1
|
Mikulski D, Kościelny K, Dróżdż I, Mirocha G, Nowicki M, Misiewicz M, Perdas E, Strzałka P, Wierzbowska A, Fendler W. Serum Levels of miR-122-5p and miR-125a-5p Predict Hepatotoxicity Occurrence in Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2024; 25:4355. [PMID: 38673940 PMCID: PMC11050045 DOI: 10.3390/ijms25084355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatic complications are an acknowledged cause of mortality and morbidity among patients undergoing hematopoietic stem cell transplantation. In this study, we aimed to evaluate the potential role in the prediction of liver injury of five selected microRNAs (miRNAs)-miR-122-5p, miR-122-3p, miR-15b-5p, miR-99b-5p, and miR-125a-5p-in the setting of autologous hematopoietic stem cell transplantation (ASCT). A total of 66 patients were included in the study: 50 patients (75.8%) with multiple myeloma (MM) and 16 (24.2%) with lymphoma. Blood samples were collected after the administration of the conditioning regimen, on the day of transplant (day 0). The expression levels of selected miRNAs were quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using the miRCURY LNA miRNA Custom PCR Panels (QIAGEN). In a multivariate logistic regression analysis adjusted for age, sex, and the administered conditioning regimen, two miRNAs, hsa-miR-122-5p (odds ratio, OR 2.10, 95% confidence interval, CI: 1.29-3.42, p = 0.0029) and hsa-miR-125a-5p (OR 0.27, 95% CI: 0.11-0.71, p = 0.0079), were independent for hepatic toxicity occurrence during the 14 days after transplant. Our model in 10-fold cross-validation preserved its diagnostic potential with a receiver operating characteristics area under the curve (ROC AUC) of 0.75, 95% CI: 0.63-0.88 and at optimal cut-off reached 72.0% sensitivity and 74.4% specificity. An elevated serum level of miR-122-5p and decreased level of miR-125a-5p on day 0 are independent risk factors for hepatotoxicity in ASCT recipients, showing promise in accurately predicting post-ASCT complications. Identifying patients susceptible to complications has the potential to reduce procedure costs and optimize the selection of inpatient or outpatient procedures.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.K.); (G.M.); (E.P.)
- Department of Hematooncology, Copernicus Memorial Hospital in Lodz, 93-513 Lodz, Poland
| | - Kacper Kościelny
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.K.); (G.M.); (E.P.)
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Grzegorz Mirocha
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.K.); (G.M.); (E.P.)
| | - Mateusz Nowicki
- Department of Hematology, Medical University of Lodz, 92-215 Lodz, Poland; (M.N.); (M.M.); (P.S.); (A.W.)
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, 93-513 Lodz, Poland
| | - Małgorzata Misiewicz
- Department of Hematology, Medical University of Lodz, 92-215 Lodz, Poland; (M.N.); (M.M.); (P.S.); (A.W.)
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.K.); (G.M.); (E.P.)
| | - Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 92-215 Lodz, Poland; (M.N.); (M.M.); (P.S.); (A.W.)
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, 93-513 Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 92-215 Lodz, Poland; (M.N.); (M.M.); (P.S.); (A.W.)
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, 93-513 Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (K.K.); (G.M.); (E.P.)
| |
Collapse
|
2
|
Heo YJ, Lee N, Choi SE, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW, Kim HJ. Amphiregulin Induces iNOS and COX-2 Expression through NF- κB and MAPK Signaling in Hepatic Inflammation. Mediators Inflamm 2023; 2023:2364121. [PMID: 37868614 PMCID: PMC10586434 DOI: 10.1155/2023/2364121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023] Open
Abstract
Background Inflammation is a major cause of hepatic tissue damage and accelerates the progression of nonalcoholic fatty liver disease (NAFLD). Amphiregulin (AREG), an epidermal growth factor receptor ligand, is associated with human liver cirrhosis and hepatocellular carcinoma. We aimed to investigate the effects of AREG on hepatic inflammation during NAFLD progression, in vivo and in vitro. Methods AREG gene expression was measured in the liver of mice fed a methionine choline-deficient (MCD) diet for 2 weeks. We evaluated inflammatory mediators and signaling pathways in HepG2 cells after stimulation with AREG. Nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were analyzed using an enzyme-linked immunosorbent assay and western blotting. Nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase, were analyzed using western blotting. Results Proinflammatory cytokines (interleukin (IL)-6, IL-1β, and IL-8) and immune cell recruitment (as indicated by L3T4, F4/80, and ly6G mRNA expression) increased, and expression of AREG increased in the liver of mice fed the MCD diet. AREG significantly increased the expression of IL-6 and IL-1β and the production of NO, PGE2, and IL-8 in HepG2 cells. It also activated the protein expression of iNOS and COX-2. AREG-activated NF-κB and MAPKs signaling, and together with NF-κB and MAPKs inhibitors, AREG significantly reduced the protein expression of iNOS and COX-2. Conclusion AREG plays a role in hepatic inflammation by increasing iNOS and COX-2 expression via NF-κB and MAPKs signaling.
