1
|
Koo K, Wuenschmann A, Rendahl A, Song KY, Forster C, Wolf-Ringwall A, Borgatti A, Giubellino A. Expression and Prognostic Evaluation of the Receptor Tyrosine Kinase MET in Canine Malignant Melanoma. Vet Sci 2023; 10:vetsci10040249. [PMID: 37104404 PMCID: PMC10144085 DOI: 10.3390/vetsci10040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The overexpression and activation of the MET receptor tyrosine kinase has been identified in many human malignancies, but its role in canine cancer has only been minimally investigated. In this study we evaluated the expression of MET in two canine malignant melanoma (CMM) cell lines as well as in 30 CMM tissue samples that were collected from the clinical service at our institution. We were able to confirm the expression of the MET protein in both melanoma cell lines, and we demonstrated MET activation by its ligand, HGF, through phosphorylation, in Western blot analysis. We were also able to demonstrate, by immunohistochemistry, the expression of MET in 63% of the tumor tissue samples analyzed, with the majority demonstrating a relatively low expression profile. We then evaluated the association of MET expression scores with histologic parameters, metastasis, and survival. While statistically significant associations were not found across these parameters, an inverse relationship between MET expression levels and time to lymph node versus distant metastasis was suggested in our cohort. These findings may require assessment in a larger group of specimens to further evaluate the role of MET expression in the homing of metastasis in lymph nodes versus that in distant organs.
Collapse
|
2
|
Kweon K, Ahn JO, Song WJ, Li Q, Lee BY, Chae HK, Youn HY. Antitumor effects of SB injection in canine osteosarcoma and melanoma cell lines. In Vitro Cell Dev Biol Anim 2018; 55:7-16. [PMID: 30382494 DOI: 10.1007/s11626-018-0294-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 09/12/2018] [Indexed: 11/28/2022]
Abstract
The present study was designed to evaluate the effect of SB injection, which is composed of extracts from the roots of Pulsatilla koreana, Panax ginseng, and Glycyrrhiza glabra, on the viability of canine osteosarcoma and melanoma cells and nonneoplastic canine cells. Cells were treated with SB injection, conventional chemotherapeutic drugs, or a combination of both at various concentrations. Cellular viability was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry was used to evaluate the cell cycle and apoptosis. SB injection inhibited the growth of osteosarcoma and melanoma cells in a dose-dependent manner. The cell cycle of the affected cells was arrested in the G2/M phase, indicating an anti-proliferative effect. SB injection dose-dependently increased the rate of apoptosis. Furthermore, we found that combining SB injection with chemotherapeutic drugs resulted in a greater reduction in canine malignant cell proliferation than either treatment alone. SB injection did not affect the viability of peripheral blood mononuclear cells regardless of concentration, which suggested that SB injection did not suppress the activity of normal cells. This study suggested that SB injection can be considered an effective alternative medication for animal cancers in veterinary medicine.
Collapse
Affiliation(s)
- Kyeong Kweon
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Ok Ahn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kangwon National University, Kangwondo, Republic of Korea
| | - Woo-Jin Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qiang Li
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bo-Yeon Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Kyu Chae
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea. .,Department of Veterinary Internal Medicine and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Thaiwong T, Sirivisoot S, Takada M, Yuzbasiyan-Gurkan V, Kiupel M. Gain-of-function mutation inPTPN11in histiocytic sarcomas of Bernese Mountain Dogs. Vet Comp Oncol 2017; 16:220-228. [DOI: 10.1111/vco.12357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Affiliation(s)
- T. Thaiwong
- Veterinary Diagnostic Laboratory; Michigan State University; Lansing Michigan
| | - S. Sirivisoot
- Veterinary Diagnostic Laboratory; Michigan State University; Lansing Michigan
- Department of Pathology, Faculty of Veterinary Sciences; Chulalongkorn University; Bangkok Thailand
| | - M. Takada
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| | - V. Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| | - M. Kiupel
- Veterinary Diagnostic Laboratory; Michigan State University; Lansing Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| |
Collapse
|
4
|
Fenger JM, London CA, Kisseberth WC. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J 2015; 55:69-85. [PMID: 24936031 DOI: 10.1093/ilar/ilu009] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteosarcoma (OSA) is the most common form of malignant bone cancer in children and dogs, although the disease occurs in dogs approximately 10 times more frequently than in people. Multidrug chemotherapy and aggressive surgical techniques have improved survival; however, new therapies for OSA are critical, as little improvement in survival times has been achieved in either dogs or people over the past 15 years, even with significant efforts directed at the incorporation of novel therapeutic approaches. Both clinical and molecular evidence suggests that human and canine OSA share many key features, including tumor location, presence of microscopic metastatic disease at diagnosis, development of chemotherapy-resistant metastases, and altered expression/activation of several proteins (e.g. Met, ezrin, phosphatase and tensin homolog, signal transducer and activator of transcription 3), and p53 mutations, among others. Additionally, canine and pediatric OSA exhibit overlapping transcriptional profiles and shared DNA copy number aberrations, supporting the notion that these diseases are similar at the molecular level. This review will discuss the similarities between pediatric and canine OSA with regard to histology, biologic behavior, and molecular genetic alterations that indicate canine OSA is a relevant, spontaneous, large animal model of the pediatric disease and outline how the study of naturally occurring OSA in dogs will offer additional insights into the biology and future treatment of this disease in both children and dogs.
