernesto Lopes Pinheiro-Júnior
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Augusto Cerni
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Gobbi Amorim
- Postgraduate Program in Pharmaceutical Sciences, Vila Velha University, Vila Velha, Brazil
| | | | - Francielle Almeida Cordeiro
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gisele Adriano Wiezel
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Iara Aimê Cardoso
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela Gobbo Ferreira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora Sousa de Oliveira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Mateus Amaral Baldo
- Health and Science Institute, Paulista University, São José do Rio Pardo, Brazil
| | - Eliane Candiani Arantes
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Mohammadi E, Mahnam K, Jahanian-Najafabadi A, Sadeghi HMM. Design and production of new chimeric reteplase with enhanced fibrin affinity: a theoretical and experimental study. J Biomol Struct Dyn 2020; 39:1321-1333. [PMID: 32098615 DOI: 10.1080/07391102.2020.1729865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasminogen activators (PAs) are widely used for treatment of disorders caused by clot formation. Fibrin specific PAs are safe drugs from this group because of reducing the incidence of hemorrhage. The newer generation of PAs like tenecteplase, reteplase and desmoteplase were designed with the aim of achieving desirable properties such as improving specificity and affinity to fibrin and increasing half-life. Protein engineering and using of theoretical methods can help to rational and reliable design of new PAs with a set of favorable properties. In the present study, two new chimeric reteplase named M1-chr and M2-chr were designed with the aim of enhancing fibrin affinity also some potential properties include of increasing resistance to plasminogen activator inhibitor-1 and decreasing neurotoxicity. So, finger domain of desmoteplase was added to reteplase as a high fibrin specific domain. Some other point mutations were considering to achieve other mentioned properties. Three dimensional structure of wild-type reteplase and mutants were created by homology modeling and were evaluated by molecular dynamic simulation. Then, mutants docked to fibrin by HADDOCK web tools. Result of theoretical section verified the stability of mutants' structures. Also showed better interaction between M1-chr with fibrin than M2-chr. Wild-type and mutants were produced in bacterial expression system. Experimental assessment showed both mutants have appropriate enzymatic activity also 1.9-fold fibrin binding ability compared to wild-type. Therefore, this study offers new thrombolytic drugs with desirable properties specially enhanced fibrin affinity so they can represent a promising future in cost-effective production of favorable thrombolytic drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elmira Mohammadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, The Islamic Republic of Iran
| | - Karim Mahnam
- Faculty of Science, Department of Biology, Shahrekord University, Shahrekord, The Islamic Republic of Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, The Islamic Republic of Iran
| | - Hamid Mir Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, The Islamic Republic of Iran
| |
Collapse
|
9
|
Shibata K, Hashimoto T, Miyazaki T, Miyazaki A, Nobe K. Thrombolytic Therapy for Acute Ischemic Stroke: Past and Future. Curr Pharm Des 2020; 25:242-250. [PMID: 30892155 DOI: 10.2174/1381612825666190319115018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thromboembolic ischemic stroke, which is mainly caused by hypertension, as well as plasma dyslipidemia, arterial fibrillation and diabetes, is a leading cause of death in the US and other countries. Numerous clinical trials for thrombolytic drugs, which aimed to pharmacologically dissolve thrombi, were conducted in the 1950s, when the first thrombolytic therapy was performed. METHODS In this study, we summarize the pathophysiologic features of ischemic stroke, and the history of thrombolytic therapy, and discuss the recent progress that has been made in the ongoing development of thrombolytic drugs. CONCLUSION Thrombolytic therapy is sometimes accompanied by harmful hemorrhagic insults; accordingly, a window of time wherein therapy can safely be performed has been established for this approach. Several basic and clinical studies are ongoing to develop next-generation thrombolytic drugs to expand the time window.
Collapse
Affiliation(s)
- Keita Shibata
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Terumasa Hashimoto
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Shinagawaku, Tokyo 142-8555, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Shinagawaku, Tokyo 142-8555, Japan
| | - Koji Nobe
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
10
|
Voelter K, Tappeiner C, Riond B, Nuss K, Bruetsch D, Pot SA. Evaluation of D-dimer levels in aqueous humor of rabbit eyes with and without induced intraocular fibrin and fibrinolytic treatment. Vet Ophthalmol 2019; 23:212-218. [PMID: 31441205 DOI: 10.1111/vop.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/08/2019] [Accepted: 07/27/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To analyze D-dimer concentrations in aqueous humor (AH) of rabbit eyes under physiological conditions, after induction of fibrin clots, and following fibrinolytic therapy. ANIMALS STUDIED Prospective study measuring D-dimers in aqueous humor of rabbit eyes with induced fibrin clots (n = 44). PROCEDURES Rabbits were purchased in two groups, which led to two temporally separated experimentation groups. Different treatment protocols were compared for their efficacy in fibrin reduction (slit-lamp examination, high-resolution ultrasound). AH was taken from left eyes before clot induction (baseline, day 1), 24 hours later after clot establishment/prior to drug administration (post-induction, day 2) and 48 hours after clot induction (post-treatment, day 3). An enzyme-linked immunosorbent assay (ELISA) was performed to measure intraocular D-dimer concentrations RESULTS: D-dimer concentrations were measurable in all samples. There were no differences in D-dimer levels across time points or treatments within the arrival groups. However, a significant difference in mean D-dimer levels was observed between the two arrival groups (group 1:3.1 µg/mL; group 2:6.1 µg/mL; P < .0001), which made a direct comparison of treatment groups impossible. Clinically, all eyes displayed fibrin clots in the anterior chamber and different treatment types led to significant differences in clot resolution (clot size reduction after intracameral treatment: 98%, topical treatment: 60%, no treatment: 40%). CONCLUSION D-dimers were identified in all AH samples of rabbits with large variability between samples. D-dimer levels were neither predictive for differences in induced fibrin formation nor for drug efficacy.
