1
|
Seelen LWF, van den Wildenberg L, van der Kemp WJM, Mohamed Hoesein FAA, Mohammad NH, Molenaar IQ, van Santvoort HC, Prompers JJ, Klomp DWJ. Prospective of 31 P MR Spectroscopy in Hepatopancreatobiliary Cancer: A Systematic Review of the Literature. J Magn Reson Imaging 2023; 57:1144-1155. [PMID: 35916278 DOI: 10.1002/jmri.28372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The incidence of liver and pancreatic cancer is rising. Patients benefit from current treatments, but there are limitations in the evaluation of (early) response to treatment. Tumor metabolic alterations can be measured noninvasively with phosphorus (31 P) magnetic resonance spectroscopy (MRS). PURPOSE To conduct a quantitative analysis of the available literature on 31 P MRS performed in hepatopancreatobiliary cancer and to provide insight into its current and potential for therapy (non-) response assessment. POPULATION Patients with hepatopancreatobiliary cancer. FIELD STRENGTH/SEQUENCE: 31 P MRS. ASSESSMENT The PubMed, EMBASE, and Cochrane library databases were systematically searched for studies published to 17 March 17, 2022. All 31 P MRS studies in hepatopancreatobiliary cancer reporting 31 P metabolite levels were included. STATISTICAL TESTS Relative differences in 31 P metabolite levels/ratios between patients before therapy and healthy controls, and the relative changes in 31 P metabolite levels/ratios in patients before and after therapy were determined. RESULTS The search yielded 10 studies, comprising 301 subjects, of whom 132 (44%) healthy volunteers and 169 (56%) patients with liver cancer of various etiology. To date, 31 P MRS has not been applied in pancreatic cancer. In liver cancer, alterations in levels of 31 P metabolites involved in cell proliferation (phosphomonoesters [PMEs] and phosphodiesters [PDEs]) and energy metabolism (ATP and inorganic phosphate [Pi]) were observed. In particular, liver tumors were associated with elevations of PME/PDE and PME/Pi compared to healthy liver tissue, although there was a broad variety among studies (elevations of 2%-267% and 21%-233%, respectively). Changes in PME/PDE in liver tumors upon therapy were substantial, yet very heterogeneous and both decreases and increases were observed, whereas PME/Pi was consistently decreased after therapy in all studies (-13% to -76%). DATA CONCLUSION 31 P MRS has great potential for treatment monitoring in oncology. Future studies are needed to correlate the changes in 31 P metabolite levels in hepatopancreatobiliary tumors with treatment response. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Leonard W F Seelen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | | | - Wybe J M van der Kemp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Firdaus A A Mohamed Hoesein
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, UMC Utrecht Cancer Center, Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Adil N, Siddiqui AJ, Musharraf SG. Metabolomics‐based Researches in Autoimmune Liver Disease: A
Mini‐Review. Scand J Immunol 2022. [DOI: 10.1111/sji.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nurmeen Adil
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Amna Jabbar Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Syed Ghulam Musharraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| |
Collapse
|
3
|
Ko SF, Chen YL, Sung PH, Chiang JY, Chu YC, Huang CC, Huang CR, Yip HK. Hepatic 31 P-magnetic resonance spectroscopy identified the impact of melatonin-pretreated mitochondria in acute liver ischaemia-reperfusion injury. J Cell Mol Med 2020; 24:10088-10099. [PMID: 32691975 PMCID: PMC7520314 DOI: 10.1111/jcmm.15617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute liver ischaemia-reperfusion injury (IRI), commonly encountered during liver resection and transplantation surgery, is strongly associated with unfavourable clinical outcome. However, a prompt and accurate diagnosis and the treatment of this entity remain formidable challenges. This study tested the hypothesis that 31 P-magnetic resonance spectroscopy (31 P-MRS) findings could provide reliable living images to accurately identify the degree of acute liver IRI and melatonin-pretreated mitochondria was an innovative treatment for protecting the liver from IRI in rat. Adult male SD rats were categorized into group 1 (sham-operated control), group 2 (IRI only) and group 3 (IRI + melatonin [ie mitochondrial donor rat received intraperitoneal administration of melatonin] pretreated mitochondria [10 mg/per rat by portal vein]). By the end of study period at 72 hours, 31 P-MRS showed that, as compared with group 1, the hepatic levels of ATP and NADH were significantly lower in group 2 than in groups 1 and 3, and significantly lower in group 3 than in group 1. The liver protein expressions of mitochondrial-electron-transport-chain complexes and mitochondrial integrity exhibited an identical pattern to 31 P-MRS finding. The protein expressions of oxidative stress, inflammatory, cellular stress signalling and mitochondrial-damaged biomarkers displayed an opposite finding of 31 P-MRS, whereas the protein expressions of antioxidants were significantly progressively increased from groups 1 to 3. Microscopic findings showed that the fibrotic area/liver injury score and inflammatory and DNA-damaged biomarkers exhibited an identical pattern of cellular stress signalling. Melatonin-pretreated mitochondria effectively protected liver against IRI and 31 P-MRS was a reliable tool for measuring the mitochondrial/ATP consumption in living animals.