Collapse
|
5
|
Thamm DH. Tyrosine kinase inhibitor special issue. Vet Comp Oncol 2013; 10:161-2. [PMID: 22882484 DOI: 10.1111/j.1476-5829.2012.00339.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Gordon IK, Khanna C. Modeling opportunities in comparative oncology for drug development. ILAR J 2011; 51:214-20. [PMID: 21131722 DOI: 10.1093/ilar.51.3.214] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Successful development of novel cancer drugs depends on well-reasoned scientific drug discovery, rigorous preclinical development, and carefully conceived clinical trials. Failure in any of these steps contributes to poor rates of approval for new drugs to treat cancer. As technological and scientific advances have opened the door to a variety of novel approaches to cancer drug discovery and development, preclinical models that can answer questions about the activity and safety of novel therapies are increasingly necessary. The advance of a drug to clinical trials based on information from preclinical models presupposes that the models convey informative data for future use in human patients with cancer. The study of novel cancer drugs using in vitro models is highly controllable, reproducible, relatively inexpensive, and linked to high throughput. However, these models fail to reproduce many of the complex features of human cancer. Mouse models address some of these limitations but have important biological differences from human cancer. The integration of studies using pet dogs with spontaneously occurring tumors as models in the development path can answer questions not adequately addressed in conventional models and is therefore gaining attention and interest in drug development communities. The study of novel cancer drugs in dogs with naturally occurring tumors allows drug assessment in a cancer that shares many fundamental features with the human cancer condition, and thus provides an opportunity to answer questions that inform the cancer drug development path in ways not possible in more conventional models.
Collapse
Affiliation(s)
- Ira K Gordon
- NCI Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
7
|
Liao AT, McCleese J, Kamerling S, Christensen J, London CA. A novel small molecule Met inhibitor, PF2362376, exhibits biological activity against osteosarcoma. Vet Comp Oncol 2009; 5:177-96. [PMID: 19754789 DOI: 10.1111/j.1476-5829.2007.00137.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The receptor tyrosine kinase Met is dysregulated in several human cancers including osteosarcoma (OSA) in which overexpression is a negative prognostic indicator and enforced Met expression in normal osteoblasts leads to genomic instability and malignant transformation. Met is also known to be inappropriately expressed in canine OSA tumour samples and cell lines. The purpose of this study was to evaluate the potential utility of an orally bioavailable small molecule Met inhibitor, PF2362376, against canine OSA cell lines as a prelude to future clinical work. PF2362376 inhibited phosphorylation of Met, Gab-1, Erk and Akt, but not of Src or STAT3. Furthermore, PF2362376 inhibited proliferation of canine OSA cell lines and induced cell death at biologically achievable concentrations. Last, activities associated with Met signalling including migration, invasion, branching morphogenesis and colony formation in soft agar were blocked by PF2362376. These studies support the notion that Met is a relevant target for therapeutic intervention in OSA.