Collapse
Affiliation(s)
- Katrin Voelter
- Veterinary Ophthalmology, Equine Clinic, Vetsuisse Faculty Zurich, Zurich, Switzerland
| | - Christoph Tappeiner
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Barbara Riond
- Clinical Laboratory, Vetsuisse Faculty Zurich, Zurich, Switzerland
| | - Katja Nuss
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| | - Deborah Bruetsch
- Veterinary Ophthalmology, Equine Clinic, Vetsuisse Faculty Zurich, Zurich, Switzerland
| | - Simon A Pot
- Veterinary Ophthalmology, Equine Clinic, Vetsuisse Faculty Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Koh CY, Kini RM. Exogenous Factors from Venomous and Hematophagous Animals in Drugs and Diagnostic Developments for Cardiovascular and Neurovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2019; 19:90-94. [PMID: 31385761 DOI: 10.2174/1871529x1902190619123603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Cho Yeow Koh
- Department of Medicine, National University of Singapore, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
12
|
Kaviarasi S, Yuba E, Harada A, Krishnan UM. Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia. J Control Release 2019; 300:22-45. [DOI: 10.1016/j.jconrel.2019.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
|
13
|
Voelter K, Tappeiner C, Klein K, Borel N, Bruetsch D, Laguna Sanz F, Pot SA. Fibrinolytic Capacity of Desmoteplase Compared to Tissue Plasminogen Activator in Rabbit Eyes. J Ocul Pharmacol Ther 2019; 35:66-75. [DOI: 10.1089/jop.2018.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Katrin Voelter
- Veterinary Ophthalmology, Equine Clinic, Vetsuisse Faculty Zurich, Zurich, Switzerland
| | - Christoph Tappeiner
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Karina Klein
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Veterinary Pathology, Vetsuisse Faculty Zurich, Zurich, Switzerland
| | - Deborah Bruetsch
- Veterinary Ophthalmology, Equine Clinic, Vetsuisse Faculty Zurich, Zurich, Switzerland
| | | | - Simon Anton Pot
- Veterinary Ophthalmology, Equine Clinic, Vetsuisse Faculty Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Chana-Muñoz A, Jendroszek A, Sønnichsen M, Wang T, Ploug M, Jensen JK, Andreasen PA, Bendixen C, Panitz F. Origin and diversification of the plasminogen activation system among chordates. BMC Evol Biol 2019; 19:27. [PMID: 30654737 PMCID: PMC6337849 DOI: 10.1186/s12862-019-1353-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
Background The plasminogen (PLG) activation system is composed by a series of serine proteases, inhibitors and several binding proteins, which together control the temporal and spatial generation of the active serine protease plasmin. As this proteolytic system plays a central role in human physiology and pathophysiology it has been extensively studied in mammals. The serine proteases of this system are believed to originate from an ancestral gene by gene duplications followed by domain gains and deletions. However, the identification of ancestral forms in primitive chordates supporting these theories remains elusive. In addition, evolutionary studies of the non-proteolytic members of this system are scarce. Results Our phylogenetic analyses place lamprey PLG at the root of the vertebrate PLG-group, while lamprey PLG-related growth factors represent the ancestral forms of the jawed-vertebrate orthologues. Furthermore, we find that the earliest putative orthologue of the PLG activator group is the hyaluronan binding protein 2 (HABP2) gene found in lampreys. The prime plasminogen activators (tissue- and urokinase-type plasminogen activator, tPA and uPA) first occur in cartilaginous fish and phylogenetic analyses confirm that all orthologues identified compose monophyletic groups to their mammalian counterparts. Cartilaginous fishes exhibit the most ancient vitronectin of all vertebrates, while plasminogen activator inhibitor 1 (PAI-1) appears for the first time in cartilaginous fishes and is conserved in the rest of jawed vertebrate clades. PAI-2 appears for the first time in the common ancestor of reptiles and mammals, and represents the latest appearing plasminogen activator inhibitor. Finally, we noted that the urokinase-type plasminogen activator receptor (uPAR)—and three-LU domain containing genes in general—occurred later in evolution and was first detectable after coelacanths. Conclusions This study identifies several primitive orthologues of the mammalian plasminogen activation system. These ancestral forms provide clues to the origin and diversification of this enzyme system. Further, the discovery of several members—hitherto unknown in mammals—provide new perspectives on the evolution of this important enzyme system. Electronic supplementary material The online version of this article (10.1186/s12862-019-1353-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrés Chana-Muñoz
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Agnieszka Jendroszek
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.,Present address: Interdisciplinary Nanoscience Center - INANO-MBG, Aarhus University, 8000, Aarhus, Denmark
| | - Malene Sønnichsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.,Present address: Interdisciplinary Nanoscience Center - INANO-MBG, Aarhus University, 8000, Aarhus, Denmark
| | - Tobias Wang
- Institute for Bioscience Zoophysiology, Aarhus University, 8000, Aarhus, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Frank Panitz
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark.
| |
Collapse
|
15
|
Antithrombotic Drugs. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
16
|
Zamanlu M, Farhoudi M, Eskandani M, Mahmoudi J, Barar J, Rafi M, Omidi Y. Recent advances in targeted delivery of tissue plasminogen activator for enhanced thrombolysis in ischaemic stroke. J Drug Target 2017; 26:95-109. [PMID: 28796540 DOI: 10.1080/1061186x.2017.1365874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue plasminogen activator (tPA) is the only FDA approved medical treatment for the ischaemic stroke. However, it associates with some inevitable limitations, including: short therapeutic window, extremely short half-life and low penetration in large clots. Systemic administration may lead to complications such as haemorrhagic conversion in the brain and relapse in the form of re-occlusion. Furthermore, ultrasound has been utilised in combination with contrast agents, echogenic liposome, microspheres or nanoparticles (NPs) carrying tPA for improving thrombolysis - an approach that has resulted in slight improvement of tPA delivery and facilitated thrombolysis. Most of these delivery systems are able to extend the circulating half-life and clot penetration of tPA. Various technologies employed for ameliorated thrombolytic therapy are in different phases, some are in final steps for clinical applications while some others are under investigations for their safety and efficacy in human cases. Here, recent progresses on the thrombolytic therapy using novel nano- and micro-systems incorporating tPA are articulated. Of these, liposomes and microspheres, polymeric NPs and magnetic nanoparticles (MNPs) are discussed. Key technologies implemented for efficient delivery of tPA and advanced thrombolytic therapy and their advantages/disadvantages are further expressed.
