1
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
2
|
Guadalupi L, Mandolesi G, Vanni V, Balletta S, Caioli S, Pavlovic A, De Vito F, Fresegna D, Sanna K, Vitiello L, Nencini M, Tartacca A, Mariani F, Rovella V, Schippling S, Ruf I, Collin L, Centonze D, Musella A. Pharmacological blockade of 2-AG degradation ameliorates clinical, neuroinflammatory and synaptic alterations in experimental autoimmune encephalomyelitis. Neuropharmacology 2024; 252:109940. [PMID: 38570068 DOI: 10.1016/j.neuropharm.2024.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.
Collapse
Affiliation(s)
- Livia Guadalupi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Sara Balletta
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Silvia Caioli
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Anto Pavlovic
- Laboratory of Flow Cytometry, IRCCS San Raffaele Roma, Rome, Italy
| | - Francesca De Vito
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Diego Fresegna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Krizia Sanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Laura Vitiello
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy; Laboratory of Flow Cytometry, IRCCS San Raffaele Roma, Rome, Italy
| | - Monica Nencini
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Alice Tartacca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabrizio Mariani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sven Schippling
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Iris Ruf
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Ludovic Collin
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy.
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy
| |
Collapse
|
3
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Bufan B, Ćuruvija I, Blagojević V, Grujić-Milanović J, Prijić I, Radosavljević T, Samardžić J, Radosavljevic M, Janković R, Djuretić J. NMDA Receptor Antagonist Memantine Ameliorates Experimental Autoimmune Encephalomyelitis in Aged Rats. Biomedicines 2024; 12:717. [PMID: 38672073 PMCID: PMC11047843 DOI: 10.3390/biomedicines12040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Aging is closely related to the main aspects of multiple sclerosis (MS). The average age of the MS population is increasing and the number of elderly MS patients is expected to increase. In addition to neurons, N-methyl-D-aspartate receptors (NMDARs) are also expressed on non-neuronal cells, such as immune cells. The aim of this study was to investigate the role of NMDARs in experimental autoimmune encephalomyelitis (EAE) in young and aged rats. Memantine, a non-competitive NMDAR antagonist, was administered to young and aged Dark Agouti rats from day 7 after immunization. Antagonizing NMDARs had a more favourable effect on clinical disease, reactivation, and apoptosis of CD4+ T cells in the target organ of aged EAE rats. The expression of the fractalkine receptor CX3CR1 was increased in memantine-treated rats, but to a greater extent in aged rats. Additionally, memantine increased Nrf2 and Nrf2-regulated enzymes' mRNA expression in brain tissue. The concentrations of superoxide anion radicals, malondialdehyde, and advanced oxidation protein products in brain tissue were consistent with previous results. Overall, our results suggest that NMDARs play a more important role in the pathogenesis of EAE in aged than in young rats.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Ćuruvija
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Veljko Blagojević
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Prijić
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Tatjana Radosavljević
- Institute of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardžić
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Radmila Janković
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Akyuz E, Celik BR, Aslan FS, Sahin H, Angelopoulou E. Exploring the Role of Neurotransmitters in Multiple Sclerosis: An Expanded Review. ACS Chem Neurosci 2023; 14:527-553. [PMID: 36724132 DOI: 10.1021/acschemneuro.2c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Although emerging evidence has shown that changes in neurotransmitter levels in the synaptic gap may contribute to the pathophysiology of MS, their specific role has not been elucidated yet. In this review, we aim to analyze preclinical and clinical evidence on the structural and functional changes in neurotransmitters in MS and critically discuss their potential role in MS pathophysiology. Preclinical studies have demonstrated that alterations in glutamate metabolism may contribute to MS pathophysiology, by causing excitotoxic neuronal damage. Dysregulated interaction between glutamate and GABA results in synaptic loss. The GABAergic system also plays an important role, by regulating the activity and plasticity of neural networks. Targeting GABAergic/glutamatergic transmission may be effective in fatigue and cognitive impairment in MS. Acetylcholine (ACh) and dopamine can also affect the T-mediated inflammatory responses, thereby being implicated in MS-related neuroinflammation. Also, melatonin might affect the frequency of relapses in MS, by regulating the sleep-wake cycle. Increased levels of nitric oxide in inflammatory lesions of MS patients may be also associated with axonal neuronal degeneration. Therefore, neurotransmitter imbalance may be critically implicated in MS pathophysiology, and future studies are needed for our deeper understanding of their role in MS.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Betul Rana Celik
- Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Feyza Sule Aslan
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Humeyra Sahin
- School of Medicine, Bezmialem Vakif University, Istanbul, Turkey, 34093
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece, 115 27
| |
Collapse
|
6
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
7
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
8
|
2-Chlorodeoxyadenosine (Cladribine) preferentially inhibits the biological activity of microglial cells. Int Immunopharmacol 2022; 105:108571. [DOI: 10.1016/j.intimp.2022.108571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023]
|
9
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
10
|
Fairless R, Bading H, Diem R. Pathophysiological Ionotropic Glutamate Signalling in Neuroinflammatory Disease as a Therapeutic Target. Front Neurosci 2021; 15:741280. [PMID: 34744612 PMCID: PMC8567076 DOI: 10.3389/fnins.2021.741280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023] Open
Abstract
Glutamate signalling is an essential aspect of neuronal communication involving many different glutamate receptors, and underlies the processes of memory, learning and synaptic plasticity. Despite neuroinflammatory diseases covering a range of maladies with very different biological causes and pathophysiologies, a central role for dysfunctional glutamate signalling is becoming apparent. This is not just restricted to the well-described role of glutamate in mediating neurodegeneration, but also includes a myriad of other influences that glutamate can exert on the vasculature, as well as immune cell and glial regulation, reflecting the ability of neurons to communicate with these compartments in order to couple their activity with neuronal requirements. Here, we discuss the role of pathophysiological glutamate signalling in neuroinflammatory disease, using both multiple sclerosis and Alzheimer's disease as examples, and how current steps are being made to harness our growing understanding of these processes in the development of neuroprotective strategies. This review focuses in particular on N-methyl-D-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methylisooxazol-4-yl) propionate (AMPA) type ionotropic glutamate receptors, although metabotropic, G-protein-coupled glutamate receptors may also contribute to neuroinflammatory processes. Given the indispensable roles of glutamate-gated ion channels in synaptic communication, means of pharmacologically distinguishing between physiological and pathophysiological actions of glutamate will be discussed that allow deleterious signalling to be inhibited whilst minimising the disturbance of essential neuronal function.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Bellingacci L, Mancini A, Gaetani L, Tozzi A, Parnetti L, Di Filippo M. Synaptic Dysfunction in Multiple Sclerosis: A Red Thread from Inflammation to Network Disconnection. Int J Mol Sci 2021; 22:ijms22189753. [PMID: 34575917 PMCID: PMC8469646 DOI: 10.3390/ijms22189753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) has been clinically considered a chronic inflammatory disease of the white matter; however, in the last decade growing evidence supported an important role of gray matter pathology as a major contributor of MS-related disability and the involvement of synaptic structures assumed a key role in the pathophysiology of the disease. Synaptic contacts are considered central units in the information flow, involved in synaptic transmission and plasticity, critical processes for the shaping and functioning of brain networks. During the course of MS, the immune system and its diffusible mediators interact with synaptic structures leading to changes in their structure and function, influencing brain network dynamics. The purpose of this review is to provide an overview of the existing literature on synaptic involvement during experimental and human MS, in order to understand the mechanisms by which synaptic failure eventually leads to brain networks alterations and contributes to disabling MS symptoms and disease progression.