Collapse
Affiliation(s)
- A T Liao
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
8
|
Khanna C, Gordon I. Catching cancer by the tail: new perspectives on the use of kinase inhibitors. Clin Cancer Res 2009; 15:3645-7. [PMID: 19470723 DOI: 10.1158/1078-0432.ccr-09-0132] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Clinical Cancer Research, London and colleagues evaluate a small molecule multiple-targeted tyrosine kinase inhibitor in dogs with c-kit driven skin cancer. The study represents another example of opportunities to include pet dogs in studies that improve our understanding of human cancer biology and therapy.
Collapse
Affiliation(s)
- Chand Khanna
- Center for Cancer Research, Comparative Oncology Program, and Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA.
| | | |
Collapse
|
9
|
Fossey SL, Liao AT, McCleese JK, Bear MD, Lin J, Li PK, Kisseberth WC, London CA. Characterization of STAT3 activation and expression in canine and human osteosarcoma. BMC Cancer 2009; 9:81. [PMID: 19284568 PMCID: PMC2666757 DOI: 10.1186/1471-2407-9-81] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 03/10/2009] [Indexed: 02/05/2023] Open
Abstract
Background Dysregulation of signal transducer and activator of transcription 3 (STAT3) has been implicated as a key participant in tumor cell survival, proliferation, and metastasis and is often correlated with a more malignant tumor phenotype. STAT3 phosphorylation has been demonstrated in a subset of human osteosarcoma (OSA) tissues and cell lines. OSA in the canine population is known to exhibit a similar clinical behavior and molecular biology when compared to its human counterpart, and is often used as a model for preclinical testing of novel therapeutics. The purpose of this study was to investigate the potential role of STAT3 in canine and human OSA, and to evaluate the biologic activity of a novel small molecule STAT3 inhibitor. Methods To examine STAT3 and Src expression in OSA, we performed Western blotting and RT-PCR. OSA cells were treated with either STAT3 siRNA or small molecule Src (SU6656) or STAT3 (LLL3) inhibitors and cell proliferation (CyQUANT), caspase 3/7 activity (ELISA), apoptosis (Western blotting for PARP cleavage) and/or viability (Wst-1) were determined. Additionally, STAT3 DNA binding after treatment was determined using EMSA. Expression of STAT3 targets after treatment was demonstrated with Western blotting, RT-PCR, or gel zymography. Results Our data demonstrate that constitutive activation of STAT3 is present in a subset of canine OSA tumors and human and canine cell lines, but not normal canine osteoblasts. In both canine and human OSA cell lines, downregulation of STAT3 activity through inhibition of upstream Src family kinases using SU6656, inhibition of STAT3 DNA binding and transcriptional activities using LLL3, or modulation of STAT3 expression using siRNA, all resulted in decreased cell proliferation and viability, ultimately inducing caspase-3/7 mediated apoptosis in treated cells. Furthermore, inhibition of either Src or STAT3 activity downregulated the expression of survivin, VEGF, and MMP2, all known transcriptional targets of STAT3. Conclusion These data suggest that STAT3 activation contributes to the survival and proliferation of human and canine OSA cells, thereby providing a potentially promising target for therapeutic intervention. Future investigational trials of LLL3 in dogs with spontaneous OSA will help to more accurately define the role of STAT3 in the clinical setting.