Collapse
Affiliation(s)
- Yu Jung Heo
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Nami Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Sung-E. Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Ma L, Xue P, Qin B, Wang T, Li B, Wu L, Zhao L, Liu X. Construction and Analysis of Hepatocellular Carcinoma Prognostic Model Based on Random Forest. Can J Gastroenterol Hepatol 2023; 2023:6707698. [PMID: 36685007 PMCID: PMC9851787 DOI: 10.1155/2023/6707698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Methods Transcriptome data and clinical data of HCC were downloaded from the TCGA database. Screen important genes based on the random forest method, combined with differential expression genes (DEGs) to screen out important DEGs. The Kaplan‒Meier curve was used to evaluate its prognostic significance. Cox regression analysis was used to construct a survival prognosis prediction model, and the ROC curve was used to verify it. Finally, the mechanism of action was explored through GO and KEGG pathway enrichment and GeneMANIA coexpression analyses. Results Seven important DEGs were identified, three were highly expressed and four were lowly expressed. Among them, GPRIN1, MYBL2, and GSTM5 were closely related to prognosis (P < 0.05). After the survival prognosis prediction model was established, the survival analysis showed that the survival time of the high-risk group was significantly shortened (P < 0.001), but the ROC analysis indicated that the model was not superior to staging. Twenty coexpressed genes were screened, and enrichment analysis indicated that glutathione metabolism was an important mechanism for these genes to regulate HCC progression. Conclusion This study revealed the important DEGs affecting HCC progression and provided references for clinical assessment of patient prognosis and exploration of HCC progression mechanisms through the construction of predictive models and gene enrichment analysis.
Collapse
Affiliation(s)
- Yikai Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Le Ma
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengjun Xue
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Bianni Qin
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ting Wang
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Bo Li
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Lina Wu
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Liyan Zhao
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xiongtao Liu
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
4
|
Ishaq Y, Ikram A, Alzahrani B, Khurshid S. The Role of miRNAs, circRNAs and Their Interactions in Development and Progression of Hepatocellular Carcinoma: An Insilico Approach. Genes (Basel) 2022; 14:genes14010013. [PMID: 36672755 PMCID: PMC9858589 DOI: 10.3390/genes14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of malignant tumor. miRNAs are noncoding RNAs and their differential expression patterns are observed in HCC-induced by alcoholism, HBV and HCV infections. By acting as a competing endogenous RNA (ceRNA), circRNA regulates the miRNA function, indirectly controlling the gene expression and leading to HCC progression. In the present study, data mining was performed to screen out all miRNAs and circRNA involved in alcohol, HBV or HCV-induced HCC with statistically significant (≤0.05%) expression levels reported in various studies. Further, the interaction of miRNAs and circRNA was also investigated to explore their role in HCC due to various causative agents. Together, these study data provide a deeper understanding of the circRNA-miRNA regulatory mechanisms in HCC. These screened circRNA, miRNA and their interactions can be used as prognostic biomarkers or therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Yasmeen Ishaq
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
- Correspondence:
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Sana Khurshid
- Department of Molecular Biology, Virtual University of Pakistan, 1-Davis Road, Lahore 54000, Pakistan
| |
Collapse
|
5
|
Ouyang T, Kan X, Zheng C. Immune Checkpoint Inhibitors for Advanced Hepatocellular Carcinoma: Monotherapies and Combined Therapies. Front Oncol 2022; 12:898964. [PMID: 35785169 PMCID: PMC9243530 DOI: 10.3389/fonc.2022.898964] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an important cause of cancer death and is considered the 3rd most lethal around the world. Hepatectomy, liver transplantation, and ablation therapy are considered curative treatments for early-stage HCC. Transarterial chemoembolization is the preferred therapy for intermediate stage HCC. Ssystemic therapy is recommended for advanced HCC. For more than a decade, sorafenib and lenvatinib were used as the first-line treatment for the advanced HCC. For the great success of immunotherapy in melanoma and lung cancer, some immune-based treatments, such as immune checkpoint inhibitors (ICIs), have been applied in the treatment of HCC. The anti-programmed cell death protein 1 (PD1) antibodies, including nivolumab and pembrolizumab, have been approved by the Food and Drug Administration for sorafenib-pretreated patients. Moreover, due to the results of durable antitumor responses attained from the phase 3 trials, atezolizumab in combination with bevacizumab is now the standard therapy for advanced HCC. Recently, there are a lot of clinical trials involving the ICIs, as monotherapy or combination therapy, with tyrosine kinase inhibitors, antiangiogenic drugs, cytotoxic agents, and locoregional treatments, providing a promising outcome for advanced HCC. Thus, this review summarized the role of ICIs for HCC patients with monotherapy or combination therapy. The success and failures of monotherapy and combination therapy involving ICIs have provided advanced insights into HCC treatment and led to novel avenues to improve therapy efficacy in HCC.
