1
|
Wu YL, Lin H, Li HF, Don MJ, King PC, Chen HH. Salvia miltiorrhiza Extract and Individual Synthesized Component Derivatives Induce Activating-Transcription-Factor-3-Mediated Anti-Obesity Effects and Attenuate Obesity-Induced Metabolic Disorder by Suppressing C/EBPα in High-Fat-Induced Obese Mice. Cells 2022; 11:cells11061022. [PMID: 35326476 PMCID: PMC8947163 DOI: 10.3390/cells11061022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
Pharmacological studies indicate that Salvia miltiorrhiza extract (SME) can improve cardiac and blood vessel function. However, there is limited knowledge regarding the effects (exerted through epigenetic regulation) of SME and newly derived single compounds, with the exception of tanshinone IIA and IB, on obesity-induced metabolic disorders. In this study, we administered SME or dimethyl sulfoxide (DMSO) as controls to male C57BL/J6 mice after they were fed a high-fat diet (HFD) for 4 weeks. SME treatment significantly reduced body weight, fasting plasma glucose, triglyceride levels, insulin resistance, and adipogenesis/lipogenesis gene expression in treated mice compared with controls. Transcriptome array analysis revealed that the expression of numerous transcriptional factors, including activating transcription factor 3 (ATF3) and C/EBPα homologous protein (CHOP), was significantly higher in the SME group. ST32db, a novel synthetic derivative similar in structure to compounds from S. miltiorrhiza extract, ameliorates obesity and obesity-induced metabolic syndrome in HFD-fed wild-type mice but not ATF3−/− mice. ST32db treatment of 3T3-L1 adipocytes suppresses lipogenesis/adipogenesis through the ATF3 pathway to directly inhibit C/EBPα expression and indirectly inhibit the CHOP pathway. Overall, ST32db, a single compound modified from S. miltiorrhiza extract, has anti-obesity effects through ATF3-mediated C/EBPα downregulation and the CHOP pathway. Thus, SME and ST32db may reduce obesity and diabetes in mice, indicating the potential of both SME and ST32db as therapeutic drugs for the treatment of obesity-induced metabolic syndrome.
Collapse
Affiliation(s)
- Yueh-Lin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-L.W.); (H.L.)
- Division of Nephrology, Department of Internal Medicine, Wei-Gong Memorial Hospital, Miaoli 350, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Heng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-L.W.); (H.L.)
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-F.L.); (P.-C.K.)
| | - Hsiao-Fen Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-F.L.); (P.-C.K.)
| | - Ming-Jaw Don
- National Research Institute of Chinese Medicine, Taipei 112, Taiwan;
| | - Pei-Chih King
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-F.L.); (P.-C.K.)
| | - Hsi-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-L.W.); (H.L.)
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-27372181-3903; Fax: 886-2-5558-9890
| |
Collapse
|
2
|
Wang Y, Tong J, Chang B, Wang BF, Zhang D, Wang BY. Relationship of SREBP-2 rs2228314 G>C polymorphism with nonalcoholic fatty liver disease in a Han Chinese population. Genet Test Mol Biomarkers 2014; 18:653-7. [PMID: 24992162 DOI: 10.1089/gtmb.2014.0116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE This study aims at investigating the relationship of SREBP-2 rs2228314 G>C polymorphism with the risk of nonalcoholic fatty liver disease (NAFLD) in a Han Chinese population. METHOD This case-control study was conducted at the First Affiliated Hospital of China Medical University. Three-hundred subjects who met the diagnostic criteria of NAFLD and had typical clinical and ultrasonographic findings were placed in the case group. There were 160 matched healthy controls in the control group. A common single nucleotide polymorphism (SNP) (rs2228314 G>C) in the SREBP-2 gene was tested. Genetic analyses were performed using genomic DNA extracted from peripheral blood leukocytes. Polymerase chain reaction-restriction fragment length polymorphism was applied to detect SNP. RESULTS Our results indicated that the GG genotype and G carrier (CG+GG) of rs2228314 G>C polymorphism in the SREBP-2 gene were strongly associated with susceptibility to NAFLD (both p<0.001). However, there was no significant difference in the frequency of G allele between NAFLD patients and healthy controls (p=0.328). Multivariate logistic regression analysis revealed that GG genotype, G carrier, body mass index, high-density lipoprotein cholesterol, total cholesterol, alanine aminotransferase, and γ-glutamyl-transferase might be associated with an increased risk of NAFLD (all p<0.05). CONCLUSION The results of this study provide evidence that the GG genotype and G carrier (CG+GG) of rs2228314 G>C polymorphism in the SREBP-2 gene may increase the risk of NAFLD.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University , Shenyang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
3
|
Shi HY, Li YH, Li CP, Kang M, Zhong XL. Role of NF-κB and Bcl-2 in hepatocyte apoptosis in rats with NAFLD. Shijie Huaren Xiaohua Zazhi 2013; 21:1955-1960. [DOI: 10.11569/wcjd.v21.i20.1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the expression of nuclear factor κB (NF-κB) and Bcl-2 in non-alcoholic fatty liver disease (NAFLD) in rats and to investigate the role of the mitochondrial injury pathway in hepatocyte apoptosis and the pathogenesis of NAFLD.