Collapse
Affiliation(s)
- Laura Bellingacci
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Alessandro Tozzi
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
- Correspondence: ; Tel.: +39-075-578-3830
| |
Collapse
|
12
|
Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Hurst V, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol 2020; 18:e3000411. [PMID: 32663221 PMCID: PMC7360025 DOI: 10.1371/journal.pbio.3000411] [Citation(s) in RCA: 1189] [Impact Index Per Article: 237.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Improving the reproducibility of biomedical research is a major challenge. Transparent and accurate reporting is vital to this process; it allows readers to assess the reliability of the findings and repeat or build upon the work of other researchers. The ARRIVE guidelines (Animal Research: Reporting In Vivo Experiments) were developed in 2010 to help authors and journals identify the minimum information necessary to report in publications describing in vivo experiments. Despite widespread endorsement by the scientific community, the impact of ARRIVE on the transparency of reporting in animal research publications has been limited. We have revised the ARRIVE guidelines to update them and facilitate their use in practice. The revised guidelines are published alongside this paper. This explanation and elaboration document was developed as part of the revision. It provides further information about each of the 21 items in ARRIVE 2.0, including the rationale and supporting evidence for their inclusion in the guidelines, elaboration of details to report, and examples of good reporting from the published literature. This document also covers advice and best practice in the design and conduct of animal studies to support researchers in improving standards from the start of the experimental design process through to publication.
Collapse
Affiliation(s)
| | - Amrita Ahluwalia
- The William Harvey Research Institute, London, United Kingdom
- Barts Cardiovascular CTU, Queen Mary University of London, London, United Kingdom
| | - Sabina Alam
- Taylor & Francis Group, London, United Kingdom
| | - Marc T. Avey
- Health Science Practice, ICF, Durham, North Carolina, United States of America
| | - Monya Baker
- Nature, San Francisco, California, United States of America
| | | | | | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Ulrich Dirnagl
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health & Department of Experimental Neurology, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Emerson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Paul Garner
- Centre for Evidence Synthesis in Global Health, Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen T. Holgate
- Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - David W. Howells
- Tasmanian School of Medicine, University of Tasmania, Hobart, Australia
| | | | - Natasha A. Karp
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | - Malcolm Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ole H. Petersen
- Academia Europaea Knowledge Hub, Cardiff University, Cardiff, United Kingdom
| | | | - Penny Reynolds
- Statistics in Anesthesiology Research (STAR) Core, Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Kieron Rooney
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Emily S. Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Shai D. Silberberg
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | | | - Hanno Würbel
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Synaptic alterations and immune response are sexually dimorphic in a non-pertussis toxin model of experimental autoimmune encephalomyelitis. Exp Neurol 2019; 323:113061. [PMID: 31499065 DOI: 10.1016/j.expneurol.2019.113061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/16/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis is an autoimmune disorder of the central nervous system (CNS) characterized by locomotor impairments, cognitive deficits, affective disorders, and chronic pain. Females are predominately affected by MS compared to males and develop motor symptoms earlier. However, key symptoms affect all patients regardless of sex. Previous studies have shown that demyelination and axonal damage play key roles in symptom development, but it is unclear why sex differences exist in MS onset, and effective symptom treatment is still lacking. We here used a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, to explore chronic symptoms and sex differences in CNS autoimmunity. We observed that, like in humans, female mice developed motor disease earlier than males. Further, changes in pre- and post-synaptic protein expression levels were observed in a sexually dimorphic manner with an overall shift towards excitatory signaling. Our data suggest that this shift towards excitatory signaling is achieved through different mechanisms in males and females. Altogether, our study helps to better understand sex-specific disease mechanisms to ultimately develop better diagnostic and treatment tools.
Collapse
|
14
|
Enhanced GABAergic Tonic Inhibition Reduces Intrinsic Excitability of Hippocampal CA1 Pyramidal Cells in Experimental Autoimmune Encephalomyelitis. Neuroscience 2018; 395:89-100. [PMID: 30447391 DOI: 10.1016/j.neuroscience.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
Abstract
Cognitive impairment (CI), a debilitating and pervasive feature of multiple sclerosis (MS), is correlated with hippocampal atrophy. Findings from postmortem MS hippocampi indicate that expression of genes involved in both excitatory and inhibitory neurotransmission are altered in MS, and although deficits in excitatory neurotransmission have been reported in the MS model experimental autoimmune encephalomyelitis (EAE), the functional consequence of altered inhibitory neurotransmission remains poorly understood. In this study, we used electrophysiological and biochemical techniques to examine inhibitory neurotransmission in the CA1 region of the hippocampus in EAE. We find that tonic, GABAergic inhibition is enhanced in CA1 pyramidal cells from EAE mice. Although plasma membrane expression of the GABA transporter GAT-3 was decreased in the EAE hippocampus, an increased surface expression of α5 subunit-containing GABAA receptors appears to be primarily responsible for the increase in tonic inhibition during EAE. Enhanced tonic inhibition during EAE was associated with decreased CA1 pyramidal cell excitability and inhibition of α5 subunit-containing GABAA receptors with the negative allosteric modulator L-655,708 enhanced pyramidal cell excitability in EAE mice. Together, our results suggest that altered GABAergic neurotransmission may underlie deficits in hippocampus-dependent cognitive function in EAE and MS.