Collapse
Affiliation(s)
- Tao Ouyang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- *Correspondence: Chuansheng Zheng,
| |
Collapse
|
6
|
Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, Jyoti Kumar V, Mishra AP, Sharifi-Rad J. Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int 2021; 21:499. [PMID: 34535145 PMCID: PMC8447515 DOI: 10.1186/s12935-021-02202-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are regarded as one of the main causes of death and result in high health burden worldwide. The management of cancer include chemotherapy, surgery and radiotherapy. The chemotherapy, which involves the use of chemical agents with cytotoxic actions is utilised as a single treatment or combined treatment. However, these managements of cancer such as chemotherapy poses some setbacks such as cytotoxicity on normal cells and the problem of anticancer drug resistance. Therefore, the use of other therapeutic agents such as antidiabetic drugs is one of the alternative interventions used in addressing some of the limitations in the use of anticancer agents. Antidiabetic drugs such as sulfonylureas, biguanides and thiazolidinediones showed beneficial and repurposing actions in the management of cancer, thus, the activities of these drugs against cancer is attributed to some of the metabolic links between the two disorders and these includes hyperglycaemia, hyperinsulinemia, inflammation, and oxidative stress as well as obesity. Furthermore, some studies showed that the use of antidiabetic drugs could serve as risk factors for the development of cancerous cells particularly pancreatic cancer. However, the beneficial role of these chemical agents overweighs their detrimental actions in cancer management. Hence, the present review indicates the metabolic links between cancer and diabetes and the mechanistic actions of antidiabetic drugs in the management of cancers.
Collapse
Affiliation(s)
- Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Manisha Nigam
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India.
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abdulwahab Lasisi
- Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent, ME169QQ, UK
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Vijay Jyoti Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Garhwal, Srinagar, Uttarakhand, 246174, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Science, University of Free State, 205, Nelson Mandela Drive, Park West, Bloemfontein, 9300, South Africa
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Mir IH, Guha S, Behera J, Thirunavukkarasu C. Targeting molecular signal transduction pathways in hepatocellular carcinoma and its implications for cancer therapy. Cell Biol Int 2021; 45:2161-2177. [PMID: 34270844 DOI: 10.1002/cbin.11670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma is a substantial health concern. It is currently the third dominating cause of mortality associated with cancer worldwide. The development of hepatocellular carcinoma is an intricate process that encompasses the impairment of genetic, epigenetic, and signal transduction mechanisms contributing to an aberrant metabolic system, enabling tumorigenesis. Throughout the past decade, research has led to the revelation of molecular pathways implicated in the progression of this notorious disorder. The altered signal transduction pathways, such as the mitogen-activated protein kinase pathway, phosphoinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway, WNT/β-catenin pathway, hepatocyte growth factor/c-MET pathway, and just another kinase/signal transducers and activators of transcription signaling pathway is of much therapeutic significance, as targeting them may avail to revert, retard or avert hepatocarcinogenesis. The present review article sums up the contemporary knowledge of such signaling mechanisms, including their therapeutic targets and betokens that novel and efficacious therapies can be developed only by the keen understanding of their character in hepatocarcinogenesis. In additament, we address the role of consequential therapeutic agents and preclinical nondrug therapies known for combating hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Jajnasenee Behera
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
8
|