METHODS: Thirty-six rats were randomly and equally divided into two groups: a control group and an experimental group. The rats were killed at weeks 6, 10, and 14, and histopathological features of the liver were observed by microscopy. Plasma levels of tumor necrosis factor-α (TNF-α) were measured by radioimmunoassay, hepatocyte apoptosis was assessed by TUNNEL assay, and expression of Bcl-2 and NF-κB proteins in hepatocytes was measured by immunohistochemistry.
RESULTS: Histopathological staining showed the liver structure was normal in the control group. However, lobular steatosis was observed in the model group. Portal and periportal inflammation and lobular inflammation were noted at week 10, and liver fibrosis was visible at week 14. Compared to the control group, apoptosis was increased in the model group, and this process was time-dependent. A time-dependent increase in the expression of Bcl-2 and NF-κB in liver tissue and serum levels of TNF-α was also found in the model group compared to the control group.
CONCLUSION: Apoptosis is a critical step for the development of NAFLD, and NF-κB and Bcl-2 play an important role in hepatocyte apoptosis in NAFLD.
Collapse
|
4
|
Expression of inflammation-related genes is altered in gastric tissue of patients with advanced stages of NAFLD. Mediators Inflamm 2013; 2013:684237. [PMID: 23661906 PMCID: PMC3626032 DOI: 10.1155/2013/684237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation perpetuated by visceral adipose. Other organs, particularly stomach and intestine, may also overproduce proinflammatory molecules. We examined the gene expression patterns in gastric tissue of morbidly obese patients with nonalcoholic fatty liver disease (NAFLD) and compared the changes in gene expression in different histological forms of NAFLD. Stomach tissue samples from 20 morbidly obese NAFLD patients who were undergoing sleeve gastrectomy were profiled using qPCR for 84 genes encoding inflammatory cytokines, chemokines, their receptors, and other components of inflammatory cascades. Interleukin 8 receptor-beta (IL8RB) gene overexpression in gastric tissue was correlated with the presence of hepatic steatosis, hepatic fibrosis, and histologic diagnosis of nonalcoholic steatohepatitis (NASH). Expression levels of soluble interleukin 1 receptor antagonist (IL1RN) were correlated with the presence of NASH and hepatic fibrosis. mRNA levels of interleukin 8 (IL8), chemokine (C-C motif) ligand 4 (CCL4), and its receptor chemokine (C-C motif) receptor type 5 (CCR5) showed a significant increase in patients with advanced hepatic inflammation and were correlated with the severity of the hepatic inflammation. The results of our study suggest that changes in expression patterns for inflammatory molecule encoding genes within gastric tissue may contribute to the pathogenesis of obesity-related NAFLD.