Collapse
|
15
|
Musella A, Gentile A, Rizzo FR, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F, Centonze D, Mandolesi G. Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Front Aging Neurosci 2018; 10:238. [PMID: 30135651 PMCID: PMC6092506 DOI: 10.3389/fnagi.2018.00238] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Aging is one of the main risk factors for the development of many neurodegenerative diseases. Emerging evidence has acknowledged neuroinflammation as potential trigger of the functional changes occurring during normal and pathological aging. Two main determinants have been recognized to cogently contribute to neuroinflammation in the aging brain, i.e., the systemic chronic low-grade inflammation and the decline in the regulation of adaptive and innate immune systems (immunosenescence, ISC). The persistence of the inflammatory status in the brain in turn may cause synaptopathy and synaptic plasticity impairments that underlie both motor and cognitive dysfunctions. Interestingly, such inflammation-dependent synaptic dysfunctions have been recently involved in the pathophysiology of multiple sclerosis (MS). MS is an autoimmune neurodegenerative disease, typically affecting young adults that cause an early and progressive deterioration of both cognitive and motor functions. Of note, recent controlled studies have clearly shown that age at onset modifies prognosis and exerts a significant effect on presenting phenotype, suggesting that aging is a significant factor associated to the clinical course of MS. Moreover, some lines of evidence point to the different impact of age on motor disability and cognitive deficits, being the former most affected than the latter. The precise contribution of aging-related factors to MS neurological disability and the underlying molecular and cellular mechanisms are still unclear. In the present review article, we first emphasize the importance of the neuroinflammatory dependent mechanisms, such as synaptopathy and synaptic plasticity impairments, suggesting their potential exacerbation or acceleration with advancing age in the MS disease. Lastly, we provide an overview of clinical and experimental studies highlighting the different impact of age on motor disability and cognitive decline in MS, raising challenging questions on the putative age-related mechanisms involved.
Collapse
Affiliation(s)
- Alessandra Musella
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| | - Antonietta Gentile
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Francesca Romana Rizzo
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca De Vito
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Vanni
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Livia Guadalupi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Fabio Buttari
- Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Diego Centonze
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Georgia Mandolesi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| |
Collapse
|
16
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
17
|
CaMKIIα Mediates the Effect of IL-17 To Promote Ongoing Spontaneous and Evoked Pain in Multiple Sclerosis. J Neurosci 2017; 38:232-244. [PMID: 29146590 DOI: 10.1523/jneurosci.2666-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
Pain is a common and severe symptom in multiple sclerosis (MS), a chronic inflammatory and demyelinating disease of the CNS. The neurobiological mechanism underlying MS pain is poorly understood. In this study, we investigated the role of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) in driving chronic pain in MS using a mouse experimental autoimmune encephalomyelitis (EAE) model. We found that spinal CaMKIIα activity was enhanced in EAE, correlating with the development of ongoing spontaneous pain and evoked hypersensitivity to mechanical and thermal stimuli. Prophylactic or acute administration of KN93, a CaMKIIα inhibitor, significantly reduced the clinical scores of EAE and attenuated mechanical allodynia and thermal hyperalgesia in EAE. siRNA targeting CaMKIIα reversed established mechanical and thermal hypersensitivity in EAE mice. Furthermore, CaMKIIαT286A point mutation mice showed significantly reduced EAE clinical scores, an absence of evoked pain, and ongoing spontaneous pain when compared with littermate wild-type mice. We found that IL-17 is responsible for inducing but not maintaining mechanical and thermal hyperalgesia that is mediated by CaMKIIα signaling in EAE. Together, these data implicate a critical role of CaMKIIα as a cellular mechanism for pain and neuropathy in multiple sclerosis and IL-17 may act upstream of CaMKIIα in the generation of pain.SIGNIFICANCE STATEMENT Pain is highly prevalent in patients with multiple sclerosis (MS), significantly reducing patients' quality of life. Using the experimental autoimmune encephalomyelitis (EAE) model, we were able to study not only evoked hyperalgesia, but also for the first time to demonstrate spontaneous pain that is also experienced by patients. Our study identified a role of spinal CaMKIIα in promoting and maintaining persistent ongoing spontaneous pain and evoked hyperalgesia pain in EAE. We further demonstrated that IL-17 contributes to persistent pain in EAE and functions as an upstream regulator of CaMKIIα signaling. These data for the first time implicated CaMKIIα and IL-17 as critical regulators of persistent pain in EAE, which may ultimately offer new therapeutic targets for mitigating pain in multiple sclerosis.