Leone P, Solimando AG, Fasano R, Argentiero A, Malerba E, Buonavoglia A, Lupo LG, De Re V, Silvestris N, Racanelli V. The Evolving Role of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma Treatment. Vaccines (Basel) 2021; 9:vaccines9050532. [PMID: 34065489 PMCID: PMC8160723 DOI: 10.3390/vaccines9050532] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of most common cancers and the fourth leading cause of death worldwide. Commonly, HCC development occurs in a liver that is severely compromised by chronic injury or inflammation. Liver transplantation, hepatic resection, radiofrequency ablation (RFA), transcatheter arterial chemoembolization (TACE), and targeted therapies based on tyrosine protein kinase inhibitors are the most common treatments. The latter group have been used as the primary choice for a decade. However, tumor microenvironment in HCC is strongly immunosuppressive; thus, new treatment approaches for HCC remain necessary. The great expression of immune checkpoint molecules, such as programmed death-1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), lymphocyte activating gene 3 protein (LAG-3), and mucin domain molecule 3 (TIM-3), on tumor and immune cells and the high levels of immunosuppressive cytokines induce T cell inhibition and represent one of the major mechanisms of HCC immune escape. Recently, immunotherapy based on the use of immune checkpoint inhibitors (ICIs), as single agents or in combination with kinase inhibitors, anti-angiogenic drugs, chemotherapeutic agents, and locoregional therapies, offers great promise in the treatment of HCC. This review summarizes the recent clinical studies, as well as ongoing and upcoming trials.
Collapse
Affiliation(s)
- Patrizia Leone
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
| | - Antonio Giovanni Solimando
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Rossella Fasano
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | | | - Eleonora Malerba
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
- Department of Experimental Diagnostic and Specialty Medicine, “L. and A. Seràgnoli”, University of Bologna, 40138 Bologna, Italy
| | - Alessio Buonavoglia
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
| | - Luigi Giovanni Lupo
- Department of General Surgery and Liver Transplantation, University of Bari, 70124 Bari, Italy;
| | - Valli De Re
- Immunopathology and Cancer Biomarkers—Bio-Proteomics Facility, CRO Aviano National Cancer Institute, 33081 Aviano, Italy;
| | - Nicola Silvestris
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Vito Racanelli
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
- Correspondence: ; Tel.: +39-080-5478050
| |
Collapse
|
9
|
Functional Characterization of Colon-Cancer-Associated Variants in ADAM17 Affecting the Catalytic Domain. Biomedicines 2020; 8:biomedicines8110463. [PMID: 33143292 PMCID: PMC7692748 DOI: 10.3390/biomedicines8110463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
Although extensively investigated, cancer is still one of the most devastating and lethal diseases in the modern world. Among different types, colorectal cancer (CRC) is most prevalent and mortal, making it an important subject of research. The metalloprotease ADAM17 has been implicated in the development of CRC due to its involvement in signaling pathways related to inflammation and cell proliferation. ADAM17 is capable of releasing membrane-bound proteins from the cell surface in a process called shedding. A deficiency of ADAM17 activity has been previously shown to have protective effects against CRC in mice, while an upregulation of ADAM17 activity is suspected to facilitate tumor development. In this study, we characterize ADAM17 variants found in tissue samples of cancer patients in overexpression studies. We here focus on point mutations identified within the catalytic domain of ADAM17 and could show a functional dysregulation of the CRC-associated variants. Since the catalytic domain of ADAM17 is the only region structurally determined by crystallography, we study the effect of each point mutation not only to learn more about the role of ADAM17 in cancer, but also to investigate the structure–function relationships of the metalloprotease.
Collapse
|
10
|
Ma ZJ, Wang Y, Li HF, Liu MH, Bi FR, Ma L, Ma H, Yan HL. LncZEB1-AS1 regulates hepatocellular carcinoma bone metastasis via regulation of the miR-302b-EGFR-PI3K-AKT axis. J Cancer 2020; 11:5118-5128. [PMID: 32742459 PMCID: PMC7378930 DOI: 10.7150/jca.45995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
In patients with hepatocellular carcinoma (HCC), disease progression and associated bone metastasis (BM) can markedly reduce quality of life. While the long non-coding RNA (lncRNA) zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) has been shown to function as a key regulator of oncogenic processes in HCC and other tumor types, whether it plays a role in controlling HCC BM remains to be established. In the current study, we detected the significant upregulation of lncZEB1-AS1 in HCC tissues, and we found this expression to be associated with BM progression. When we knocked down this lncRNA in HCC cells, we found that this significantly reduced their migratory, invasive, and metastatic activity both in vitro and in vivo. At a mechanistic level, we found that lncZEB1-AS1 was able to target miR-302b and to thereby increase PI3K-AKT pathway activation and EGFR expression, resulting in the enhanced expression of downstream matrix metalloproteinase genes in HCC cells. In summary, our results provide novel evidence that lncZEB1-AS1 can promote HCC BM through a mechanism dependent upon the activation of PI3K-AKT signaling, thus highlighting a potentially novel therapeutic avenue for the treatment of such metastatic progression in HCC patients.