Collapse
|
5
|
Lake AD, Novak P, Fisher CD, Jackson JP, Hardwick RN, Billheimer DD, Klimecki WT, Cherrington NJ. Analysis of global and absorption, distribution, metabolism, and elimination gene expression in the progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos 2011; 39:1954-60. [PMID: 21737566 PMCID: PMC3186211 DOI: 10.1124/dmd.111.040592] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/07/2011] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by a series of pathological changes that range from simple fatty liver to nonalcoholic steatohepatitis (NASH). The objective of this study is to describe changes in global gene expression associated with the progression of human NAFLD. This study is focused on the expression levels of genes responsible for the absorption, distribution, metabolism, and elimination (ADME) of drugs. Differential gene expression between three clinically defined pathological groups-normal, steatosis, and NASH-was analyzed. Genome-wide mRNA levels in samples of human liver tissue were assayed with Affymetrix GeneChip Human 1.0ST arrays. A total of 11,633 genes exhibited altered expression out of 33,252 genes at a 5% false discovery rate. Most gene expression changes occurred in the progression from steatosis to NASH. Principal component analysis revealed that hepatic disease status was the major determinant of differential ADME gene expression rather than age or sex of sample donors. Among the 515 drug transporters and 258 drug-metabolizing enzymes (DMEs) examined, uptake transporters but not efflux transporters or DMEs were significantly over-represented in the number of genes down-regulated. These results suggest that uptake transporter genes are coordinately targeted for down-regulation at the global level during the pathological development of NASH and that these patients may have decreased drug uptake capacity. This coordinated regulation of uptake transporter genes is indicative of a hepatoprotective mechanism acting to prevent accumulation of toxic intermediates in disease-compromised hepatocytes.
Collapse
Affiliation(s)
- April D Lake
- Department of Pharmacology and Toxicology, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Birerdinc A, Afendy A, Stepanova M, Younossi I, Manyam G, Baranova A, Younossi ZM. Functional pathway analysis of genes associated with response to treatment for chronic hepatitis C. J Viral Hepat 2010; 17:730-6. [PMID: 20002302 DOI: 10.1111/j.1365-2893.2009.01235.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic hepatitis C (CH-C) is among the most common causes of chronic liver disease. Approximately 50% of patients with CH-C treated with pegylated interferon-α and ribavirin (PEG-IFN-α + RBV) achieve a sustained virological response (SVR). Several factors such as genotype 1, African American (AA) race, obesity and the absence of an early virological response (EVR) are associated with low SVR. This study elucidates molecular pathways deregulated in patients with CH-C with negative predictors of response to antiviral therapy. Sixty-eight patients with CH-C who underwent a full course of treatment with PEG-IFN-α + RBV were included in the study. Pretreatment blood samples were collected in PAXgene™ RNA tubes. EVR, complete EVR (cEVR), and SVR rates were 76%, 57% and 41%, respectively. Total RNA was extracted from pretreatment peripheral blood mononuclear cells, quantified and used for one-step RT-PCR to profile 154 mRNAs. The expression of mRNAs was normalized with six 'housekeeping' genes. Differentially expressed genes were separated into up and downregulated gene lists according to the presence or absence of a risk factor and subjected to KEGG Pathway Painter which allows high-throughput visualization of the pathway-specific changes in expression profiles. The genes were consolidated into the networks associated with known predictors of response. Before treatment, various genes associated with core components of the JAK/STAT pathway were activated in the cohorts least likely to achieve SVR. Genes related to focal adhesion and TGF-β pathways were activated in some patients with negative predictors of response. Pathway-centred analysis of gene expression profiles from treated patients with CH-C points to the Janus kinase-signal transducers and activators of transcription signalling cascade as the major pathogenetic component responsible for not achieving SVR. In addition, focal adhesion and TGF-β pathways are associated with some predictors of response.
Collapse
Affiliation(s)
- A Birerdinc
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA 22042, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Predictors of steatohepatitis and advanced fibrosis in non-alcoholic fatty liver disease. Clin Liver Dis 2009; 13:591-606. [PMID: 19818307 DOI: 10.1016/j.cld.2009.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease is the most common cause of chronic liver disease in the United States. The development of non-alcoholic steatohepatitis increases the risk for cirrhosis and its complications. The gold standard for diagnosis is liver biopsy, the costs and risks of which make it impractical. Some demographic factors, blood tests, and imaging studies can be used to predict a higher risk of steatohepatitis or advanced fibrosis, but are of limited sensitivity and specificity. More accurate predictors and scoring systems would allow identifying who would benefit most from liver biopsy and monitor disease progression and response to therapy.