Collapse
Affiliation(s)
- Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Cheng Huang
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, China
| |
Collapse
|
4
|
Santos-Díaz A, Noseworthy MD. Phosphorus magnetic resonance spectroscopy and imaging (31P-MRS/MRSI) as a window to brain and muscle metabolism: A review of the methods. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Fellinger P, Wolf P, Pfleger L, Krumpolec P, Krssak M, Klavins K, Wolfsberger S, Micko A, Carey P, Gürtl B, Vila G, Raber W, Fürnsinn C, Scherer T, Trattnig S, Kautzky-Willer A, Krebs M, Winhofer Y. Increased ATP synthesis might counteract hepatic lipid accumulation in acromegaly. JCI Insight 2020; 5:134638. [PMID: 32106111 DOI: 10.1172/jci.insight.134638] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Patients with active acromegaly (ACRO) exhibit low hepatocellular lipids (HCL), despite pronounced insulin resistance (IR). This contrasts the strong association of IR with nonalcoholic fatty liver disease in the general population. Since low HCL levels in ACRO might be caused by changes in oxidative substrate metabolism, we investigated mitochondrial activity and plasma metabolomics/lipidomics in active ACRO. Fifteen subjects with ACRO and seventeen healthy controls, matched for age, BMI, sex, and body composition, underwent 31P/1H-7-T MR spectroscopy of the liver and skeletal muscle as well as plasma metabolomic profiling and an oral glucose tolerance test. Subjects with ACRO showed significantly lower HCL levels, but the ATP synthesis rate was significantly increased compared with that in controls. Furthermore, a decreased ratio of unsaturated-to-saturated intrahepatocellular fatty acids was found in subjects with ACRO. Within assessed plasma lipids, lipidomics, and metabolomics, decreased carnitine species also indicated increased mitochondrial activity. We therefore concluded that excess of growth hormone (GH) in humans counteracts HCL accumulation by increased hepatic ATP synthesis. This was accompanied by a decreased ratio of unsaturated-to-saturated lipids in hepatocytes and by a metabolomic profile, reflecting the increase in mitochondrial activity. Thus, these findings help to better understanding of GH-regulated antisteatotic pathways and provide a better insight into potentially novel therapeutic targets for treating NAFLD.
Collapse
Affiliation(s)
- Paul Fellinger
- Division of Endocrinology and Metabolism, Department of Medicine III, and
| | - Peter Wolf
- Division of Endocrinology and Metabolism, Department of Medicine III, and
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Medicine III, and.,Centre of Excellence - High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Patrik Krumpolec
- Centre of Excellence - High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Krssak
- Division of Endocrinology and Metabolism, Department of Medicine III, and.,Centre of Excellence - High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Wolfsberger
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Alexander Micko
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Patricia Carey
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Gürtl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Greisa Vila
- Division of Endocrinology and Metabolism, Department of Medicine III, and
| | - Wolfgang Raber
- Division of Endocrinology and Metabolism, Department of Medicine III, and
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine III, and
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, and
| | - Siegfried Trattnig
- Centre of Excellence - High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Medicine III, and
| | - Yvonne Winhofer
- Division of Endocrinology and Metabolism, Department of Medicine III, and
| |
Collapse
|
6
|
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:1-50. [PMID: 30527132 DOI: 10.1016/j.pnmrs.2018.06.001] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging and spectroscopic techniques are widely used in humans both for clinical diagnostic applications and in basic research areas such as cognitive neuroimaging. In recent years, new human MR systems have become available operating at static magnetic fields of 7 T or higher (≥300 MHz proton frequency). Imaging human-sized objects at such high frequencies presents several challenges including non-uniform radiofrequency fields, enhanced susceptibility artifacts, and higher radiofrequency energy deposition in the tissue. On the other side of the scale are gains in signal-to-noise or contrast-to-noise ratio that allow finer structures to be visualized and smaller physiological effects to be detected. This review presents an overview of some of the latest methodological developments in human ultra-high field MRI/MRS as well as associated clinical and scientific applications. Emphasis is given to techniques that particularly benefit from the changing physical characteristics at high magnetic fields, including susceptibility-weighted imaging and phase-contrast techniques, imaging with X-nuclei, MR spectroscopy, CEST imaging, as well as functional MRI. In addition, more general methodological developments such as parallel transmission and motion correction will be discussed that are required to leverage the full potential of higher magnetic fields, and an overview of relevant physiological considerations of human high magnetic field exposure is provided.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Moritz Zaiss
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
7
|
Kim SR, Lerman LO. Diagnostic imaging in the management of patients with metabolic syndrome. Transl Res 2018; 194:1-18. [PMID: 29175480 PMCID: PMC5839955 DOI: 10.1016/j.trsl.2017.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS) is the constellation of metabolic risk factors that might foster development of type 2 diabetes and cardiovascular disease. Abdominal obesity and insulin resistance play a prominent role among all metabolic traits of MetS. Because intervention including weight loss can reduce these morbidity and mortality in MetS, early detection of the severity and complications of MetS could be useful. Recent advances in imaging modalities have provided significant insight into the development and progression of abdominal obesity and insulin resistance, as well as target organ injuries. The purpose of this review is to summarize advances in diagnostic imaging modalities in MetS that can be applied for evaluating each components and target organs. This may help in early detection, monitoring target organ injury, and in turn developing novel therapeutic target to alleviate and avert them.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
8
|
Pershina AG, Ivanov VV, Efimova LV, Shevelev OB, Vtorushin SV, Perevozchikova TV, Sazonov AE, Ogorodova LM. Magnetic resonance imaging and spectroscopy for differential assessment of liver abnormalities induced by Opisthorchis felineus in an animal model. PLoS Negl Trop Dis 2017; 11:e0005778. [PMID: 28708894 PMCID: PMC5529022 DOI: 10.1371/journal.pntd.0005778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/26/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND European liver fluke Opisthorchis felineus, causing opisthorchiasis disease, is widespread in Russia, Ukraine, Kazakhstan and sporadically detected in the EU countries. O. felineus infection leads to hepatobiliary pathological changes, cholangitis, fibrosis and, in severe cases, malignant transformation of bile ducts. Due to absence of specific symptoms, the infection is frequently neglected for a long period. The association of opisthorchiasis with almost incurable bile duct cancer and rising international migration of people that increases the risk of the parasitic etiology of liver fibrosis in non-endemic regions determine high demand for development of approaches to opisthorchiasis detection. METHODOLOGY/PRINCIPAL FINDINGS In vivo magnetic resonance imaging and spectroscopy (MRI and MRS) were applied for differential assessment of hepatic abnormalities induced by O. felineus in an experimental animal model. Correlations of the MR-findings with the histological data as well as the data of the biochemical analysis of liver tissue were found. MRI provides valuable information about the severity of liver impairments induced by opisthorchiasis. An MR image of O. felineus infected liver has a characteristic pattern that differs from that of closely related liver fluke infections. 1H and 31P MRS in combination with biochemical analysis data showed that O. felineus infection disturbed hepatic metabolism of the host, which was accompanied by cholesterol accumulation in the liver. CONCLUSIONS A non-invasive approach based on the magnetic resonance technique is very advantageous and may be successfully used not only for diagnosing and evaluating liver damage induced by O. felineus, but also for investigating metabolic changes arising in the infected organ. Since damages induced by the liver fluke take place in different liver lobes, MRI has the potential to overcome liver biopsy sampling variability that limits predictive validity of biopsy analysis for staging liver fluke-induced fibrosis.