Collapse
Affiliation(s)
- Masumeh Zamanlu
- a Neurosciences Research Center (NSRC), Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Farhoudi
- a Neurosciences Research Center (NSRC), Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Morteza Eskandani
- b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Javad Mahmoudi
- a Neurosciences Research Center (NSRC), Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Jaleh Barar
- b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Pharmaceutics, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Rafi
- d Department of Neurology, Sidney Kimmel College of Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Yadollah Omidi
- b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Pharmaceutics, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
17
|
Li X, Ling L, Li C, Ma Q. Efficacy and safety of desmoteplase in acute ischemic stroke patients: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e6667. [PMID: 28471961 PMCID: PMC5419907 DOI: 10.1097/md.0000000000006667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Pending results from double-blind, multicenter, parallel-group, randomized trials, the benefit and safety of the novel plasminogen activator, desmoteplase remain undetermined. The aim of this meta-analysis was to help evaluate desmoteplase's efficacy and safety. METHODS A thorough search was performed of the Cochrane Library, PubMed, and Embase from the inception of electronic data to March 2017, and double-blind, multicenter, parallel-group, randomized trials were chosen. We conducted a meta-analysis of studies investigating intravenous desmoteplase treatment of acute ischemic stroke patients 3 to 9 hours after symptom onset. Asymptomatic intracerebral hemorrhage, good clinical outcome at 90 days, and reperfusion 4 to 8 hours posttreatment were variables assessing efficacy; symptomatic intracerebral hemorrhage and death rates were measures of safety. RESULTS Six trials involving 1071 patients thrombolyzed >3 hours postonset were included (600 received intravenous desmoteplase, 471 placebo). Desmoteplase was associated with increased reperfusion (odds ratio [OR] 1.57; 95% confidence interval [CI], 1.10-2.24; P = .01 vs control) and showed a tendency to increase asymptomatic intracerebral hemorrhage (OR 1.25; 95% CI, 0.97-1.62; P = .09 vs control), whereas there was no increase in symptomatic intracerebral hemorrhage and death rate with desmoteplase. However, there was no difference in the clinical response at 90 days (OR 1.14; 95% CI, 0.88-1.49; P = .31 vs control). Subgroup analysis showed that desmoteplase 90 μg/kg (OR 1.53; 95% CI, 1.07-2.21; P = .02 vs control) and 125 μg/kg (OR 4.07; 95% CI, 1.16-14.24; P = .03 vs control) were associated with an increase in reperfusion. Also, we found desmoteplase 90 μg/kg showed a tendency to increase asymptomatic intracerebral hemorrhage (OR 1.25; 95% CI, 0.95-1.63; P = .11 vs control). CONCLUSION Intravenous desmoteplase is associated with a favorable reperfusion efficacy and acceptable safety in ischemic stroke treatment >3 hours after symptom onset. Well-designed randomized controlled trials with larger patient cohorts and a moderate dose of drugs are needed to further evaluate the true efficacy of desmoteplase in stroke patients. TRIAL REGISTRATION URL: http://www.crd.york.ac.uk/PROSPERO; PROSPERO registration number: CRD42016037667).
Collapse
Affiliation(s)
- Xiaoqiang Li
- Department of Neurology, Shenzhen Hospital of Southern Medical University, Shenzhen
- Department of Neurology, Xiaolan Hospital of Southern Medical University, Zhongshan, Guangdong
| | - Li Ling
- Department of Neurology, Shenzhen Hospital of Southern Medical University, Shenzhen
| | - Chuqiao Li
- Department of Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University
| | - Qiujie Ma
- Department of Emergency, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Fredriksson L, Lawrence DA, Medcalf RL. tPA Modulation of the Blood-Brain Barrier: A Unifying Explanation for the Pleiotropic Effects of tPA in the CNS. Semin Thromb Hemost 2017; 43:154-168. [PMID: 27677179 PMCID: PMC5848490 DOI: 10.1055/s-0036-1586229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The plasminogen activation (PA) system is best known for its role in fibrinolysis. However, it has also been shown to regulate many nonfibrinolytic functions in the central nervous system (CNS). In particular, tissue-type plasminogen activator (tPA) is reported to have pleiotropic activities in the CNS, regulating events such as neuronal plasticity, excitotoxicity, and cerebrovascular barrier integrity, whereas urokinase-type plasminogen activator is mainly associated with tissue remodeling and cell migration. It has been suggested that the role tPA plays in controlling barrier integrity may provide a unifying mechanism for the reported diverse, and often opposing, functions ascribed to tPA in the CNS. Here we will review the possibility that the pleiotropic effects reported for tPA in physiologic and pathologic processes in the CNS may be a consequence of its role in the neurovascular unit in regulation of cerebrovascular responses and subsequently parenchymal homeostasis. We propose that this might offer an explanation for the ongoing debate regarding the neurotoxic versus neuroprotective roles of tPA.
Collapse
Affiliation(s)
- Linda Fredriksson
- Department of Medical Biochemistry & Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
Banskar S, Bhute SS, Suryavanshi MV, Punekar S, Shouche YS. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Sci Rep 2016; 6:36948. [PMID: 27845426 PMCID: PMC5109407 DOI: 10.1038/srep36948] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022] Open
Abstract
Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals.
Collapse
Affiliation(s)
- Sunil Banskar
- Microbial Culture Collection, National Centre for Cell Science, Pune, India
| | - Shrikant S Bhute
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | | | - Sachin Punekar
- Biosphere, Eshwari, 52/403, Lakshminagar, Parvati, Pune-411009 (Maharashtra), India
| | - Yogesh S Shouche
- Microbial Culture Collection, National Centre for Cell Science, Pune, India
| |
Collapse
|
20
|
Shi L, Liang F, Li Y, Shao A, Zhou K, Yu J, Zhang J. Desmoteplase for Acute Ischemic Stroke within 3 to 9 Hours after Symptom Onset: Evidence from Randomized Controlled Trials. Sci Rep 2016; 6:33989. [PMID: 27671010 PMCID: PMC5037417 DOI: 10.1038/srep33989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/02/2016] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown inconsistent results regarding the value of desmoteplase for treating acute ischemic stroke (AIS) when administered within an extended time window. We performed a meta-analysis to explore the value of desmoteplase in AIS treatment. The MEDLINE, EMBASE, and Cochrane Library databases were searched for randomized controlled trials (RCTs) that had evaluated desmoteplase versus placebo for AIS. The primary outcomes were intracranial hemorrhage (ICH) within 72 hours and favorable outcome at Day 90. We pooled 819 patients from 5 RCTs. Desmoteplase treatment showed a neutral effect on favorable outcome (P = 0.42) but a favorable safety profile in terms of ICH (P = 0.64) compared with the placebo group. In the subgroup analysis, 90 μg/kg desmoteplase, a late time to treatment (6–9 hours), and serious stroke symptoms at baseline (NIHSS > 12) subgroups showed high risks of ICH (P ≤ 0.02). A high dose of desmoteplase (125 μg/kg) showed a tendency to improve recanalization (P = 0.05), but was also associated with an increased risk of death (P = 0.04). In conclusion, desmoteplase administered over an extended time window had no significant effect on functional recovery but exhibited a favorable safety profile in patients with AIS.