Collapse
Affiliation(s)
- Zhen-Jiang Ma
- Department of Orthopedics, the Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, P.R. China.,Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Yao Wang
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China.,Department of Laboratory Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Hui-Fen Li
- Department of Interventional, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Ming-Hua Liu
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Feng-Rui Bi
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Long Ma
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Hui Ma
- Department of Orthopedics, the Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, P.R. China
| | - Hong-Li Yan
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
11
|
MAT2B mediates invasion and metastasis by regulating EGFR signaling pathway in hepatocellular carcinoma. Clin Exp Med 2019; 19:535-546. [PMID: 31493275 DOI: 10.1007/s10238-019-00579-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023]
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) patients is mainly due to cancer metastasis. Methionine adenosyltransferase 2β (MAT2B) encodes a regulatory subunit (β) for methionine adenosyltransferase. Previous studies reveal that MAT2B provides a growth advantage for HCC, but its role in metastasis is unknown. This study showed that both in the xenograft zebra fish model and in the lung metastasis model in nude mice, the stable inhibition of MAT2B could suppress the metastasis of HCC cancer cells. Silencing of MAT2B in HCC cell lines could remarkably inhibit migration and invasion. By analysis of human phospho-kinase array membranes, we found several differentially expressed proteins, including phosphor-AKT, phospho-EGFR, phospho-Src family, phospho-FAK, phospho-STAT3 and phospho-ERK. We further confirmed the change of these EGFR pathway-related proteins was in accordance with MAT2B expression pattern through immunoblotting test. Finally, we found that MAT2B was overexpressed in HCC caner tissues and correlated with poor prognosis for HCC patients in clinical manifestation. Our study demonstrated that silencing of MAT2B could suppress liver cancer cell migration and invasion through the inhibition of EGFR signaling, which suggested that MAT2B might serve as a new prognostic marker and therapeutic target for HCC.
Collapse
|
12
|
Zheng H, Yang Y, Hong YG, Wang MC, Yuan SX, Wang ZG, Bi FR, Hao LQ, Yan HL, Zhou WP. Tropomodulin 3 modulates EGFR-PI3K-AKT signaling to drive hepatocellular carcinoma metastasis. Mol Carcinog 2019; 58:1897-1907. [PMID: 31313392 DOI: 10.1002/mc.23083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Abstract
The mechanism of hepatocellular carcinoma (HCC) metastasis remains poorly understood. Tropomodulin 3 (TMOD3) is a member of the pointed end capping protein family that contributes to invasion and metastasis in several types of malignancies. It has been found to be crucial for the membranous skeleton and embryonic development, although, its role in HCC progression remains largely unclear. We observed increased levels of Tmod3 in HCCs, especially in extrahepatic metastasis. High Tmod3 expression correlated with aggressive carcinoma and poor patient with HCC survival. Loss-of-function studies conducted by us determined Tmod3 as an oncogene that promoted HCC growth and metastasis. Mechanistically, Tmod3 increases transcription of matrix metalloproteinase-2, -7, and -9 which required PI3K-AKT. Interaction between Tmod3 and epidermal growth factor receptor (EGFR) that supports the activation of EGFR phosphorylation, is essential for signaling activation of PI3K-AKT viral oncogene homolog. These findings reveal that Tmod3 enhances aggressive behavior of HCC both in vitro and in vivo by interacting with EFGR and by activating the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Hao Zheng
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| | - Yong-Gang Hong
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Meng-Chao Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| | - Sheng-Xian Yuan
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| | - Zhen-Guang Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| | - Feng-Rui Bi
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Li-Qiang Hao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Hong-Li Yan
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Wei-Ping Zhou
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| |
Collapse
|
13
|