Collapse
|
18
|
Pittaluga A. CCL5-Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis. Front Immunol 2017; 8:1079. [PMID: 28928746 PMCID: PMC5591427 DOI: 10.3389/fimmu.2017.01079] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
19
|
Levite M. Glutamate, T cells and multiple sclerosis. J Neural Transm (Vienna) 2017; 124:775-798. [PMID: 28236206 DOI: 10.1007/s00702-016-1661-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/25/2016] [Indexed: 12/18/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the nervous system, where it induces multiple beneficial and essential effects. Yet, excess glutamate, evident in a kaleidoscope of acute and chronic pathologies, is absolutely catastrophic, since it induces excitotoxicity and massive loss of brain function. Both the beneficial and the detrimental effects of glutamate are mediated by a large family of glutamate receptors (GluRs): the ionotropic glutamate receptors (iGluRs) and the metabotropic glutamate receptors (mGluRs), expressed by most/all cells of the nervous system, and also by many non-neural cells in various peripheral organs and tissues. T cells express on their cell surface several types of functional GluRs, and so do few other immune cells. Furthermore, glutamate by itself activates resting normal human T cells, and induces/elevates key T cell functions, among them: T cell adhesion, chemotactic migration, cytokine secretion, gene expression and more. Glutamate has also potent effects on antigen/mitogen/cytokine-activated T cells. Furthermore, T cells can even produce and release glutamate, and affect other cells and themselves via their own glutamate. Multiple sclerosis (MS) and its animal model Experimental Autoimmune Encephalomyelitis (EAE) are mediated by autoimmune T cells. In MS and EAE, there are excess glutamate levels, and multiple abnormalities in glutamate degrading enzymes, glutamate transporters, glutamate receptors and glutamate signaling. Some GluR antagonists block EAE. Enhancer of mGluR4 protects from EAE via regulatory T cells (Tregs), while mGluR4 deficiency exacerbates EAE. The protective effect of mGluR4 on EAE calls for testing GluR4 enhancers in MS patients. Oral MS therapeutics, namely Fingolimod, dimethyl fumarate and their respective metabolites Fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. Furthermore, Fingolimod reduce glutamate-mediated intracortical excitability in relapsing-remitting MS. Glatiramer acetate -COPAXONE®, an immunomodulator drug for MS, reverses TNF-α-induced alterations of striatal glutamate-mediated excitatory postsynaptic currents in EAE-afflicted mice. With regard to T cells of MS patients: (1) The cell surface expression of a specific GluR: the AMPA GluR3 is elevated in T cells of MS patients during relapse and with active disease, (2) Glutamate and AMPA (a selective agonist for glutamate/AMPA iGluRs) augment chemotactic migration of T cells of MS patients, (3) Glutamate augments proliferation of T cells of MS patients in response to myelin-derived proteins: MBP and MOG, (4) T cells of MS patients respond abnormally to glutamate, (5) Significantly higher proliferation values in response to glutamate were found in MS patients assessed during relapse, and in those with gadolinium (Gd)+ enhancing lesions on MRI. Furthermore, glutamate released from autoreactive T cells induces excitotoxic cell death of neurons. Taken together, the evidences accumulated thus far indicate that abnormal glutamate levels and signaling in the nervous system, direct activation of T cells by glutamate, and glutamate release by T cells, can all contribute to MS. This may be true also to other neurological diseases. It is postulated herein that the detrimental activation of autoimmune T cells by glutamate in MS could lead to: (1) Cytotoxicity in the CNS: T cell-mediated killing of neurons and glia cells, which would subsequently increase the extracellular glutamate levels, and by doing so increase the excitotoxicity mediated by excess glutamate, (2) Release of proinflammatory cytokines, e.g., TNFα and IFNγ that increase neuroinflammation. Finally, if excess glutamate, abnormal neuronal signaling, glutamate-induced activation of T cells, and glutamate release by T cells are indeed all playing a key detrimental role in MS, then optional therapeutic tolls include GluR antagonists, although these may have various side effects. In addition, an especially attractive therapeutic strategy is the novel and entirely different therapeutic approach to minimize excess glutamate and excitotoxicity, titled: 'brain to blood glutamate scavenging', designed to lower excess glutamate levels in the CNS by 'pumping it out' from the brain to the blood. The glutamate scavanging is achieved by lowering glutamate levels in the blood by intravenous injection of the blood enzyme glutamate oxaloacetate transaminase (GOT). The glutamate-scavenging technology, which is still experimental, validated so far for other brain pathologies, but not tested on MS or EAE yet, may be beneficial for MS too, since it could decrease both the deleterious effects of excess glutamate on neural cells, and the activation of autoimmune T cells by glutamate in the brain. The topic of glutamate scavenging, and also its potential benefit for MS, are discussed towards the end of the review, and call for research in this direction.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, School of Pharmacy, The Hebrew University, Jerusalem, Israel. .,Institute of Gene Therapy, Hadassah Medical Center, 91120, Ein Karem, Jerusalem, Israel.
| |
Collapse
|
20
|
Merckx E, Albertini G, Paterka M, Jensen C, Albrecht P, Dietrich M, Van Liefferinge J, Bentea E, Verbruggen L, Demuyser T, Deneyer L, Lewerenz J, van Loo G, De Keyser J, Sato H, Maher P, Methner A, Massie A. Absence of system x c- on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis. J Neuroinflammation 2017; 14:9. [PMID: 28086920 PMCID: PMC5237180 DOI: 10.1186/s12974-016-0787-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System xc- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. METHODS Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system xc-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT-/-) mice and irradiated mice reconstituted in xCT-/- bone marrow (BM), to their proper wild type (xCT+/+) controls. RESULTS xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT+/+ mice, xCT-/- mice were equally susceptible to EAE, whereas mice transplanted with xCT-/- BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. CONCLUSIONS Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system xc- on immune cells invading the CNS participates to EAE. Since a total loss of system xc- had no net beneficial effects, these results have important implications for targeting system xc- for treatment of MS.
Collapse
Affiliation(s)
- Ellen Merckx
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Giulia Albertini
- Center for Neurosciences (C4N), Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Paterka
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Cathy Jensen
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Dietrich
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Joeri Van Liefferinge
- Center for Neurosciences (C4N), Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eduard Bentea
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Lise Verbruggen
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Thomas Demuyser
- Center for Neurosciences (C4N), Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lauren Deneyer
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Geert van Loo
- Inflammation Research Center, VIB and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jacques De Keyser
- Center for Neurosciences (C4N), Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Hideyo Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Axel Methner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ann Massie
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
21
|
Kanceva R, Stárka L, Kancheva L, Hill M, Veliková M, Havrdová E. Increased serum levels of C21 steroids in female patients with multiple sclerosis. Physiol Res 2016; 64:S247-54. [PMID: 26680486 DOI: 10.33549/physiolres.933145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is one of the most common neurological diseases. This neurodegenerative autoimmune disease manifests as inflammatory and demyelinating impairment of the central nervous system (CNS). Although some studies demonstrated associations between altered steroidogenesis and pathophysiology of MS as well as the importance of steroids in the pathophysiology of MS, the knowledge concerning the steroid metabolome in female patients is limited. Hence, 51 steroids and steroid polar conjugates were measured in the serum of 12 women with MS, untreated with steroids and 6 age-corresponding female controls with the use of gas chromatography - mass spectrometry (GC-MS). The data were processed using age adjusted ANCOVA, receiver operating characteristics (ROC) analysis and orthogonal projections to latent structures (OPLS). Our data show higher levels of circulating C21 steroids including steroid modulators of ionotropic type A gamma-aminobutyric acid (GABA A) receptors and glutamate receptors. Furthermore, the levels of GABAergic androsterone and 5-androsten-3beta,7alpha,17beta-triol were also higher in the female MS patients. In conclusion, the data demonstrate higher levels of circulating C21 steroids and their polar conjugates and some bioactive C19 steroids in women with MS, which may influence neuronal activity and affect the balance between neuroprotection and excitotoxicity.