Collapse
Affiliation(s)
- Alexandra G. Pershina
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
- Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, Tomsk, Russia
- * E-mail:
| | - Vladimir V. Ivanov
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Lina V. Efimova
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Oleg B. Shevelev
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Sergey V. Vtorushin
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | | | - Alexey E. Sazonov
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | | |
Collapse
|
9
|
Valkovič L, Chmelík M, Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal Biochem 2017; 529:193-215. [PMID: 28119063 PMCID: PMC5478074 DOI: 10.1016/j.ab.2017.01.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
In addition to direct assessment of high energy phosphorus containing metabolite content within tissues, phosphorus magnetic resonance spectroscopy (31P-MRS) provides options to measure phospholipid metabolites and cellular pH, as well as the kinetics of chemical reactions of energy metabolism in vivo. Even though the great potential of 31P-MR was recognized over 30 years ago, modern MR systems, as well as new, dedicated hardware and measurement techniques provide further opportunities for research of human biochemistry. This paper presents a methodological overview of the 31P-MR techniques that can be used for basic, physiological, or clinical research of human skeletal muscle and liver in vivo. Practical issues of 31P-MRS experiments and examples of potential applications are also provided. As signal localization is essential for liver 31P-MRS and is important for dynamic muscle examinations as well, typical localization strategies for 31P-MR are also described.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Marek Chmelík
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Martin Krššák
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Metabolic profile of liver damage in non-cirrhotic virus C and autoimmune hepatitis: A proton decoupled 31P-MRS study. Eur J Radiol 2017; 90:205-211. [PMID: 28583636 DOI: 10.1016/j.ejrad.2017.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE To study liver 31P MRS, histology, transient elastography, and liver function tests in patients with virus C hepatitis (HCV) or autoimmune hepatitis (AIH) to test the hypothesis that 31P MR metabolic profile of these diseases differ. MATERIALS AND METHODS 25 patients with HCV (n=12) or AIH (n=13) underwent proton decoupled 31P MRS spectroscopy performed on a 3.0T MR imager. Intensities of phosphomonoesters (PME) of phosphoethanolamine (PE) and phosphocholine (PC), phosphodiesters (PDE) of glycerophosphoethanolamine (GPE) and glycerophosphocholine (GPC), and γ, α and β resonances of adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide phosphate (NADPH) were determined. Liver stiffness was measured by transient elastography. Inflammation and fibrosis were staged according to METAVIR from biopsy samples. Activities of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALT) and thromboplastin time (TT) were determined from serum samples. RESULTS PME had a stronger correlation with AST (z=1.73, p=0.04) and ALT (z=1.77, p=0.04) in HCV than in AIH patients. PME, PME/PDE, PE/GPE correlated positively and PDE negatively with inflammatory activity. PE, PC and PME correlated positively with liver function tests. CONCLUSION 31P-MRS suggests a more serious liver damage in HCV than in AIH with similar histopathological findings. 31P-MRS is more sensitive in detecting inflammation than fibrosis in the liver.