Collapse
Affiliation(s)
- Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunping Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Keren Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Guerrero-Hernández J, Moreno-Mendoza N. Characterization of the myoepithelial cells in the major salivary glands of the fruit bat Artibeus jamaicensis. J Anat 2016; 229:302-13. [PMID: 27168421 DOI: 10.1111/joa.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2016] [Indexed: 11/28/2022] Open
Abstract
Bats constitute one of the most numerous mammalian species. Bats have a wide range of dietary habits and include carnivorous, haematophagous, insectivorous, frugivorous and nectivorous species. The salivary glands of these species have been of particular research interest due to their structural variability among chiropterans with different types of diets. Myoepithelial cells (MECs), which support and facilitate the expulsion of saliva from the secretory portions of salivary glands, are very important for their function; however, this cell type has not been extensively studied in the salivary glands of bats. In this study, we characterized the MECs in the major salivary glands of the fruit bat Artibeus jamaicensis. Herein, we describe the morphology of the parotid, submandibular and sublingual glands of A. jamaicensis at the light- and electro-microscopic level and the distribution of MECs in these glands, as defined by their expression of smooth-muscle markers such as α-smooth muscle actin (SMAα) and desmin, and of epithelial cell markers, such as KRT14. We found that the anatomical locations of the major salivary glands in this bat species are similar to those of humans, except that the bat sublingual gland appears to be unique, extending to join the contralateral homologous gland. Morphologically, the parotid gland has the characteristics of a mixed-secretory gland, whereas the submandibular and sublingual glands were identified as mucous-secretory glands. MECs positive for SMAα, KRT14 and desmin were found in all of the structural components of the three glands, except in their excretory ducts. Desmin is expressed at a lower level in the parotid gland than in the other glands. Our results suggest that the major salivary glands of A. jamaicensis, although anatomically and structurally similar to those of humans, play different physiological roles that can be attributed to the dietary habits of this species.
Collapse
Affiliation(s)
- Julio Guerrero-Hernández
- Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
| | - Norma Moreno-Mendoza
- Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
| |
Collapse
|
22
|
Abstract
Progress in finding a better alternative to alteplase has been slow. Tenecteplase and desmoteplase have better pharmacological profiles compared with alteplase, but definite clinical evidence of their superiority is lacking. The two major phase III studies that have tested the efficacy and safety of desmoteplase in ischemic stroke patients have shown neutral results and a promising safety profile, but the trials compared desmoteplase with placebo only in late admitted patients. Future trials should focus on testing novel thrombolytics in the early time window either as the sole acute recanalizing treatment or combined with thrombectomy.
Collapse
|
23
|
Paris C, Derex L. [Intravenous thrombolysis in ischemic stroke: Therapeutic perspectives]. Rev Neurol (Paris) 2015; 171:866-75. [PMID: 26563662 DOI: 10.1016/j.neurol.2015.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022]
Abstract
New therapeutic strategies are under evaluation to improve the treatment of acute ischemic stroke (AIS). Approaches combining intravenous (IV) thrombolysis with recombinant tissue plasminogen activator (rt-PA) and antithrombotic agents are currently evaluated. The combination of IV rt-PA and aspirin showed a high rate of intracranial hemorrhage whereas the association of rt-PA and eptifibatide seems more promising. The results of recent studies evaluating the administration of eptifibatide or argatroban in conjunction with conventional IV thrombolysis with rt-PA are expected to clarify the safety and efficacy of these treatments. More fibrin-specific plasminogen activators, tenecteplase and desmoteplase, are also investigated. These fibrinolytic agents showed a favorable safety profile but their efficacy in AIS remains uncertain. While phase III studies, DIAS-3 and DIAS-4, evaluating IV desmoteplase up to nine hours after stroke onset did not meet the primary endpoint, the results of studies comparing IV tenecteplase and IV rt-PA are expected.
Collapse
Affiliation(s)
- C Paris
- Faculté de pharmacie de Lyon, 8, avenue Rockefeller, 69373 Lyon cedex 08, France
| | - L Derex
- Unité neurovasculaire, service de neurologie, hôpital neurologique de Lyon, 59, boulevard Pinel, 69677 Bron cedex, France.
| |
Collapse
|
24
|
Moretti A, Ferrari F, Villa RF. Pharmacological therapy of acute ischaemic stroke: Achievements and problems. Pharmacol Ther 2015; 153:79-89. [DOI: 10.1016/j.pharmthera.2015.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 01/04/2023]
|
25
|
Mori E, Minematsu K, Nakagawara J, Hasegawa Y, Nagahiro S, Okada Y, Truelsen T, Lindsten A, Ogawa A, Yamaguchi T. Safety and Tolerability of Desmoteplase Within 3 to 9 Hours After Symptoms Onset in Japanese Patients With Ischemic Stroke. Stroke 2015; 46:2549-54. [DOI: 10.1161/strokeaha.115.009917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
This study investigated the safety and tolerability of desmoteplase administered within 3 to 9 hours after stroke symptoms onset in Japanese patients with acute ischemic stroke.
Methods—
Patients were randomized to treatment with either desmoteplase or placebo in a 2:1 ratio in 2 consecutive cohorts (70 μg/kg and then 90 μg/kg). Included patients had a baseline National Institutes of Health Stroke Scale score of 4 to 24 and occlusion or high-grade stenosis in the middle cerebral artery segment M1 or M2 on magnetic resonance angiography. The incidence of symptomatic intracranial hemorrhage (≤72 hours) was defined as the primary end point. The occurrence of asymptomatic ICH, symptomatic cerebral edemas, and adverse events were other safety outcomes of special interest.