Collapse
|
8
|
Younossi ZM, Baranova A, Afendy A, Collantes R, Stepanova M, Manyam G, Bakshi A, Sigua CL, Chan JP, Iverson AA, Santini CD, Chang SYP. Early gene expression profiles of patients with chronic hepatitis C treated with pegylated interferon-alfa and ribavirin. Hepatology 2009; 49:763-74. [PMID: 19140155 DOI: 10.1002/hep.22729] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
UNLABELLED Responsiveness to hepatitis C virus (HCV) therapy depends on viral and host factors. Our aim was to assess sustained virologic response (SVR)-associated early gene expression in patients with HCV receiving pegylated interferon-alpha2a (PEG-IFN-alpha2a) or PEG-IFN-alpha2b and ribavirin with the duration based on genotypes. Blood samples were collected into PAXgene tubes prior to treatment as well as 1, 7, 28, and 56 days after treatment. From the peripheral blood cells, total RNA was extracted, quantified, and used for one-step reverse transcription polymerase chain reaction to profile 154 messenger RNAs. Expression levels of messenger RNAs were normalized with six "housekeeping" genes and a reference RNA. Multiple regression and stepwise selection were performed to assess differences in gene expression at different time points, and predictive performance was evaluated for each model. A total of 68 patients were enrolled in the study and treated with combination therapy. The results of gene expression showed that SVR could be predicted by the gene expression of signal transducer and activator of transcription-6 (STAT-6) and suppressor of cytokine signaling-1 in the pretreatment samples. After 24 hours, SVR was predicted by the expression of interferon-dependent genes, and this dependence continued to be prominent throughout the treatment. CONCLUSION Early gene expression during anti-HCV therapy may elucidate important molecular pathways that may be influencing the probability of achieving virologic response.
Collapse
Affiliation(s)
- Zobair M Younossi
- Center for Liver Diseases at Inova Fairfax Hospital, Falls Church, VA 22042, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
van der Leij FR, Bloks VW, Grefhorst A, Hoekstra J, Gerding A, Kooi K, Gerbens F, te Meerman G, Kuipers F. Gene expression profiling in livers of mice after acute inhibition of beta-oxidation. Genomics 2007; 90:680-9. [PMID: 17933490 DOI: 10.1016/j.ygeno.2007.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 02/07/2023]
Abstract
Inborn errors of mitochondrial beta-oxidation cause ectopic fat accumulation, particularly in the liver. Fatty liver is associated with insulin resistance and predisposes to hepatic fibrosis. The factors underlying the pathophysiological consequences of hepatic fat accumulation have remained poorly defined. Gene expression profiling in a model of acute fatty liver disease induced by blocking long-chain fatty acid beta-oxidation was performed to study the early effects of steatosis on the transcriptome. Tetradecylglycidic acid (TDGA) was used to irreversibly inhibit carnitine palmitoyltransferase 1, a key enzyme in the control of mitochondrial beta-oxidation. TDGA treatment induced massive microvesicular hepatic steatosis within a 12-h time frame in male C57BL6/J mice. Increased hepatic long-chain acyl-CoA content, particularly of C16:0, C16:1 and C18:1, was associated with profound effects on the transcriptome as revealed by unbiased gene expression profiling and quantitative real-time PCR. The results indicate drastic changes in the expression of genes encoding proteins involved in lipid, carbohydrate, and amino acid metabolism. Pathway analysis identified transcription factors and coregulators such as hepatocyte nuclear factor 4 (HNF4), peroxisome proliferator-activated receptor-alpha (PPAR-alpha), and PPAR gamma coactivator 1alpha (PGC-1alpha ) as key players in these metabolic adaptations. Apoptotic and profibrotic responses were also affected. Surprisingly, a strong reduction in the expression of genes involved in hepatic bile salt metabolism and transport was observed. Therefore, this transcriptome analysis opens new avenues for research.