Collapse
Affiliation(s)
- R Kanceva
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
22
|
Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, Piras E, Gargano F, Borsellino G, Battistini L, Schubart A, Mandolesi G, Centonze D. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation 2016; 13:207. [PMID: 27566665 PMCID: PMC5002118 DOI: 10.1186/s12974-016-0686-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background Data from multiple sclerosis (MS) and the MS rodent model, experimental autoimmune encephalomyelitis (EAE), highlighted an inflammation-dependent synaptopathy at the basis of the neurodegenerative damage causing irreversible disability in these disorders. This synaptopathy is characterized by an imbalance between glutamatergic and GABAergic transmission and has been proposed to be a potential therapeutic target. Siponimod (BAF312), a selective sphingosine 1-phosphate1,5 receptor modulator, is currently under investigation in a clinical trial in secondary progressive MS patients. We investigated whether siponimod, in addition to its peripheral immune modulation, may exert direct neuroprotective effects in the central nervous system (CNS) of mice with chronic progressive EAE. Methods Minipumps allowing continuous intracerebroventricular (icv) infusion of siponimod for 4 weeks were implanted into C57BL/6 mice subjected to MOG35-55-induced EAE. Electrophysiology, immunohistochemistry, western blot, qPCR experiments, and peripheral lymphocyte counts were performed. In addition, the effect of siponimod on activated microglia was assessed in vitro to confirm the direct effect of the drug on CNS-resident immune cells. Results Siponimod administration (0.45 μg/day) induced a significant beneficial effect on EAE clinical scores with minimal effect on peripheral lymphocyte counts. Siponimod rescued defective GABAergic transmission in the striatum of EAE, without correcting the EAE-induced alterations of glutamatergic transmission. We observed a significant attenuation of astrogliosis and microgliosis together with reduced lymphocyte infiltration in the striatum of EAE mice treated with siponimod. Interestingly, siponimod reduced the release of IL-6 and RANTES from activated microglial cells in vitro, which might explain the reduced lymphocyte infiltration. Furthermore, the loss of parvalbumin-positive (PV+) GABAergic interneurons typical of EAE brains was rescued by siponimod treatment, providing a plausible explanation of the selective effects of this drug on inhibitory synaptic transmission. Conclusions Altogether, our results show that siponimod has neuroprotective effects in the CNS of EAE mice, which are likely independent of its peripheral immune effect, suggesting that this drug could be effective in limiting neurodegenerative pathological processes in MS.
Collapse
Affiliation(s)
- Antonietta Gentile
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Alessandra Musella
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy
| | - Diego Fresegna
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Francesca De Vito
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Roberta Fantozzi
- Unit of Neurology and Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Eleonora Piras
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | - Francesca Gargano
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | | | - Luca Battistini
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | - Anna Schubart
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Georgia Mandolesi
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.
| | - Diego Centonze
- Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy.,Unit of Neurology and Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| |
Collapse
|
23
|
Peyro Saint Paul L, Creveuil C, Heinzlef O, De Seze J, Vermersch P, Castelnovo G, Cabre P, Debouverie M, Brochet B, Dupuy B, Lebiez P, Sartori É, Clavelou P, Brassat D, Lebrun-Frenay C, Daplaud D, Pelletier J, Coman I, Hautecoeur P, Tourbah A, Defer G. Efficacy and safety profile of memantine in patients with cognitive impairment in multiple sclerosis: A randomized, placebo-controlled study. J Neurol Sci 2016; 363:69-76. [DOI: 10.1016/j.jns.2016.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
|
24
|
Catanzaro G, Pucci M, Viscomi MT, Lanuti M, Feole M, Angeletti S, Grasselli G, Mandolesi G, Bari M, Centonze D, D'Addario C, Maccarrone M. Epigenetic modifications of Dexras 1 along the nNOS pathway in an animal model of multiple sclerosis. J Neuroimmunol 2016; 294:32-40. [PMID: 27138096 DOI: 10.1016/j.jneuroim.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
The development of multiple sclerosis, a major neurodegenerative disease, is due to both genetic and environmental factors that might trigger aberrant epigenetic changes of the genome. In this study, we analysed global DNA methylation in the brain of mice upon induction of experimental autoimmune encephalomyelitis (EAE), and the effect of environmental enrichment (EE). We demonstrate that global DNA methylation decreased in the striatum, but not in the cortex, of EAE mice compared to healthy controls, in particular in neuronal nitric oxide synthase (nNOS)-positive interneurons of this brain area. Also, in the striatum but again not in the cortex, decreased DNA methylation of the nNOS downstream effector, dexamethasone-induced Ras protein 1 (Dexras 1), was observed in EAE mice, and was paralleled by an increase in its mRNA. Interestingly, EE was able to revert EAE effects on mRNA expression and DNA methylation levels of Dexras 1 and reduced gene expression of nNOS and 5-lipoxygenase (Alox5). Conversely, interleukin-1β (IL-1β) gene expression was found up-regulated in EAE mice compared to controls and was not affected by EE. Taken together, these data demonstrate an unprecedented epigenetic modulation of nNOS-signaling in the pathogenesis of multiple sclerosis, and show that EE can specifically revert EAE effects on Dexras 1 along this pathway.