Results—
Symptomatic intracranial hemorrhage was observed within 72 hours in 2 patients treated with placebo and in 1 patient treated with 70 μg/kg desmoteplase. Any ICH (symptomatic or asymptomatic ICH) within 72 hours were observed in 7 (43.8%) patients treated with placebo, in 8 (50%) patients treated with 70 μg/kg desmoteplase, and in 9 (56.3%) patients treated with 90 μg/kg desmoteplase. Desmoteplase treatment with 70 or 90 μg/kg was not associated with an increased risk of symptomatic cerebral edema compared with placebo. There were no other serious safety concerns associated with desmoteplase.
Conclusions—
Desmoteplase in both 70 and 90 μg/kg doses had a favorable safety profile and was well tolerated in Japanese patients with acute ischemic stroke when administered 3 to 9 hours after stroke symptoms onset.
Clinical Trial Registration—
URL:
http://www.clinicaltrials.gov
. Unique identifier: NCT01104467.
Collapse
Affiliation(s)
- Etsuro Mori
- From the Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan (E.M.); Department of Cerebrovascular Medicine (K.M., T.Y.), Department of Integrative Stroke Imaging Center (J.N.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan (Y.H.); Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan (S.N.)
| | - Kazuo Minematsu
- From the Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan (E.M.); Department of Cerebrovascular Medicine (K.M., T.Y.), Department of Integrative Stroke Imaging Center (J.N.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan (Y.H.); Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan (S.N.)
| | - Jyoji Nakagawara
- From the Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan (E.M.); Department of Cerebrovascular Medicine (K.M., T.Y.), Department of Integrative Stroke Imaging Center (J.N.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan (Y.H.); Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan (S.N.)
| | - Yasuhiro Hasegawa
- From the Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan (E.M.); Department of Cerebrovascular Medicine (K.M., T.Y.), Department of Integrative Stroke Imaging Center (J.N.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan (Y.H.); Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan (S.N.)
| | - Shinji Nagahiro
- From the Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan (E.M.); Department of Cerebrovascular Medicine (K.M., T.Y.), Department of Integrative Stroke Imaging Center (J.N.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan (Y.H.); Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan (S.N.)
| | - Yasushi Okada
- From the Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan (E.M.); Department of Cerebrovascular Medicine (K.M., T.Y.), Department of Integrative Stroke Imaging Center (J.N.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan (Y.H.); Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan (S.N.)
| | - Thomas Truelsen
- From the Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan (E.M.); Department of Cerebrovascular Medicine (K.M., T.Y.), Department of Integrative Stroke Imaging Center (J.N.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan (Y.H.); Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan (S.N.)
| | - Annika Lindsten
- From the Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan (E.M.); Department of Cerebrovascular Medicine (K.M., T.Y.), Department of Integrative Stroke Imaging Center (J.N.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan (Y.H.); Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan (S.N.)
| | - Akira Ogawa
- From the Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan (E.M.); Department of Cerebrovascular Medicine (K.M., T.Y.), Department of Integrative Stroke Imaging Center (J.N.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan (Y.H.); Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan (S.N.)
| | - Takenori Yamaguchi
- From the Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan (E.M.); Department of Cerebrovascular Medicine (K.M., T.Y.), Department of Integrative Stroke Imaging Center (J.N.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan (Y.H.); Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan (S.N.)
| |
Collapse
|
26
|
Albers GW, von Kummer R, Truelsen T, Jensen JKS, Ravn GM, Grønning BA, Chabriat H, Chang KC, Davalos AE, Ford GA, Grotta J, Kaste M, Schwamm LH, Shuaib A. Safety and efficacy of desmoteplase given 3–9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet Neurol 2015; 14:575-84. [DOI: 10.1016/s1474-4422(15)00047-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/31/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
|
27
|
Kotb E. The biotechnological potential of fibrinolytic enzymes in the dissolution of endogenous blood thrombi. Biotechnol Prog 2014; 30:656-72. [DOI: 10.1002/btpr.1918] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/09/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Essam Kotb
- Dept. of Microbiology, Faculty of Science; Zagazig University; Zagazig Egypt 44519
| |
Collapse
|
28
|
Freeman R, Niego B, R. Croucher D, Pedersen LO, Medcalf RL. t-PA, but not desmoteplase, induces plasmin-dependent opening of a blood-brain barrier model under normoxic and ischaemic conditions. Brain Res 2014; 1565:63-73. [DOI: 10.1016/j.brainres.2014.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/26/2014] [Accepted: 03/18/2014] [Indexed: 11/24/2022]
|
29
|
Patel R, Ispoglou S, Apostolakis S. Desmoteplase as a potential treatment for cerebral ischaemia. Expert Opin Investig Drugs 2014; 23:865-73. [DOI: 10.1517/13543784.2014.911285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Thomas K, Kessler C. New antiplatelet agents prescribed to patients with ischemic heart disease: implications for treatment of stroke. Curr Treat Options Neurol 2014; 16:289. [PMID: 24619768 DOI: 10.1007/s11940-014-0289-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OPINION STATEMENT Stroke continues to be a significant public health problem worldwide. Despite a number of clinical trials testing various therapeutic agents, we are still left with a small armamentarium of options. Aspirin, clopidogrel and combination aspirin-dipyridamole remain the mainstay for prevention of recurrent ischemic stroke. Tissue plasminogen activator (tPA) or alteplase is the sole agent used in the acute phase up to 4.5 h from the onset of stroke symptoms. A greater understanding of pathophysiologic mechanisms produced an array of acute experimental treatments including intravenous magnesium and free radical scavengers. However, they did not stand up to the scrutiny of phase III randomized clinical trials. Secondary prevention of stroke benefitted more from epidemiologic studies focusing on risk factor modifications, rather than antiplatelet or other stroke specific agents. One must ask if new treatments for stroke are exhausted. Despite the frustrations of stroke neurologists, new avenues for treatment continue to be explored. One comes from our colleagues in cardiology. Development of new medications for treating ischemic heart disease, acute or chronic, may provide opportunity to cross over into stroke. Cardiovascular trials usually encompass stroke as an outcome measure. As of yet, there have not been the data to support use of these agents in stroke. Recent medications for acute and chronic phases of ischemic heart diseases include desmoteplase, tenecteplase, tirofiban, prasugrel, and ticagrelor. Though some of these medications may fail to show a benefit in stroke patients, we feel there is always potential for a breakthrough.