Graptopetalum paraguayense Inhibits Liver Fibrosis by Blocking TGF-β Signaling In Vivo and In Vitro. Int J Mol Sci 2019; 20:ijms20102592. [PMID: 31137784 PMCID: PMC6566198 DOI: 10.3390/ijms20102592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND AIMS Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, which occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension. Activated hepatic perivascular stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines, such as TGF-β1. The inhibition of TGF-β1 function or synthesis is a major target for the development of antifibrotic therapies. Our previous study showed that the water and ethanol extracts of Graptopetalum paraguayense (GP), a Chinese herbal medicine, can prevent dimethylnitrosamine (DMN)-induced hepatic inflammation and fibrosis in rats. METHODS We used rat hepatic stellate HSC-T6 cells and a diethylnitrosamine (DEN)-induced rat liver injury model to test the potential mechanism of GP extracts and its fraction, HH-F3. RESULTS We demonstrated that GP extracts and HH-F3 downregulated the expression levels of extracellular matrix (ECM) proteins and inhibited the proliferation and migration via suppression of the TGF-β1 pathway in rat hepatic stellate HSC-T6 cells. Moreover, the HH-F3 fraction decreased hepatic collagen content and reduced plasma AST, ALT, and γ-GT activities in a DEN-induced rat liver injury model, suggesting that GP/HH-F3 has hepatoprotective effects against DEN-induced liver fibrosis. CONCLUSION These findings indicate that GP/HH-F3 may be a potential therapeutic agent for the treatment of liver fibrosis. The inhibition of TGF-β-mediated fibrogenesis may be a central mechanism by which GP/HH-F3 protects the liver from injury.
Collapse
|
14
|
Li H, Chen H, Wang H, Dong Y, Yin M, Zhang L, Wei J. MicroRNA-374a Promotes Hepatocellular Carcinoma Cell Proliferation by Targeting Mitogen-Inducible Gene 6 (MIG-6). Oncol Res 2018; 26:557-563. [PMID: 28734040 PMCID: PMC7844684 DOI: 10.3727/096504017x15000784459799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a disease with poor prognosis rates and ineffective therapeutic options. Previous studies have reported the involvement of mitogen-inducible gene 6 (MIG-6) as a negative regulator in tumor formation. MicroRNAs (miRNAs) play crucial roles in the development of different types of cancer. However, the underlying mechanisms of miRNAs in HCC are poorly understood. This study was aimed to investigate the role of miR-374a in HCC and its role in the regulation of expression of MIG-6. The results showed that MIG-6 overexpression significantly inhibited cell viability of HepG2 cells after 4 days posttransfection. Moreover, MIG-6 was a direct target of miR-374a, and the expression of MIG-6 was remarkably downregulated by the overexpression of miR-374a in HepG2 cells. Furthermore, we found that overexpression of miR-374a promoted cell viability; however, the protective effect was abolished by MIG-6 overexpression. In addition, overexpression of miR-374a activated the EGFR and AKT/ERK signaling pathways by regulation of MIG-6. Our findings suggest that miR-374a could promote cell viability by targeting MIG-6 and activating the EGFR and AKT/ERK signaling pathways. These data provide a promising therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Hui Li
- *Department of Liver and Infectious Diseases, Liver Disease Research Center, The Second People’s Hospital of Yunnan Province, Kunming, P.R. China
| | - Huicheng Chen
- †School of Medicine, Yunnan University, Kunming, P.R. China
| | - Haibin Wang
- ‡The Second Department of Liver Diseases, The Third People’s Hospital of Kunming City, Kunming, P.R. China
| | - Yilong Dong
- †School of Medicine, Yunnan University, Kunming, P.R. China
| | - Min Yin
- †School of Medicine, Yunnan University, Kunming, P.R. China
| | - Liang Zhang
- §Liver Disease Research Center, The Second People’s Hospital of Yunnan Province, Kunming, P.R. China
| | - Jia Wei
- *Department of Liver and Infectious Diseases, Liver Disease Research Center, The Second People’s Hospital of Yunnan Province, Kunming, P.R. China
| |
Collapse
|
15
|
Thomas MB, Garrett-Mayer E, Anis M, Anderton K, Bentz T, Edwards A, Brisendine A, Weiss G, Siegel AB, Bendell J, Baron A, Duddalwar V, El-Khoueiry A. A Randomized Phase II Open-Label Multi-Institution Study of the Combination of Bevacizumab and Erlotinib Compared to Sorafenib in the First-Line Treatment of Patients with Advanced Hepatocellular Carcinoma. Oncology 2018; 94:329-339. [PMID: 29719302 DOI: 10.1159/000485384] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To investigate the clinical efficacy and tolerability of the combination of bevacizumab (B) and erlotinib (E) compared to sorafenib (S) as first-line treatment for patients with advanced hepatocellular carcinoma (HCC). METHODS A total of 90 patients with advanced HCC, Child-Pugh class A-B7 cirrhosis, and no prior systemic therapy were randomly assigned (1: 1) to receive either 10 mg/kg B