Collapse
Affiliation(s)
- G Catanzaro
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - M T Viscomi
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Lanuti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Feole
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - S Angeletti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - G Grasselli
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - G Mandolesi
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Bari
- Department of Experimental Medicine and Biochemical Sciences, Tor Vergata University of Rome, Rome, Italy
| | - D Centonze
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy & IRCCS Neuromed, Pozzilli (IS), Italy
| | - C D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - M Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
25
|
Lee JY, Biemond M, Petratos S. Axonal degeneration in multiple sclerosis: defining therapeutic targets by identifying the causes of pathology. Neurodegener Dis Manag 2015; 5:527-48. [DOI: 10.2217/nmt.15.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current therapeutics in multiple sclerosis (MS) target the putative inflammation and immune attack on CNS myelin. Despite their effectiveness in blunting the relapse rate in MS patients, such therapeutics do not prevent MS disease progression. Importantly, specific clinical dilemma arises through inability to predict MS progression and thereby therapeutically target axonal injury during MS, limiting permanent disability. The current review identifies immune and neurobiological principles that govern the sequelae of axonal degeneration during MS disease progression. Defining the specific disease arbiters, inflammatory and autoimmune, oligodendrocyte dystrophy and degenerative myelin, we discuss a basis for a molecular mechanism in axons that may be targeted therapeutically, in spatial and temporal manner to limit axonal degeneration and thereby halt progression of MS.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Melissa Biemond
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| |
Collapse
|
26
|
Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 2015; 11:711-24. [PMID: 26585978 DOI: 10.1038/nrneurol.2015.222] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) has long been regarded as a chronic inflammatory disease of the white matter that leads to demyelination and eventually to neurodegeneration. In the past decade, several aspects of MS pathogenesis have been challenged, and degenerative changes of the grey matter, which are independent of demyelination, have become a topic of interest. CNS inflammation in MS and experimental autoimmune encephalomyelitis (EAE; a disease model used to study MS in rodents) causes a marked imbalance between GABAergic and glutamatergic transmission, and a loss of synapses, all of which leads to a diffuse 'synaptopathy'. Altered synaptic transmission can occur early in MS and EAE, independently of demyelination and axonal loss, and subsequently causes excitotoxic damage. Inflammation-driven synaptic abnormalities are emerging as a prominent pathogenic mechanism in MS-importantly, they are potentially reversible and, therefore, represent attractive therapeutic targets. In this Review, we focus on the connection between inflammation and synaptopathy in MS and EAE, which sheds light not only on the pathophysiology of MS but also on that of primary neurodegenerative disorders in which inflammatory processes contribute to disease progression.
Collapse
Affiliation(s)
- Georgia Mandolesi
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Antonietta Gentile
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Diego Fresegna
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Francesca De Vito
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Bullitta
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Helena Sepman
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Girolama A Marfia
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Diego Centonze
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
27
|
Mandolesi G, Gentile A, Musella A, Centonze D. IL-1β dependent cerebellar synaptopathy in a mouse mode of multiple sclerosis. THE CEREBELLUM 2015; 14:19-22. [PMID: 25326653 DOI: 10.1007/s12311-014-0613-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is considered as an autoimmune inflammatory disease and is one of the main causes of motor disability in young adults. Focal white matter lesions consisting of T lymphocyte and macrophage infiltrates, demyelination, and axonal transection are clear hallmarks of MS disease. However, white matter pathology does not occur exclusively. Clinical and experimental studies have shown gray matter atrophy and lesions occurring in several brain regions, including the cerebellum. Cerebellar-dependent disability is very common in MS patients. Cerebellar deficits are also relatively refractory to symptomatic therapy and progress even under disease-modifying agents. However, the neuropathology underlying cerebellar dysfunction remains largely unknown. We recently demonstrated that the cerebellum is also targeted in experimental autoimmune encephalomyelitis (EAE), the most widely used animal model of MS. Electrophysiological studies, supported by immunofluorescence and biochemical analysis, revealed an imbalance between the spontaneous excitatory and inhibitory synaptic transmission at Purkinje cell synapses. While the frequency of the spontaneous inhibitory postsynaptic currents (sIPSC) during the acute phase of EAE was reduced in correlation with a selective degeneration of basket and stellate neurons, the glutamatergic transmission was enhanced due to a reduced expression and functioning of glutamate aspartate transporter (GLAST)/excitatory amino acid transporter 1 (EAAT1), the most abundant glutamate transporter expressed by Bergmann glia. Of note, we demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β), highly expressed in EAE cerebellum and released by infiltrating lymphocytes, was one of the molecular players directly responsible for such synaptic alterations during the acute phase. Furthermore, other brain regions in EAE mice seem to be affected by a similar inflammatory dependent synaptopathy, suggesting common molecular targets for potential therapeutic strategies. Accordingly, we observed that intracerebroventricular inhibition of IL-1β signaling in EAE mice was able to ameliorate inflammatory reaction, electrophysiological response, and clinical disability, indicating a pivotal role of IL-1β in EAE disease and likely, in MS.
Collapse
Affiliation(s)
- Georgia Mandolesi
- Fondazione Santa Lucia IRCSS, Via del Fosso di Fiorano 64, 00146, Rome, Italy,
| | | | | | | |
Collapse
|
28
|
Gentile A, Fresegna D, Federici M, Musella A, Rizzo FR, Sepman H, Bullitta S, De Vito F, Haji N, Rossi S, Mercuri NB, Usiello A, Mandolesi G, Centonze D. Dopaminergic dysfunction is associated with IL-1β-dependent mood alterations in experimental autoimmune encephalomyelitis. Neurobiol Dis 2014; 74:347-58. [PMID: 25511803 DOI: 10.1016/j.nbd.2014.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 11/16/2022] Open
Abstract
Mood disturbances are frequent in patients with multiple sclerosis (MS), even in non-disabled patients and in the remitting stages of the disease. It is still largely unknown how the pathophysiological process on MS causes anxiety and depression, but the dopaminergic system is likely involved. Aim of the present study was to investigate depressive-like behavior in mice with experimental autoimmune encephalomyelitis (EAE), a model of MS, and its possible link to dopaminergic neurotransmission. Behavioral, amperometric and biochemical experiments were performed to determine the role of inflammation in mood control in EAE. First, we assessed the independence of mood alterations from motor disability during the acute phase of the disease, by showing a depressive-like behavior in EAE mice with mild clinical score and preserved motor skills (mild-EAE). Second, we linked such behavioral changes to the selective increased striatal expression of interleukin-1beta (IL-1β) in a context of mild inflammation and to dopaminergic system alterations. Indeed, in the striatum of EAE mice, we observed an impairment of dopamine (DA) neurotransmission, since DA release was reduced and signaling through DA D1- and D2-like receptors was unbalanced. In conclusion, the present study provides first evidence of the link between the depressive-like behavior and the alteration of dopaminergic system in EAE mice, raising the possibility that IL-1β driven dysfunction of dopaminergic signaling might play a role in mood disturbances also in MS patients.