Collapse
Affiliation(s)
- Kurian Thomas
- Jesse Brown VAMC, 820 S. Damen Ave, Chicago, IL, 60612, USA,
| | | |
Collapse
|
31
|
Wang X, Palasubramaniam J, Gkanatsas Y, Hohmann JD, Westein E, Kanojia R, Alt K, Huang D, Jia F, Ahrens I, Medcalf RL, Peter K, Hagemeyer CE. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res 2014; 114:1083-93. [PMID: 24508759 DOI: 10.1161/circresaha.114.302514] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Fibrinolysis is a valuable alternative for the treatment of myocardial infarction when percutaneous coronary intervention is not available in a timely fashion. For acute ischemic stroke, fibrinolysis is the only treatment option with a very narrow therapeutic window. Clinically approved thrombolytics have significant drawbacks, including bleeding complications. Thus their use is highly restricted, leaving many patients untreated. OBJECTIVE We developed a novel targeted fibrinolytic drug that is directed against activated platelets. METHODS AND RESULTS We fused single-chain urokinase plasminogen activator (scuPA) to a small recombinant antibody (scFvSCE5), which targets the activated form of the platelet-integrin glycoprotein IIb/IIIa. Antibody binding and scuPA activity of this recombinant fusion protein were on par with the parent molecules. Prophylactic in vivo administration of scFvSCE5-scuPA (75 U/g body weight) prevented carotid artery occlusion after ferric chloride injury in a plasminogen-dependent process compared with saline (P<0.001), and blood flow recovery was similar to high-dose nontargeted urokinase (500 U/g body weight). Tail bleeding time was significantly prolonged with this high dose of nontargeted urokinase, but not with equally effective targeted scFvSCE5-scuPA at 75 U/g body weight. Real-time in vivo molecular ultrasound imaging demonstrates significant therapeutic reduction of thrombus size after administration of 75 U/g body weight scFvSCE5-scuPA as compared with the same dose of a mutated, nontargeting scFv-scuPA or vehicle. The ability of scFvSCE5-scuPA to lyse thrombi was lost in plasminogen-deficient mice, but could be restored by intravenous injection of plasminogen. CONCLUSIONS Targeting of scuPA to activated glycoprotein IIb/IIIa allows effective thrombolysis and the potential novel use as a fibrinolytic agent for thromboprophylaxis without bleeding complications.
Collapse
Affiliation(s)
- Xiaowei Wang
- From Atherothrombosis and Vascular Biology Laboratory (X.W., J.P., Y.G., J.D.H., E.W., K.A., D.H., F.J., I.A., K.P.), and Vascular Biotechnology Laboratory (R.K., K.A., C.E.H.), Baker IDI, Melbourne, Australia; Department of Cardiology and Angiology, University Hospital Freiburg, Germany (I.A.); Fibrinolysis and Gene Regulation Laboratory, Australian Centre for Blood Diseases, Melbourne, Australia (R.L.M.); and Central Clinical School, Monash University, Melbourne, Australia (R.L.M., K.P., C.E.H.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Venoms are evolutionarily fine-tuned mixtures of small molecules, peptides, and proteins-referred to as toxins-that have evolved to specifically modulate and interfere with the function of diverse molecular targets within the envenomated animal. Many of the identified toxin targets are membrane receptors and ion channels. Due to their high specificity, toxins have emerged as an invaluable tool set for the molecular characterization of ion channels, and a selected group of toxins even have been developed into therapeutics. More recently, TRP ion channels have been included as targets for venomous toxins. In particular, a number of apparently unrelated peptide toxins target the capsaicin receptor TRPV1 to produce inflammatory pain. These toxins have turned out to be invaluable for structural and functional characterizations of the capsaicin receptor. If toxins will serve similar roles for other TRP ion channels, only future will tell.
Collapse
Affiliation(s)
- Jan Siemens
- Department of Pharmacology, University Clinic Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany,
| | | |
Collapse
|
33
|
Desmolaris, a novel factor XIa anticoagulant from the salivary gland of the vampire bat (Desmodus rotundus) inhibits inflammation and thrombosis in vivo. Blood 2013; 122:4094-106. [PMID: 24159172 DOI: 10.1182/blood-2013-08-517474] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identity of vampire bat saliva anticoagulant remained elusive for almost a century. Sequencing the salivary gland genes from the vampire bat Desmodus rotundus identified Desmolaris as a novel 21.5-kDa naturally deleted (Kunitz 1-domainless) form of tissue factor pathway inhibitor. Recombinant Desmolaris was expressed in HEK293 cells and characterized as a slow, tight, and noncompetitive inhibitor of factor (F) XIa by a mechanism modulated by heparin. Desmolaris also inhibits FXa with lower affinity, independently of protein S. In addition, Desmolaris binds kallikrein and reduces bradykinin generation in plasma activated with kaolin. Truncated and mutated forms of Desmolaris determined that Arg32 in the Kunitz-1 domain is critical for protease inhibition. Moreover, Kunitz-2 and the carboxyl-terminus domains mediate interaction of Desmolaris with heparin and are required for optimal inhibition of FXIa and FXa. Notably, Desmolaris (100 μg/kg) inhibited FeCl3-induced carotid artery thrombus without impairing hemostasis. These results imply that FXIa is the primary in vivo target for Desmolaris at antithrombotic concentrations. Desmolaris also reduces the polyphosphate-induced increase in vascular permeability and collagen- and epinephrine-mediated thromboembolism in mice. Desmolaris emerges as a novel anticoagulant targeting FXIa under conditions in which the coagulation activation, particularly the contact pathway, plays a major pathological role.