Collapse
|
11
|
Galal SM, Abdel Aal FH, Mohammed AED, Mohamed MZ, Abd El-Rahman YG. Chronic viral hepatitis C in pediatric age group; assessment of viral activity and hepatic fibrosis by 1H magnetic resonance spectroscopy and diffusion weighted imaging in asymptomatic patient. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2016. [DOI: 10.1016/j.ejrnm.2016.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Lagemaat MW, van de Bank BL, Sati P, Li S, Maas MC, Scheenen TWJ. Repeatability of (31) P MRSI in the human brain at 7 T with and without the nuclear Overhauser effect. NMR IN BIOMEDICINE 2016; 29:256-63. [PMID: 26647020 PMCID: PMC4769102 DOI: 10.1002/nbm.3455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 10/18/2015] [Accepted: 11/09/2015] [Indexed: 05/03/2023]
Abstract
An often-employed strategy to enhance signals in (31) P MRS is the generation of the nuclear Overhauser effect (NOE) by saturation of the water resonance. However, NOE allegedly increases the variability of the (31) P data, because variation is reported in NOE enhancements. This would negate the signal-to-noise (SNR) gain it generates. We hypothesized that the variation in NOE enhancement values is not caused by the variability in NOE itself, but is attributable to measurement uncertainties in the values used to calculate the enhancement. If true, the expected increase in SNR with NOE would improve the repeatability of (31) P MRS measurements. To verify this hypothesis, a repeatability study of native and NOE-enhanced (31) P MRSI was performed in the brains of seven healthy volunteers at 7 T. The repeatability coefficient (RC) and the coefficient of variation in repeated measurements (CoVrepeat ) were determined for each method, and the 95% limits of agreement (LoAs) between native and NOE-enhanced signals were calculated. The variation between the methods, defined by the LoA, is at least as great as that predicted by the RC of each method. The sources of variation in NOE enhancements were determined using variance component analysis. In the seven metabolites with a positive NOE enhancement (nine metabolite resonances assessed), CoVrepeat improved, on average, by 15%. The LoAs could be explained by the RCs of the individual methods for the majority of the metabolites, generally confirming our hypothesis. Variation in NOE enhancement was mainly attributable to the factor repeat, but between-voxel effects were also present for phosphoethanolamine and (glycero)phosphocholine. CoVrepeat and fitting error were strongly correlated and improved with positive NOE. Our findings generally indicate that NOE enhances the signal of metabolites, improving the repeatability of metabolite measurements. Additional variability as a result of NOE was minimal. These findings encourage the use of NOE-enhanced (31) P MRSI. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Miriam W Lagemaat
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart L van de Bank
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Pascal Sati
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Shizhe Li
- MRS Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Marnix C Maas
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Runge JH, van der Kemp WJM, Klomp DWJ, Luijten PR, Nederveen AJ, Stoker J. 2D AMESING multi-echo (31)P-MRSI of the liver at 7T allows transverse relaxation assessment and T2-weighted averaging for improved SNR. Magn Reson Imaging 2015; 34:219-26. [PMID: 26597833 DOI: 10.1016/j.mri.2015.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/03/2015] [Accepted: 10/12/2015] [Indexed: 01/06/2023]
Abstract
PURPOSE Liver diseases are a major global health concern often requiring invasive assessment by needle biopsy. (31)P magnetic resonance spectroscopic imaging (MRSI) allows non-invasive probing of important liver metabolites. Recently, the adiabatic multi-echo spectroscopic imaging sequence with spherical k-space sampling (AMESING) was introduced at 7T, enabling acquisition of T2 information. T2-weighed averaging of the multiple echoes improves signal-to-noise ratio (SNR). The purpose of our study was to implement AMESING MRSI of the liver at 3T and 7T, derive localized T2 information and compare T2-weighted average spectra in terms of SNR. METHODS Ten male volunteers underwent 2D AMESING MRSI at 3T and 7T after a minimum four-hour fast. SNR was calculated for PC, PE, Pi, GPE, GPC and α-ATP using maximum peak amplitudes and the SD of the noise. Metabolite peak ratios were calculated after fitting in jMRUI. SNR values and peak ratios were compared with the Wilcoxon signed-rank test. RESULTS For the first time liver metabolites' T2 values at 7T were measured: PE (55.6±3.5 ms), PC (51.2±2.3 ms), Pi (46.4±1.1 ms), GPE (44.0±0.8 ms), GPC (50.4±0.8 ms) and α-ATP (18.2±0.4 ms). SNR gain using T2-weighted averaging at 7T resulted in a 1.2× SNR gain. In conjunction with higher field strength and improved coil set-up T2-weighted averaging at 7T allowed a total 3.2× SNR gain compared to 3T FID-only. CONCLUSION AMESING 2D MRSI of the liver at 7T provides T2 values that allow T2-weighted averaging of data from multiple echoes resulting in improved SNR.
Collapse
Affiliation(s)
- Jurgen Henk Runge
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Wybe J M van der Kemp
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R Luijten
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Abstract
Liver fibrosis is the final common pathway for almost all causes of chronic liver injury. Liver fibrosis is now known to be a dynamic process having significant potential for resolution. Therefore, fibrosis prediction is an essential part of the assessment and management of patients with chronic liver disease. As such, there is strong demand for reliable liver biomarkers that provide insight into disease etiology, diagnosis, therapy, and prognosis in lieu of more invasive approaches such as liver biopsy. Current diagnostic strategies range from use of serum biomarkers to more advanced imaging techniques including transient elastography and magnetic resonance imaging. In addition to these modalities, there are other approaches including the use of novel, but yet to be validated, biomarkers. In this chapter, we discuss the biomarkers of liver fibrosis including the use of invasive and noninvasive biomarkers and disease-specific biomarkers in various chronic liver diseases.
Collapse
|
15
|
Non-alcoholic fatty liver disease: spectral patterns observed from an in vivo phosphorus magnetic resonance spectroscopy study. J Hepatol 2014; 60:809-15. [PMID: 24291241 DOI: 10.1016/j.jhep.2013.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 11/10/2013] [Accepted: 11/19/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Liver biopsy is the gold standard for diagnosing non-alcoholic fatty liver disease (NAFLD) but with practical constraints. Phosphorus magnetic resonance spectroscopy ((31)P-MRS) allows in vivo assessment of hepatocellular metabolism and has shown potential for biochemical differentiation in diffuse liver disease. Our aims were to describe spectroscopic signatures in biopsy-proven NAFLD and to determine diagnostic performance of (31)P-MRS for non-alcoholic steatohepatitis (NASH). METHODS (31)P-MRS was performed in 151 subjects, comprised of healthy controls (n=19) and NAFLD patients with non-NASH (n=37) and NASH (n=95). Signal intensity ratios for phosphomonoesters (PME) including phosphoethanolamine (PE), phosphodiesters (PDE) including glycerophosphocholine (GPC), total nucleotide triphosphate (NTP) including α-NTP, and inorganic phosphate (Pi), expressed relative to total phosphate (TP) or [PME+PDE] and converted to percentage, were obtained. RESULTS Compared to controls, both NAFLD groups had increased PDE/TP (p<0.001) and decreased Pi/TP (p=0.011). Non-NASH patients showed decreased PE/[PME+PDE] (p=0.048), increased GPC/[PME+PDE] (p<0.001), and normal NTP/TP and α-NTP/TP. Whereas, NASH patients had normal PE/[PME+PDE] and GPC/[PME+PDE], but decreased NTP/TP (p=0.004) and α-NTP/TP (p<0.001). The latter was significantly different between non-NASH and NASH (p=0.047) and selected as discriminating parameter, with area under the receiver-operating characteristics curve of 0.71 (95% confidence interval, 0.62-0.79). An α-NTP/TP cutoff of 16.36% gave 91% sensitivity and cutoff of 10.57% gave 91% specificity for NASH. CONCLUSIONS (31)P-MRS shows distinct biochemical changes in different NAFLD states, and has fair diagnostic accuracy for NASH.