Collapse
Affiliation(s)
- Feike R van der Leij
- Center for Liver, Digestive, and Metabolic Diseases, Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, CMCV, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Baranova A, Schlauch K, Elariny H, Jarrar M, Bennett C, Nugent C, Gowder SJ, Younoszai Z, Collantes R, Chandhoke V, Younossi ZM. Gene Expression Patterns in Hepatic Tissue and Visceral Adipose Tissue of Patients with Non-Alcoholic Fatty Liver Disease. Obes Surg 2007; 17:1111-8. [PMID: 17953248 DOI: 10.1007/s11695-007-9187-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ancha Baranova
- Center for Liver Diseases, Inova Fairfax Hospital, Fairfax, VA 22042, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Calvert VS, Collantes R, Elariny H, Afendy A, Baranova A, Mendoza M, Goodman Z, Liotta LA, Petricoin EF, Younossi ZM. A systems biology approach to the pathogenesis of obesity-related nonalcoholic fatty liver disease using reverse phase protein microarrays for multiplexed cell signaling analysis. Hepatology 2007; 46:166-72. [PMID: 17596878 DOI: 10.1002/hep.21688] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UNLABELLED Nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease. Omental adipose tissue, a biologically active organ secreting adipokines and cytokines, may play a role in the development of NAFLD. We tested this hypothesis with reverse-phase protein microarrays (RPA) for multiplexed cell signaling analysis of adipose tissue from patients with NAFLD. Omental adipose tissue was obtained from 99 obese patients. Liver biopsies obtained at the time of surgery were all read by the same hepatopathologist. Adipose tissue was exposed to rapid pressure cycles to extract protein lysates. RPA was used to investigate intracellular signaling. Analysis of 54 different kinase substrates and cell signaling endpoints showed that an insulin signaling pathway is deranged in different locations in NAFLD patients. Furthermore, components of insulin receptor-mediated signaling differentiate most of the conditions on the NAFLD spectrum. For example, PKA (protein kinase A) and AKT/mTOR (protein kinase B/mammalian target of rapamycin) pathway derangement accurately discriminates patients with NASH from those with the non-progressive forms of NAFLD. PKC (protein kinase C) delta, AKT, and SHC phosphorylation changes occur in patients with simple steatosis. Amounts of the FKHR (forkhead factor Foxo1)phosphorylated at S256 residue were significantly correlated with AST/ALT ratio in all morbidly obese patients. Furthermore, amounts of cleaved caspase 9 and pp90RSK S380 were positively correlated in patients with NASH. Specific insulin pathway signaling events are altered in the adipose tissue of patients with NASH compared with patients with nonprogressive forms of NAFLD. CONCLUSION These findings provide evidence for the role of omental fat in the pathogenesis, and potentially, the progression of NAFLD.
Collapse
Affiliation(s)
- Valerie S Calvert
- George Mason-Inova Health System's Translational Research Centers, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Baranova A, Liotta L, Petricoin E, Younossi ZM. The role of genomics and proteomics: technologies in studying non-alcoholic fatty liver disease. Clin Liver Dis 2007; 11:209-20, xi. [PMID: 17544980 DOI: 10.1016/j.cld.2007.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are examples of complex diseases accompanied by changes in the expression of thousands of genes and a plethora of proteins encoded by these genes. Before the era of high-throughput analysis, typical translational research initiatives, aimed at defining the molecular targets for complex diseases, were performed on gene-by-gene basis. Innovative technologies, such as expression microarrays, mass spectromety, and reverse proteomics, now allow investigators to reveal complex patterns of the expression of biologically active molecules. For this reason, high-throughput approaches may be well suited for studies designed to untangle the molecular basis of the chronic liver diseases such as NAFLD.
Collapse
Affiliation(s)
- Ancha Baranova
- Center for Liver Diseases, Inova Fairfax Hospital, Department of Medicine, Falls Church, VA 22042, USA
| | | | | | | |
Collapse
|