intravenously every 14 days and 150 mg E orally daily (n = 47) (B+E) or 400 mg S orally twice daily (n = 43). The primary endpoint was overall survival (OS). Secondary endpoints included event-free survival (EFS), objective response rate based on Response Evaluation Criteria in Solid Tumors (RECIST 1.1), time to progression, and safety and tolerability. RESULTS The median OS was 8.55 months (95% CI: 7.00-13.9) for patients treated with B+E and 8.55 months (95% CI: 5.69-12.2) for patients receiving S. The hazard ratio (HR) for OS was 0.92 (95% CI: 0.57-1.47). The median EFS was 4.37 months (95% CI: 2.99-7.36) for patients receiving B+E and 2.76 months (95% CI: 1.84-4.80) for patients receiving S. The HR for EFS was 0.67 (95% CI: 0.42-1.07; p = 0.09), favoring B+E over S. When OS was assessed among patients who were Child-Pugh class A, the median OS was 11.4 months (95% CI: 7.5-15.7) for patients treated with B+E (n = 39) and 10.26 months (95% CI: 5.9-13.0) for patients treated with S (n = 38) (HR = 0.88; 95% CI: 0.53-1.46). CONCLUSIONS There was no difference in efficacy between the B+E and S arms, although the safety and tolerability profile tended to favor B+E over S based on competing risk analysis.
Collapse
Affiliation(s)
- Melanie B Thomas
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.,Gibbs Cancer Center and Research Institute, Spartanburg Regional Healthcare System, Spartanburg, South Carolina, USA
| | - Elizabeth Garrett-Mayer
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Munazza Anis
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kate Anderton
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tricia Bentz
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Andie Edwards
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alan Brisendine
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Geoffrey Weiss
- Department of Oncology, University of Virginia, Charlottesville, Virginia, USA
| | - Abby B Siegel
- New York-Presbyterian Hospital, Columbia University, New York, New York, USA
| | - Johanna Bendell
- GI Oncology Research, Sarah Canon Research Institute, Nashville, Tennessee, USA
| | - Ari Baron
- California Pacific Medical Center, San Francisco, California, USA
| | - Vinay Duddalwar
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Anthony El-Khoueiry
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
16
|
Li L, Lei Q, Zhang S, Kong L, Qin B. Screening and identification of key biomarkers in hepatocellular carcinoma: Evidence from bioinformatic analysis. Oncol Rep 2017; 38:2607-2618. [PMID: 28901457 PMCID: PMC5780015 DOI: 10.3892/or.2017.5946] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/18/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Intense efforts have been made to elucidate the pathogeny, but the molecular mechanisms of HCC are still not well understood. To identify the candidate genes in the carcinogenesis and progression of HCC, microarray datasets GSE19665, GSE33006 and GSE41804 were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and function enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed and the module analysis was performed using STRING and Cytoscape. A total of 273 DEGs were identified, consisting of 189 downregulated genes and 84 upregulated genes. The enriched functions and pathways of the DEGs include protein activation cascade, complement activation, carbohydrate binding, complement and coagulation cascades, mitotic cell cycle and oocyte meiosis. Sixteen hub genes were identified and biological process analysis revealed that these genes were mainly enriched in cell division, cell cycle and nuclear division. Survival analysis showed that BUB1, CDC20, KIF20A, RACGAP1 and CEP55 may be involved in the carcinogenesis, invasion or recurrence of HCC. In conclusion, DEGs and hub genes identified in the present study help us understand the molecular mechanisms underlying the carcinogenesis and progression of HCC, and provide candidate targets for diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Lin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Qingsong Lei
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Lingna Kong
- The Nursing College of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
17
|