Collapse
|
16
|
Novak J, Wilson M, Macpherson L, Arvanitis TN, Davies NP, Peet AC. Clinical protocols for ³¹P MRS of the brain and their use in evaluating optic pathway gliomas in children. Eur J Radiol 2014; 83:e106-12. [PMID: 24331847 PMCID: PMC4029084 DOI: 10.1016/j.ejrad.2013.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 10/28/2013] [Accepted: 11/02/2013] [Indexed: 11/17/2022]
Abstract
INTRODUCTION In vivo (31)P Magnetic Resonance Spectroscopy (MRS) measures phosphorus-containing metabolites that play an essential role in many disease processes. An advantage over (1)H MRS is that total choline can be separated into phosphocholine and glycerophosphocholine which have opposite associations with tumour grade. We demonstrate (31)P MRS can provide robust metabolic information on an acceptable timescale to yield information of clinical importance. METHODS All MRI examinations were carried out on a 3T whole body scanner with all (31)P MRS scans conducted using a dual-tuned (1)H/(31)P head coil. Once optimised on phantoms, the protocol was tested in six healthy volunteers (four male and two female, mean age: 25±2.7). (31)P MRS was then implemented on three children with optic pathway gliomas. RESULTS (31)P MRS on volunteers showed that a number of metabolite ratios varied significantly (p<0.05 ANOVA) across different structures of the brain, whereas PC/GPC did not. Standard imaging showed the optic pathway gliomas were enhancing on T1-weighted imaging after contrast injection and have high tCho on (1)H MRS, both of which are associated with high grade lesions. (31)P MRS showed the phosphocholine/glycerophosphocholine ratio to be low (<0.6) which suggests low grade tumours in keeping with their clinical behaviour and the histology of most biopsied optic pathway gliomas. CONCLUSION (31)P MRS can be implemented in the brain as part of a clinical protocol to provide robust measurement of important metabolites, in particular providing a greater understanding of cases where tCho is raised on (1)H MRS.
Collapse
Affiliation(s)
- Jan Novak
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom; Birmingham Children's Hospital, Birmingham, United Kingdom.
| | - Martin Wilson
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom; Birmingham Children's Hospital, Birmingham, United Kingdom.
| | | | - Theodoros N Arvanitis
- Birmingham Children's Hospital, Birmingham, United Kingdom; School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham, United Kingdom.
| | - Nigel P Davies
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom; Birmingham Children's Hospital, Birmingham, United Kingdom; University Hospitals Birmingham NHS Foundation Trust, Medical Physics RRPPS, Birmingham, United Kingdom.
| | - Andrew C Peet
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom; Birmingham Children's Hospital, Birmingham, United Kingdom.
| |
Collapse
|
17
|
Preliminary Study on Hepatocyte-Targeted Phosphorus-31 MRS Using ATP-Loaded Galactosylated Chitosan Oligosaccharide Nanoparticles. Gastroenterol Res Pract 2013; 2013:512483. [PMID: 24363667 PMCID: PMC3865721 DOI: 10.1155/2013/512483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022] Open
Abstract
Background. The clinical applications of hepatic phosphorus-31 magnetic resonance spectroscopy (31P MRS) remain to be difficult because the changes of phosphates between normal hepatic tissues and pathological tissues are not so obvious, and furthermore, up to now there is few literature on hepatocyte-targeted 31P MRS. Materials and Methods. The ATP-loaded Gal-CSO (Gal-CSO/ATP) nanoparticles were prepared and the special cellular uptake of them as evaluated by using HepG-2 tumor cells and A549 tumor cells, respectively. Two kinds of cells were incubated with the nanoparticles suspension, respectively. Then were prepared the cell samples and the enhancement efficiency of ATP peaks detected by 31P MRS was evaluated. Results. The cellular uptake rate of Gal-CSO/ATP nanoparticles in HepG-2 cells was higher than that in A549 cells. Furthermore, the enlarged ATP peaks of Gal-CSO/ATP nanoparticles in HepG-2 cells were higher than those in A549 cells in vitro detected by 31P MRS. Conclusions. Gal-CSO/ATP nanoparticles have significant targeting efficiency in hepatic cells in vitro and enhancement efficiency of ATP peaks in HepG-2 cells. Furthermore, 31P MRS could be applied in the research of hepatic molecular imaging.