Collapse
|
34
|
Winquist RJ, Mullane K, Williams M. The fall and rise of pharmacology--(re-)defining the discipline? Biochem Pharmacol 2013; 87:4-24. [PMID: 24070656 DOI: 10.1016/j.bcp.2013.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022]
Abstract
Pharmacology is an integrative discipline that originated from activities, now nearly 7000 years old, to identify therapeutics from natural product sources. Research in the 19th Century that focused on the Law of Mass Action (LMA) demonstrated that compound effects were dose-/concentration-dependent eventually leading to the receptor concept, now a century old, that remains the key to understanding disease causality and drug action. As pharmacology evolved in the 20th Century through successive biochemical, molecular and genomic eras, the precision in understanding receptor function at the molecular level increased and while providing important insights, led to an overtly reductionistic emphasis. This resulted in the generation of data lacking physiological context that ignored the LMA and was not integrated at the tissue/whole organism level. As reductionism became a primary focus in biomedical research, it led to the fall of pharmacology. However, concerns regarding the disconnect between basic research efforts and the approval of new drugs to treat 21st Century disease tsunamis, e.g., neurodegeneration, metabolic syndrome, etc. has led to the reemergence of pharmacology, its rise, often in the semantic guise of systems biology. Against a background of limited training in pharmacology, this has resulted in issues in experimental replication with a bioinformatics emphasis that often has a limited relationship to reality. The integration of newer technologies within a pharmacological context where research is driven by testable hypotheses rather than technology, together with renewed efforts in teaching pharmacology, is anticipated to improve the focus and relevance of biomedical research and lead to novel therapeutics that will contain health care costs.
Collapse
Affiliation(s)
- Raymond J Winquist
- Department of Pharmacology, Vertex Pharmaceuticals Inc., Cambridge, MA, United States
| | - Kevin Mullane
- Profectus Pharma Consulting Inc., San Jose, CA, United States
| | - Michael Williams
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
35
|
Alonso de Leciñana M, Gutiérrez-Fernández M, Romano M, Cantú-Brito C, Arauz A, Olmos LE, Ameriso SF, Díez-Tejedor E. Strategies to improve recovery in acute ischemic stroke patients: Iberoamerican Stroke Group Consensus. Int J Stroke 2013; 9:503-13. [PMID: 23802573 DOI: 10.1111/ijs.12070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/31/2012] [Indexed: 12/20/2022]
Abstract
Stroke is not only a leading cause of death worldwide but also a main cause of disability. In developing countries, its burden is increasing as a consequence of a higher life expectancy. Whereas stroke mortality has decreased in developed countries, in Latin America, stroke mortality rates continue to rise as well as its socioeconomic dramatic consequences. Therefore, it is necessary to implement stroke care and surveillance programs to better describe the epidemiology of stroke in these countries in order to improve therapeutic strategies. Advances in the understanding of the pathogenic processes of brain ischemia have resulted in development of effective therapies during the acute phase. These include reperfusion therapies (both intravenous thrombolysis and interventional endovascular approaches) and treatment in stroke units that, through application of management protocols directed to maintain homeostasis and avoid complications, helps to exert effective brain protection that decreases further cerebral damage. Some drugs may enhance protection, and besides, there is increasing knowledge about brain plasticity and repair mechanisms that take place for longer periods beyond the acute phase. These mechanisms are responsible for recovery in certain patients and are the focus of basic and clinical research at present. This paper discusses recovery strategies that have demonstrated clinical effect, or that are promising and need further study. This rapidly evolving field needs to be carefully and critically evaluated so that investment in patient care is grounded on well-proven strategies.
Collapse
Affiliation(s)
- M Alonso de Leciñana
- Stroke Unit, Deparment of Neurology, University Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Adams RA, Pedersen SC. Threats to Bats and Educational Challenges. BAT EVOLUTION, ECOLOGY, AND CONSERVATION 2013:363-391. [PMCID: PMC7121850 DOI: 10.1007/978-1-4614-7397-8_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Like most animals, bats are threatened by habitat loss and degradation. However, they are also uniquely threatened almost universally by humans. In this chapter, I will emphasize the educational issues I believe will be most important to the next generation of bat conservationists. Though threat levels and possible solutions vary widely, the importance of addressing unfounded fear cannot be ignored. Putting disease concerns in perspective has been essential throughout the history of bat conservation efforts and is currently a resurgent issue that threatens the educational progress that has been made in recent decades.
Collapse
Affiliation(s)
- Rick A. Adams
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado USA
| | - Scott C. Pedersen
- Department of Biology, South Dakota State, Brookings, South Dakota USA
| |
Collapse
|
37
|
Piechowski-Jozwiak B, Bogousslavsky J. The use of desmoteplase (bat saliva) in the treatment of ischaemia. Expert Opin Biol Ther 2013; 13:447-53. [PMID: 23394378 DOI: 10.1517/14712598.2013.767327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In an era of ageing global populations and accumulation of cardiovascular risk factors, the importance of reperfusion/recanalisation therapies in treating vascular occlusive disease is growing. There are multiple thrombolytic agents available, including bat saliva-derived plasminogen activator. AREAS COVERED A peer reviewed literature search was conducted and focus was on the data on the use of desmoteplase in the treatment of ischaemic stroke. EXPERT OPINION Currently, there is not enough evidence for clinical use in ischaemic stroke and further Phase III studies are underway. At this stage, desmoteplase remains an investigational compound.
Collapse
Affiliation(s)
- Bartlomiej Piechowski-Jozwiak
- Princess Royal University Hospital, Clinical Lead Hyper Acute Stroke Unit & Stroke Services, South London Healthcare Trust, Farnborough Common, BR6 8ND Orpington, Kent, UK.