Collapse
Affiliation(s)
- Antonietta Gentile
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Diego Fresegna
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Mauro Federici
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Alessandra Musella
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Romana Rizzo
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Helena Sepman
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Bullitta
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Francesca De Vito
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Nabila Haji
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Silvia Rossi
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola B Mercuri
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandro Usiello
- Behavioural Neuroscience Laboratory, CEINGE - Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples (SUN), Caserta, Italy
| | - Georgia Mandolesi
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Diego Centonze
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
29
|
Rossi S, Motta C, Musella A, Centonze D. The interplay between inflammatory cytokines and the endocannabinoid system in the regulation of synaptic transmission. Neuropharmacology 2014; 96:105-12. [PMID: 25268960 DOI: 10.1016/j.neuropharm.2014.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022]
Abstract
Excessive glutamate-mediated synaptic transmission and secondary excitotoxicity have been proposed as key determinants of neurodegeneration in many neurological diseases. Soluble mediators of inflammation have recently gained attention owing to their ability to enhance glutamate transmission and affect synaptic sensitivity to neurotransmitters. In the complex crosstalk between soluble immunoactive molecules and synapses, the endocannabinoid system (ECS) plays a central role, exerting an indirect neuroprotective action by inhibiting cytokine-dependent synaptic alterations, and a direct neuroprotective effect by limiting glutamate transmission and excitotoxic damage. On the other hand, the endocannabinoid (eCB)-mediated control of synaptic transmission is altered by proinflammatory cytokines with consequent effects in central nervous system (CNS) disorders. In this review, we summarize the interactions, at the pre- and postsynaptic level, between major inflammatory cytokines and the ECS. In addition, the behavioral and clinical consequences of the modulation of synaptic transmission during neuroinflammation are discussed. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Silvia Rossi
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy
| | - Caterina Motta
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy
| | - Alessandra Musella
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy
| | - Diego Centonze
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy.
| |
Collapse
|
30
|
Musella A, Sepman H, Mandolesi G, Gentile A, Fresegna D, Haji N, Conrad A, Lutz B, Maccarrone M, Centonze D. Pre- and postsynaptic type-1 cannabinoid receptors control the alterations of glutamate transmission in experimental autoimmune encephalomyelitis. Neuropharmacology 2014; 79:567-72. [DOI: 10.1016/j.neuropharm.2014.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
|
31
|
Abstract
Multiple sclerosis (MS) is the most frequent chronic inflammatory disease of the CNS, and imposes major burdens on young lives. Great progress has been made in understanding and moderating the acute inflammatory components of MS, but the pathophysiological mechanisms of the concomitant neurodegeneration--which causes irreversible disability--are still not understood. Chronic inflammatory processes that continuously disturb neuroaxonal homeostasis drive neurodegeneration, so the clinical outcome probably depends on the balance of stressor load (inflammation) and any remaining capacity for neuronal self-protection. Hence, suitable drugs that promote the latter state are sorely needed. With the aim of identifying potential novel therapeutic targets in MS, we review research on the pathological mechanisms of neuroaxonal dysfunction and injury, such as altered ion channel activity, and the endogenous neuroprotective pathways that counteract oxidative stress and mitochondrial dysfunction. We focus on mechanisms inherent to neurons and their axons, which are separable from those acting on inflammatory responses and might, therefore, represent bona fide neuroprotective drug targets with the capability to halt MS progression.
Collapse
|
32
|
Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 2013; 33:12105-21. [PMID: 23864696 DOI: 10.1523/jneurosci.5369-12.2013] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cerebellar deficit contributes significantly to disability in multiple sclerosis (MS). Several clinical and experimental studies have investigated the pathophysiology of cerebellar dysfunction in this neuroinflammatory disorder, but the cellular and molecular mechanisms are still unclear. In experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, proinflammatory cytokines, together with a degeneration of inhibitory neurons, contribute to impair GABAergic transmission at Purkinje cells (PCs). Here, we investigated glutamatergic transmission to gain insight into the pathophysiology of cerebellar dysfunction in EAE. Electrophysiological recordings from PCs showed increased duration of spontaneous excitatory postsynaptic currents (EPSCs) during the symptomatic phase of EAE, suggesting an alteration of glutamate uptake played by Bergmann glia. We indeed observed an impaired functioning of the glutamate-aspartate transporter/excitatory amino acid transporter 1 (GLAST/EAAT1) in EAE cerebellum caused by protein downregulation and in correlation with prominent astroglia activation. We have also demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β), released by a subset of activated microglia/macrophages and infiltrating lymphocytes, was involved directly in such synaptic alteration. In fact, brief incubation of IL-1β in normal cerebellar slices replicated EAE modifications through a rapid GLAST/EAAT1 downregulation, whereas incubation of an IL-1 receptor antagonist (IL-1ra) in EAE slices reduced spontaneous EPSC alterations. Finally, EAE mice treated with intracerebroventricular IL-1ra showed normal glutamatergic and GABAergic transmissions, along with GLAST/EAAT1 normalization, milder inflammation, and reduced motor deficits. These results highlight the crucial role played by the proinflammatory IL-1β in triggering molecular and synaptic events involved in neurodegenerative processes that characterize neuroinflammatory diseases such as MS.