Collapse
|
18
|
Ljungberg M, Westberg G, Vikhoff-Baaz B, Starck G, Wängberg B, Ekholm S, Ahlman H, Forssell-Aronsson E. 31P MR spectroscopy to evaluate the efficacy of hepatic artery embolization in the treatment of neuroendocrine liver metastases. Acta Radiol 2012; 53:1118-26. [PMID: 23051638 DOI: 10.1258/ar.2012.120050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND It is common to treat patients with metastatic disease from gastrointestinal neuroendocrine (NE) tumors with surgical reduction to prolong survival. This can be combined with hepatic arterial embolization (HAE) and medical treatment to reduce hormonal symptoms. Today there are no rapid and reliable methods to evaluate the efficacy of HAE in the treatment of neuroendocrine liver metastasis. PURPOSE To investigate metabolic changes in hepatic metastases of NE tumors following HAE, and to establish if there are any early spectral patterns that might indicate therapeutic efficacy based on in vivo (31)P MRS data. MATERIAL AND METHODS Volume selective (31)P MRS was used to study 11 patients with disseminated NE tumors with regional lymph nodes and bilobar liver metastases. Measurements were performed before and 1 and 3 days after HAE. RESULTS Non-responders had significantly higher PME/Pi and αNTP/ΣNTP ratios than the responders before HAE (P < 0.05). Three days after HAE, non-responders still had significantly higher αNTP/ΣNTP than the responders did (P < 0.05). We also observed trends for increased PME ratios 3 days after HAE, decreased ATP-levels, and liberated Pi in responders. CONCLUSION This (31)P-MRS study showed significant differences in PME/Pi and αNTP/ΣP ratios between responders and non-responders on the day before HAE, which is an interesting finding that may reflect intrinsic properties of the tumor tissue. We also observed trends for cell membrane renewal and increased energy consumption in responders after HAE. These results demonstrate potentials for (31)P-MRS to predict individual responsiveness prior to HAE.
Collapse
Affiliation(s)
- Maria Ljungberg
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg
- Department of Medical Physics and Biomedical Engineering, MR Centre, Sahlgrenska University Hospital, Gothenburg
| | - Gunnel Westberg
- Department of Surgery, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg
| | - Barbro Vikhoff-Baaz
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg
- Department of Medical Physics and Biomedical Engineering, MR Centre, Sahlgrenska University Hospital, Gothenburg
| | - Göran Starck
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg
- Department of Medical Physics and Biomedical Engineering, MR Centre, Sahlgrenska University Hospital, Gothenburg
| | - Bo Wängberg
- Department of Surgery, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg
| | - Sven Ekholm
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Håkan Ahlman
- Department of Surgery, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg
- Department of Medical Physics and Biomedical Engineering, MR Centre, Sahlgrenska University Hospital, Gothenburg
| |
Collapse
|
19
|
Cobbold JFL, Patel D, Taylor-Robinson SD. Assessment of inflammation and fibrosis in non-alcoholic fatty liver disease by imaging-based techniques. J Gastroenterol Hepatol 2012; 27:1281-92. [PMID: 22432836 DOI: 10.1111/j.1440-1746.2012.07127.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NALFD) is a burgeoning global health problem, and the assessment of disease severity remains a clinical challenge. Conventional imaging and clinical blood tests are frequently unable to determine disease activity (the degree of inflammatory change) and fibrotic severity, while the applicability of histological examination of liver biopsy is limited. Imaging platforms provide liver-specific structural information, while newer applications of these technologies non-invasively exploit the physical and chemical characteristics of liver tissue in health and disease. In this review, conventional and newer imaging-based techniques for the assessment of inflammation and fibrosis in NAFLD are discussed in terms of diagnostic accuracy, radio-pathological correlations, and practical considerations. In particular, recent clinical studies of ultrasound (US)-based and magnetic resonance elastography techniques are evaluated, while the potential of contrast-enhanced US and magnetic resonance spectroscopy techniques is discussed. The development and application of these techniques is starting to reduce the clinical need for liver biopsy, to produce surrogate end-points for interventional and observational clinical studies, and through this, to provide new insights into the natural history of NAFLD.
Collapse
|
20
|
Panda A, Jones S, Stark H, Raghavan RS, Sandrasegaran K, Bansal N, Dydak U. Phosphorus liver MRSI at 3 T using a novel dual-tuned eight-channel ³¹P/¹H H coil. Magn Reson Med 2012; 68:1346-56. [PMID: 22287206 DOI: 10.1002/mrm.24164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Abstract
Although phosphorus-31 (³¹P) magnetic resonance spectroscopy holds potential as noninvasive tool to monitor treatment response of liver malignancies, the lack of appropriate coils has so far restricted its use to liver lesions close to the surface. A novel eight-channel phased-array dual-tuned ³¹P/¹H coil that can assess ³¹P metabolism in deeper liver tissue as well is presented in this article. Analysis of its performance demonstrates that this coil can provide good sensitivity across a width of 20 cm, thereby enabling magnetic resonance spectroscopic imaging (MRSI) scans that can fully cover axial views of the abdomen in lean subjects. In vivo results and reproducibility of ³¹P MRSI at 3 T of axial slices covering the full depth of the liver are shown in healthy volunteers. To minimize intrasubject and intersubject data variability, spectra are corrected for coil sensitivities. Methods to maximize the reproducibility of coil placement and spectroscopic planning are discussed. The phosphomonoesters/phosphodiesters ratio calculated in healthy volunteers has an average intrasubject variation of 23% averaged over voxels selected from the entire liver. Finally, the feasibility of using the coil in the clinic is shown by preliminary ³¹P liver MRSI data obtained from a patient with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Anshuman Panda
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Guha IN, Myers RP, Patel K, Talwalkar JA. Biomarkers of liver fibrosis: what lies beneath the receiver operating characteristic curve? Hepatology 2011; 54:1454-62. [PMID: 21725995 DOI: 10.1002/hep.24515] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/17/2011] [Indexed: 12/19/2022]
Abstract
Noninvasive biomarkers of liver fibrosis represent an intense area of research with the goals of improving patient care, disease stratification, and aiding the development of future antifibrotic therapies. Despite the rapid progress in recent years, there remain questions about how diagnostic studies are designed, statistical methods to account for spectrum bias, clinically relevant thresholds of fibrosis that should be delineated, how diagnostics can be improved, and strengthening the reference test to judge emerging biomarkers. This review discusses the current methods to address these issues and where further progress is needed.