| | | |
Collapse
|
38
|
Francischetti IMB, Assumpção TCF, Ma D, Li Y, Vicente EC, Uieda W, Ribeiro JMC. The "Vampirome": Transcriptome and proteome analysis of the principal and accessory submaxillary glands of the vampire bat Desmodus rotundus, a vector of human rabies. J Proteomics 2013; 82:288-319. [PMID: 23411029 DOI: 10.1016/j.jprot.2013.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Vampire bats are notorious for being the sole mammals that strictly feed on fresh blood for their survival. While their saliva has been historically associated with anticoagulants, only one antihemostatic (plasminogen activator) has been molecularly and functionally characterized. Here, RNAs from both principal and accessory submaxillary (submandibular) salivary glands of Desmodus rotundus were extracted, and ~200 million reads were sequenced by Illumina. The principal gland was enriched with plasminogen activators with fibrinolytic properties, members of lipocalin and secretoglobin families, which bind prohemostatic prostaglandins, and endonucleases, which cleave neutrophil-derived procoagulant NETs. Anticoagulant (tissue factor pathway inhibitor, TFPI), vasodilators (PACAP and C-natriuretic peptide), and metalloproteases (ADAMTS-1) were also abundantly expressed. Members of the TSG-6 (anti-inflammatory), antigen 5/CRISP, and CCL28-like (antimicrobial) protein families were also sequenced. Apyrases (which remove platelet agonist ADP), phosphatases (which degrade procoagulant polyphosphates), and sphingomyelinase were found at lower transcriptional levels. Accessory glands were enriched with antimicrobials (lysozyme, defensin, lactotransferrin) and protease inhibitors (TIL-domain, cystatin, Kazal). Mucins, heme-oxygenase, and IgG chains were present in both glands. Proteome analysis by nano LC-MS/MS confirmed that several transcripts are expressed in the glands. The database presented herein is accessible online at http://exon.niaid.nih.gov/transcriptome/D_rotundus/Supplemental-web.xlsx. These results reveal that bat saliva emerges as a novel source of modulators of vascular biology. BIOLOGICAL SIGNIFICANCE Vampire bat saliva emerges as a novel source of antihemostatics which modulate several aspects of vascular biology.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Miller J, Hartwell C, Lewandowski C. Stroke treatment using intravenous and intra-arterial tissue plasminogen activator. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2012; 14:273-83. [PMID: 22407451 DOI: 10.1007/s11936-012-0176-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OPINION STATEMENT Acute ischemic stroke is the most common cause of adult disability in the world and the third most common cause of death. Early restoration of perfusion to ischemic brain has been a highly successful strategy to decrease the disability associated with acute ischemic stroke. For acute stroke, intravenous (IV) tissue plasminogen activator (t-PA) is the only proven acute treatment that results in improved clinical outcomes. IV t-PA is indicated for ischemic stroke when administered within 4.5 h or less of symptom onset. This 4.5-hour treatment window represents a significant expansion from the previous 3-hour treatment window for therapy. Despite a longer time window, patients have the greatest chance for an improved outcome when treatment occurs as soon as possible from the time of symptom onset. The Emergency Department goal for treatment is a door to t-PA administration time of 60 min. In order to facilitate rapid evaluation and treatment, systems of care that streamline treatment should be developed at every institution that cares for acute ischemic stroke patients. For those with contraindications to t-PA and those outside the treatment window, catheter-directed intra-arterial (IA) t-PA administration or mechanical clot extraction is a potential means of restoring brain perfusion. These therapies should not preclude the use of IV t-PA when feasible and are frequently only available at tertiary care centers. Technological advances in IA devices for mechanical clot extraction make this a promising and growing area for advancing stroke therapy but remain under ongoing investigation to establish improved clinical outcomes.
Collapse
Affiliation(s)
- Joseph Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, 48202, USA,
| | | | | |
Collapse
|
40
|
Kummer RV, Albers GW, Mori E. The Desmoteplase in Acute Ischemic Stroke (DIAS) Clinical Trial Program. Int J Stroke 2012; 7:589-96. [DOI: 10.1111/j.1747-4949.2012.00910.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background Desmoteplase is a novel, highly fibrin-specific thrombolytic agent in phase III of clinical development. In comparison to alteplase, it has high fibrin selectivity, is associated with minimal or no neurotoxicity, and has no apparent negative effect on the blood–brain barrier. The safety and efficacy of desmoteplase is being studied in the Desmoteplase in Acute Ischemic Stroke clinical trial program. Three studies (Dose Escalation Study of Desmoteplase in Acute Ischemic Stroke, Desmoteplase in Acute Ischemic Stroke, and Desmoteplase in Acute Ischemic Stroke-2) have been completed, two large randomized, double-blind, placebo-controlled, phase III trials are ongoing at >200 sites worldwide (Desmoteplase in Acute Ischemic Stroke-3 and Desmoteplase in Acute Ischemic Stroke-4, n = 800; DIAS-3 and DIAS-4), and a randomized, double-blind, placebo-controlled, dose-escalation phase II trial is ongoing in Japan (Desmoteplase in Acute Ischemic Stroke-Japan, n = 48; DIAS-J). Aims The objective of DIAS-3 and DIAS-4 is to evaluate the safety and efficacy of a single IV bolus injection of 90 μg/kg desmoteplase given three- to nine-hours after onset of ischemic stroke (National Institutes of Health Stroke Scale 4–24, age 18–85 years). The objective of DIAS-J is to evaluate the safety and tolerability of desmoteplase 70 and 90 μg/kg three- to nine-hours after ischemic stroke onset in Japanese patients. Methods Patients are included with occlusion or high-grade stenosis (thrombolysis in myocardial infarction 0–1) in proximal cerebral arteries on magnetic resonance or computed tomography angiography but excluded with extended ischemic edema on computed tomography or diffusion-weighted imaging. Conclusion Desmoteplase is the only thrombolytic agent in late-stage development for acute ischemic stroke that is now tested in patients with proven stroke pathology. The results of the Desmoteplase in Acute Ischemic Stroke clinical trial program will show whether patients with major artery occlusions but not extended ischemic brain damage can be safely and effectively treated up to nine-hours after onset.
Collapse
Affiliation(s)
- Rüdiger von Kummer
- Department of Neuroradiology, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Gregory W Albers
- Department of Neurology and Neurological Sciences, Stanford University Stroke Center, Palo Alto, CA, USA
| | - Etsuro Mori
- Department of Behavioural Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | |
Collapse
|
41
|
Abstract
The plasminogen-activating enzyme system has been exploited and harnessed for therapeutic thrombolysis for nearly three decades. Tissue-type plasminogen activator is still the only thrombolytic agent approved for patients with ischemic stroke. While tissue-type plasminogen activator-induced thrombolysis is proven to be of clear benefit in these patients if administered within 4·5 h poststroke onset, it is surprisingly underused in clinics despite international guidelines and improved acute stroke systems, a situation that requires urgent attention. While tissue-type plasminogen activator has also been shown to have unforeseen roles in the brain that have presented new challenges, tissue-type plasminogen activator and related fibrinolytic agents are currently being assessed over extended time frames. This review will focus on the therapeutic experience and controversies of tissue-type plasminogen activator. Furthermore, we will also provide an overview of recent and current trials assessing tissue-type plasminogen activator and related thrombolytic agents as well as novel approaches for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|