Collapse
Affiliation(s)
- Stacey L Fossey
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kisseberth WC, Murahari S, London CA, Kulp SK, Chen CS. Evaluation of the effects of histone deacetylase inhibitors on cells from canine cancer cell lines. Am J Vet Res 2008; 69:938-45. [PMID: 18593248 DOI: 10.2460/ajvr.69.7.938] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether exposure of canine cancer cells to histone deacetylase (HDAC) inhibitors S(+)-N-hydroxy-4-(3-methyl-2-phenyl-butyrylamino)benzamide (OSU-HDAC42) or suberoylanilide hydroxamic acid (SAHA) results in increased histone acetylation and decreased cell viability and whether any changes in viability involve induction of apoptosis or alterations in progression of the cell cycle. SAMPLE POPULATION 9 canine cancer cell lines. PROCEDURES Cells from 9 canine cancer cell lines were treated with dimethyl sulfoxide vehicle, OSU-HDAC42, or SAHA, then assays of cell viability were performed. Histone acetylation was assessed by use of western blot analysis. Apoptosis was assessed via ELISA to detect fragmentation of cytoplasmic nucleosomal DNA and western blot analysis to detect cleavage of caspase 3. Cell cycle analysis was performed by use of propidium iodide staining and flow cytometry. RESULTS-Concentrations of OSU-HDAC42 and SAHA required to achieve 50% inhibition of cell viability (IC(50)) were reached in cells of 6 and 4 canine cancer cell lines, respectively, and ranged from approximately 0.4 to 1.3 microM for OSU-HDAC42 and 0.6 to 4.8 microM for SAHA. Cells from T-cell lymphoma, mast cell tumor, osteosarcoma, and histiocytic sarcoma lines were most sensitive to HDAC inhibition, with IC(50)s of < 1 microM for OSU-HDAC42 and < 5 microM for SAHA. Induction of apoptosis was indicated via cleavage of caspase 3 and increases in cytoplasmic nucleosomes and the subG(1) cell population. CONCLUSIONS AND CLINICAL RELEVANCE Micromolar concentrations of HDAC inhibitors OSU-HDAC42 and SAHA induced histone acetylation, cytotoxicity, and apoptosis in canine cancer cells. In general, OSU-HDAC42 was more potent than SAHA.
Collapse
Affiliation(s)
- William C Kisseberth
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
11
|
Wright JW, Yamamoto BJ, Harding JW. Angiotensin receptor subtype mediated physiologies and behaviors: new discoveries and clinical targets. Prog Neurobiol 2008; 84:157-81. [PMID: 18160199 PMCID: PMC2276843 DOI: 10.1016/j.pneurobio.2007.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/17/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
The renin-angiotensin system (RAS) mediates several classic physiologies including body water and electrolyte homeostasis, blood pressure, cyclicity of reproductive hormones and sexual behaviors, and the regulation of pituitary gland hormones. These functions appear to be mediated by the angiotensin II (AngII)/AT(1) receptor subtype system. More recently, the angiotensin IV (AngIV)/AT(4) receptor subtype system has been implicated in cognitive processing, cerebroprotection, local blood flow, stress, anxiety and depression. There is accumulating evidence to suggest an inhibitory influence by AngII acting at the AT(1) subtype, and a facilitory role by AngIV acting at the AT(4) subtype, on neuronal firing rate, long-term potentiation, associative and spatial learning, and memory. This review initially describes the biochemical pathways that permit synthesis and degradation of active angiotensin peptides and three receptor subtypes (AT(1), AT(2) and AT(4)) thus far characterized. There is vigorous debate concerning the identity of the most recently discovered receptor subtype, AT(4). Descriptions of classic and novel physiologies and behaviors controlled by the RAS are presented. This review concludes with a consideration of the emerging therapeutic applications suggested by these newly discovered functions of the RAS.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA.
| | | | | |
Collapse
|
12
|
Abstract
The MET proto-oncogene encodes a transmembrane tyrosine kinase receptor that mediates multiple functions such as migration, cycling and survival by binding to hepatocyte growth factor (HGF). Dysregulation of MET through inappropriate expression or mutation has been shown to play an important role in human cancers. Furthermore, inherited mutations in MET are known to contribute to the development of gastric and renal cancer in humans. Lastly, mouse models of MET mutations lead to the development of a wide variety of cancers including lymphomas, sarcomas and some forms of carcinoma. In the process of cloning canine MET, a novel germline point mutation was found in the juxtamembrane domain (G966S) in two of the templates used for cloning, both of which were derived from Rottweiler dogs, a breed believed to be at high risk for the development of several cancers. Screening of germline DNA from a variety of breeds revealed that this mutation was present in approximately 70% of Rottweiler dogs and <5% of all other breeds examined, suggesting a breed-specific heritable mutation. Stable transfection of the G966S mutant form of MET into NIH3T3 cells resulted in enhanced baseline scattering and migration of the cells, which was further increased in the presence of HGF. This study supports the notion that particular dog breeds may carry germline mutations that contribute to high rates of cancer in a manner similar to heritable, cancer-associated mutations in humans.
Collapse
Affiliation(s)
- A T Liao
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 2112 Tupper Hall, One Shields Avenue, Davis, 95616, USA
| | | | | |
Collapse
|