Collapse
Affiliation(s)
- Indra Neil Guha
- Liver Unit, University of Nottingham, NIHR NDDC BRU, Nottingham, UK.
| | | | | | | |
Collapse
|
22
|
Evaluation of Early Imaging Response After Chemoembolization of Hepatocellular Carcinoma by Phosphorus-31 Magnetic Resonance Spectroscopy—Initial Experience. J Vasc Interv Radiol 2011; 22:1166-73. [DOI: 10.1016/j.jvir.2011.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 04/04/2011] [Accepted: 04/11/2011] [Indexed: 11/21/2022] Open
|
23
|
Sevastianova K, Hakkarainen A, Kotronen A, Cornér A, Arkkila P, Arola J, Westerbacka J, Bergholm R, Lundbom J, Lundbom N, Yki-Järvinen H. Nonalcoholic Fatty Liver Disease: Detection of Elevated Nicotinamide Adenine Dinucleotide Phosphate with in Vivo 3.0-T 31P MR Spectroscopy with Proton Decoupling. Radiology 2010; 256:466-473. [DOI: 10.1148/radiol.10091351] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
24
|
Serkova NJ. Imaging biochemistry noninvasively: magnetic resonance spectroscopy in liver disease. JPEN J Parenter Enteral Nutr 2009; 33:726-8. [PMID: 19892909 DOI: 10.1177/0148607109344727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Szendroedi J, Chmelik M, Schmid AI, Nowotny P, Brehm A, Krssak M, Moser E, Roden M. Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology 2009; 50:1079-86. [PMID: 19637187 DOI: 10.1002/hep.23093] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Increased hepatocellular lipids relate to insulin resistance and are typical for individuals with type 2 diabetes mellitus (T2DM). Steatosis and T2DM have been further associated with impaired muscular adenosine triphosphate (ATP) turnover indicating reduced mitochondrial fitness. Thus, we tested the hypothesis that hepatic energy metabolism could be impaired even in metabolically well-controlled T2DM. We measured hepatic lipid volume fraction (HLVF) and absolute concentrations of gammaATP, inorganic phosphate (Pi), phosphomonoesters and phosphodiesters using noninvasive (1)H/ (31)P magnetic resonance spectroscopy in individuals with T2DM (58 +/- 6 years, 27 +/- 3 kg/m (2)), and age-matched and body mass index-matched (mCON; 61 +/- 4 years, 26 +/- 4 kg/m (2)) and young lean humans (yCON; 25 +/- 3 years, 22 +/- 2 kg/m (2), P < 0.005, P < 0.05 versus T2DM and mCON). Insulin-mediated whole-body glucose disposal (M) and endogenous glucose production (iEGP) were assessed during euglycemic-hyperinsulinemic clamps. Individuals with T2DM had 26% and 23% lower gammaATP (1.68 +/- 0.11; 2.26 +/- 0.20; 2.20 +/- 0.09 mmol/L; P < 0.05) than mCON and yCON individuals, respectively. Further, they had 28% and 31% lower Pi than did individuals from the mCON and yCON groups (0.96 +/- 0.06; 1.33 +/- 0.13; 1.41 +/- 0.07 mmol/L; P < 0.05). Phosphomonoesters, phosphodiesters, and liver aminotransferases did not differ between groups. HLVF was not different between those from the T2DM and mCON groups, but higher (P = 0.002) than in those from the yCON group. T2DM had 13-fold higher iEGP than mCON (P < 0.05). Even after adjustment for HLVF, hepatic ATP and Pi related negatively to hepatic insulin sensitivity (iEGP) (r =-0.665, P = 0.010, r =-0.680, P = 0.007) but not to whole-body insulin sensitivity. CONCLUSION These data suggest that impaired hepatic energy metabolism and insulin resistance could precede the development of steatosis in individuals with T2DM.
Collapse
Affiliation(s)
- Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Woodward JM, Priest AN, Hollingsworth KG, Lomas DJ. Clinical Application of Magnetic Resonance Spectroscopy of the Liver in Patients Receiving Long-Term Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2009; 33:669-76. [DOI: 10.1177/0148607109332908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jeremy M. Woodward
- From the Departments of Gastroenterology, Radiology, and Medical Physics, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Andrew N. Priest
- From the Departments of Gastroenterology, Radiology, and Medical Physics, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Kieren G. Hollingsworth
- From the Departments of Gastroenterology, Radiology, and Medical Physics, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - David J. Lomas
- From the Departments of Gastroenterology, Radiology, and Medical Physics, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
27
|
Török NJ. Recent advances in the pathogenesis and diagnosis of liver fibrosis. J Gastroenterol 2008; 43:315-21. [PMID: 18592147 DOI: 10.1007/s00535-008-2181-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 02/15/2008] [Indexed: 02/04/2023]
Affiliation(s)
- Natalie J Török
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis Medical Center, 4150, V Street Sacramento, CA 95817, USA
| |
Collapse
|
28
|
Solga SF, Horska A, Hemker S, Crawford S, Diggs C, Diehl AM, Brancati FL, Clark JM. Hepatic fat and adenosine triphosphate measurement in overweight and obese adults using 1H and 31P magnetic resonance spectroscopy. Liver Int 2008; 28:675-81. [PMID: 18331237 PMCID: PMC3096527 DOI: 10.1111/j.1478-3231.2008.01705.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND/AIMS Magnetic resonance spectroscopy (MRS) measures hepatic fat and adenosine triphosphate (ATP), but magnetic resonance studies are challenging in obese subjects. We aimed to evaluate the inter- and intrarater reliability and stability of hepatic fat and ATP measurements in a cohort of overweight and obese adults. METHODS We measured hepatic fat and ATP using proton MRS ((1)H MRS) and phosphorus MRS ((31)P MRS) at baseline in adults enrolled in the Action for Health in Diabetes (Look AHEAD) clinical trial at one site. Using logistic regression, we determined factors associated with successful MRS data acquisition. We calculated the intra- and inter-rater reliability for hepatic fat and ATP based on 20 scans analysed twice by two readers. We also calculated the stability of these measures three times on five healthy volunteers. RESULTS Of 244 participants recruited into our ancillary study, 185 agreed to MRS. We obtained usable hepatic fat data from 151 (82%) and ATP data from 105 (58%). Obesity was the strongest predictor of failed data acquisition; every unit increase in the body mass index reduced the likelihood of successful fat data by 11% and ATP data by 14%. The inter- and intrarater reliability were excellent for fat (intraclass correlation coefficient=0.99), but substantially more variable for ATP. Fat measures appeared relatively stable, but this was less true for ATP. CONCLUSIONS Obesity can hinder (1)H and (31)P MRS data acquisition and subsequent analysis. This impact was greater for hepatic ATP than hepatic fat.