Collapse
|
33
|
Musella A, Mandolesi G, Gentile A, Rossi S, Studer V, Motta C, Sepman H, Fresegna D, Haji N, Paolillo A, Matarese G, Centonze D. Cladribine interferes with IL-1β synaptic effects in experimental multiple sclerosis. J Neuroimmunol 2013; 264:8-13. [PMID: 24045165 DOI: 10.1016/j.jneuroim.2013.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022]
Abstract
Alterations of glutamate-mediated synaptic transmission occur in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the animal model of MS. Here we investigated whether intracerebroventricular (Icv) administration of cladribine has effects on EAE. Icv infusion of cladribine reduced the clinical deficits of EAE mice and reversed EAE-induced enhancement of excitatory postsynaptic current (sEPSC) frequency, a neurophysiological measure of glutamatergic synaptopathy associated with central inflammation. Cladribine failed to interfere with EAE-induced microglial and astroglial activation, but blocked EAE synaptic alterations by interfering with interleukin-1β effects. Cladribine possesses neuroprotective properties in experimental MS that are independent of its peripheral immunosuppressant action.
Collapse
Affiliation(s)
- Alessandra Musella
- Fondazione Santa Lucia, Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy; UOC Neurologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Interleukin-1β promotes long-term potentiation in patients with multiple sclerosis. Neuromolecular Med 2013; 16:38-51. [PMID: 23892937 DOI: 10.1007/s12017-013-8249-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
The immune system shapes synaptic transmission and plasticity in experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis (MS). These synaptic adaptations are believed to drive recovery of function after brain lesions, and also learning and memory deficits and excitotoxic neurodegeneration; whether inflammation influences synaptic plasticity in MS patients is less clear. In a cohort of 59 patients with MS, we found that continuous theta-burst transcranial magnetic stimulation did not induce the expected long-term depression (LTD)-like synaptic phenomenon, but caused persisting enhancement of brain cortical excitability. The amplitude of this long-term potentiation (LTP)-like synaptic phenomenon correlated with the concentration of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the cerebrospinal fluid. In MS and EAE, the brain and spinal cord are typically enriched of CD3(+) T lymphocyte infiltrates, which are, along with activated microglia and astroglia, a major cause of inflammation. Here, we found a correlation between the presence of infiltrating T lymphocytes in the hippocampus of EAE mice and synaptic plasticity alterations. We observed that T lymphocytes from EAE, but not from control mice, release IL-1β and promote LTP appearance over LTD, thereby mimicking the facilitated LTP induction observed in the cortex of MS patients. EAE-specific T lymphocytes were able to suppress GABAergic transmission in an IL-1β-dependent manner, providing a possible synaptic mechanism able to lower the threshold of LTP induction in MS brains. Moreover, in vivo blockade of IL-1β signaling resulted in inflammation and synaptopathy recovery in EAE hippocampus. These data provide novel insights into the pathophysiology of MS.
Collapse
|
35
|
Rossi S, Motta C, Studer V, Barbieri F, Buttari F, Bergami A, Sancesario G, Bernardini S, De Angelis G, Martino G, Furlan R, Centonze D. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler 2013; 20:304-12. [PMID: 23886826 DOI: 10.1177/1352458513498128] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic inflammation leads to gray matter damage in progressive multiple sclerosis (MS), but the mechanism linking inflammation and neurodegeneration is unclear. OBJECTIVE The objective of this paper is to investigate the synaptic mechanism of inflammatory neurodegeneration in progressive forms of MS. METHODS Cytokine and neurofilament-light were determined in cerebrospinal fluid (CSF) of MS patients. In vitro electrophysiology and cell swelling experiments were performed to measure the effects of inflammatory cytokines in the CSF of MS patients on synaptic transmission and neuronal integrity. RESULTS Tumor necrosis factor-α (TNF) was higher in CSF of progressive MS subjects, and caused excitotoxic neuronal death in vitro. In murine brain slices incubated in the presence of CSF from progressive MS, in fact, we observed increased spontaneous excitatory postsynaptic currents (sEPSCs) and glutamate-mediated neuronal swelling through a mechanism dependent on enhanced TNF signaling. We also suggested a pathogenic role of B cells in TNF CSF increase, exacerbation of glutamatergic transmission and neuronal damage, since CNS depletion of B cells with intrathecal rituximab caused a dramatic reduction of TNF levels, of TNF-induced sEPSC alterations, and of neurofilament CSF concentrations in a patient with progressive MS. CONCLUSION Our results point to TNF as a primary neurotoxic molecule in progressive forms of MS.
Collapse
Affiliation(s)
- Silvia Rossi
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Opposite roles of NMDA receptors in relapsing and primary progressive multiple sclerosis. PLoS One 2013; 8:e67357. [PMID: 23840674 PMCID: PMC3696106 DOI: 10.1371/journal.pone.0067357] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/16/2013] [Indexed: 01/08/2023] Open
Abstract
Synaptic transmission and plasticity mediated by NMDA receptors (NMDARs) could modulate the severity of multiple sclerosis (MS). Here the role of NMDARs in MS was first explored in 691 subjects carrying specific allelic variants of the NR1 subunit gene or of the NR2B subunit gene of this glutamate receptor. The analysis was replicated for significant SNPs in an independent sample of 1548 MS subjects. The C allele of rs4880213 was found to be associated with reduced NMDAR-mediated cortical excitability, and with increased probability of having more disability than the CT/TT MS subjects. MS severity was higher in the CC group among relapsing-remitting MS (RR-MS) patients, while primary progressive MS (PP-MS) subjects homozygous for the T allele had more pronounced clinical worsening. Mean time to first relapse, but not to an active MRI scan, was lower in the CC group of RR-MS patients, and the number of subjects with two or more clinical relapses in the first two years of the disease was higher in CC compared to CT/TT group. Furthermore, the percentage of relapses associated with residual disability was lower in subjects carrying the T allele. Lesion load at the MRI was conversely unaffected by the C or T allele of this SNP in RR-MS patients. Axonal and neuronal degeneration at the optical coherence tomography was more severe in the TT group of PP-MS patients, while reduced retinal nerve fiber thickness had less consequences on visual acuity in RR-MS patients bearing the T allele. Finally, the T allele was associated with preserved cognitive abilities at the Rao's brief repeatable neuropsychological battery in RR-MS. Signaling through glutamate NMDARs enhances both compensatory synaptic plasticity and excitotoxic neurodegeneration, impacting in opposite ways on RR-MS and PP-MS pathophysiological mechanisms.
Collapse
|