Collapse
Affiliation(s)
- Steven F. Solga
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University, Baltimore, MD, USA
| | - Alena Horska
- Russel H. Morgan Department of Radiology and Radiologic Science, Johns Hopkins University, Baltimore, MD, USA
| | - Susanne Hemker
- Russel H. Morgan Department of Radiology and Radiologic Science, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen Crawford
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Charalett Diggs
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, NC, USA
| | - Frederick L. Brancati
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University, Baltimore, MD, USA,Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeanne M. Clark
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University, Baltimore, MD, USA,Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
29
|
Talwalkar JA, Yin M, Fidler JL, Sanderson SO, Kamath PS, Ehman RL. Magnetic resonance imaging of hepatic fibrosis: emerging clinical applications. Hepatology 2008; 47:332-42. [PMID: 18161879 DOI: 10.1002/hep.21972] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chronic liver disease and cirrhosis remains a major public health problem worldwide. While the majority of complications from chronic liver disease result from progressive hepatic fibrosis, the available diagnostic tests used in clinical practice are not sensitive or specific enough to detect occult liver injury at early or intermediate stages. While liver biopsy can stage the extent of fibrosis at diagnosis, its utility as a tool for longitudinal monitoring will be limited at the population level. To date, a number of methods including serum marker panels and ultrasound-based transient elastrography have been proposed for the non-invasive identification of hepatic fibrosis. Novel techniques including magnetic resonance (MR) spectroscopy, diffusion weighted MR, and MR elastography have also emerged for detecting fibrosis. In contrast to other non-invasive methods, MR imaging holds the promise of providing functional and biological information about hepatic pathophysiology as it relates to the natural history and future treatment of hepatic fibrosis. (HEPATOLOGY 2007.).
Collapse
Affiliation(s)
- Jayant A Talwalkar
- Advanced Liver Diseases Study Group, Miles and Shirley Fitterman Center for Digestive Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Noren B, Dahlqvist O, Lundberg P, Almer S, Kechagias S, Ekstedt M, Franzén L, Wirell S, Smedby O. Separation of advanced from mild fibrosis in diffuse liver disease using 31P magnetic resonance spectroscopy. Eur J Radiol 2007; 66:313-20. [PMID: 17646074 DOI: 10.1016/j.ejrad.2007.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 05/08/2007] [Accepted: 06/04/2007] [Indexed: 12/12/2022]
Abstract
31P-MRS using DRESS was used to compare absolute liver metabolite concentrations (PME, Pi, PDE, gammaATP, alphaATP, betaATP) in two distinct groups of patients with chronic diffuse liver disorders, one group with steatosis (NAFLD) and none to moderate inflammation (n=13), and one group with severe fibrosis or cirrhosis (n=16). All patients underwent liver biopsy and extensive biochemical evaluation. A control group (n=13) was also included. Absolute concentrations and the anabolic charge, AC=[PME]/([PME]+[PDE]), were calculated. Comparing the control and cirrhosis groups, lower concentrations of PDE (p=0.025) and a higher AC (p<0.001) were found in the cirrhosis group. Also compared to the NAFLD group, the cirrhosis group had lower concentrations of PDE (p=0.01) and a higher AC (p=0.009). No significant differences were found between the control and NAFLD group. When the MRS findings were related to the fibrosis stage obtained at biopsy, there were significant differences in PDE between stage F0-1 and stage F4 and in AC between stage F0-1 and stage F2-3. Using a PDE concentration of 10.5mM as a cut-off value to discriminate between mild, F0-2, and advanced, F3-4, fibrosis the sensitivity and specificity were 81% and 69%, respectively. An AC cut-off value of 0.27 showed a sensitivity of 93% and a specificity of 54%. In conclusion, the results suggest that PDE is a marker of liver fibrosis, and that AC is a potentially clinically useful parameter in discriminating mild fibrosis from advanced.
Collapse
Affiliation(s)
- Bengt Noren
- Department of Radiology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hamer OW, Schlottmann K, Sirlin CB, Feuerbach S. Technology Insight: advances in liver imaging. ACTA ACUST UNITED AC 2007; 4:215-28. [PMID: 17404589 DOI: 10.1038/ncpgasthep0766] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 01/26/2007] [Indexed: 12/23/2022]
Abstract
The role of diagnostic imaging in the assessment of liver disease continues to gain in importance. The classic techniques used for liver imaging are ultrasonography, CT and MRI. In the past decade, there have been significant advances in all three techniques. In this article, we discuss the advances in ultrasonography, CT and MRI that have improved assessment of focal and diffuse liver disease, including the development of hardware, software, processing algorithms and procedural innovations.
Collapse
Affiliation(s)
- Okka W Hamer
- University Hospital of Regensburg, Department of Radiology, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | | | | | | |
Collapse
|