Wang W, Pan Q, Fuhler GM, Smits R, Peppelenbosch MP. Action and function of Wnt/β-catenin signaling in the progression from chronic hepatitis C to hepatocellular carcinoma. J Gastroenterol 2017; 52:419-431. [PMID: 28035485 PMCID: PMC5357489 DOI: 10.1007/s00535-016-1299-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/17/2016] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) infection is one of the leading causes of hepatocellular carcinoma (HCC) worldwide but the mechanistic basis as to how chronic HCV infection furthers the HCC process remains only poorly understood. Accumulating evidence indicates that HCV core and nonstructural proteins provoke activation of the Wnt/β-catenin signaling pathway, and the evidence supporting a role of Wnt/β-catenin signaling in the onset and progression of HCC is compelling. Convincing molecular explanations as to how expression of viral effectors translates into increased activity of the Wnt/β-catenin signaling machinery are still largely lacking, hampering the design of rational strategies aimed at preventing HCC. Furthermore, how such increased signaling is especially associated with HCC oncogenesis in the context of HCV infection remains obscure as well. Here we review the body of contemporary biomedical knowledge on the role of the Wnt/β-catenin pathway in the progression from chronic hepatitis C to cirrhosis and HCC and explore potential hypotheses as to the mechanisms involved.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, ’s Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| |
Collapse
|
18
|
Plissonnier ML, Lahlali T, Michelet M, Lebossé F, Cottarel J, Beer M, Neveu G, Durantel D, Bartosch B, Accardi R, Clément S, Paradisi A, Devouassoux-Shisheboran M, Einav S, Mehlen P, Zoulim F, Parent R. Epidermal Growth Factor Receptor-Dependent Mutual Amplification between Netrin-1 and the Hepatitis C Virus. PLoS Biol 2016; 14:e1002421. [PMID: 27031829 PMCID: PMC4816328 DOI: 10.1371/journal.pbio.1002421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/26/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is an oncogenic virus associated with the onset of hepatocellular carcinoma (HCC). The present study investigated the possible link between HCV infection and Netrin-1, a ligand for dependence receptors that sustains tumorigenesis, in particular in inflammation-associated tumors. We show that Netrin-1 expression is significantly elevated in HCV+ liver biopsies compared to hepatitis B virus (HBV+) and uninfected samples. Furthermore, Netrin-1 was upregulated in all histological stages of HCV+ hepatic lesions, from minimal liver fibrosis to cirrhosis and HCC, compared to histologically matched HCV- tissues. Both cirrhosis and HCV contributed to the induction of Netrin-1 expression, whereas anti-HCV treatment resulted in a reduction of Netrin-1 expression. In vitro, HCV increased the level and translation of Netrin-1 in a NS5A-La-related protein 1 (LARP1)-dependent fashion. Knockdown and forced expression experiments identified the receptor uncoordinated receptor-5 (UNC5A) as an antagonist of the Netrin-1 signal, though it did not affect the death of HCV-infected cells. Netrin-1 enhanced infectivity of HCV particles and promoted viral entry by increasing the activation and decreasing the recycling of the epidermal growth factor receptor (EGFR), a protein that is dysregulated in HCC. Netrin-1 and HCV are, therefore, reciprocal inducers in vitro and in patients, as seen from the increase in viral morphogenesis and viral entry, both phenomena converging toward an increase in the level of infectivity of HCV virions. This functional association involving a cancer-related virus and Netrin-1 argues for evaluating the implication of UNC5 receptor ligands in other oncogenic microbial species.
Collapse
Affiliation(s)
- Marie-Laure Plissonnier
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Thomas Lahlali
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Maud Michelet
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Fanny Lebossé
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
- Hospices Civils de Lyon, Service d’Hépatogastroentérologie, F-69001 Lyon, France
| | - Jessica Cottarel
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Melanie Beer
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Grégory Neveu
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - David Durantel
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Birke Bartosch
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Rosita Accardi
- International Agency for Research on Cancer, F-69424 Lyon, France
| | - Sophie Clément
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| | - Andrea Paradisi
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France, Université de Lyon F-69003 Lyon, Centre Léon Bérard, F-69008 Lyon, France
| | | | - Shirit Einav
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France, Université de Lyon F-69003 Lyon, Centre Léon Bérard, F-69008 Lyon, France
| | - Fabien Zoulim
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
- Hospices Civils de Lyon, Service d’Hépatogastroentérologie, F-69001 Lyon, France
| | - Romain Parent
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| |
Collapse
|
19
|
Badawy AAG, El-Hindawi A, Hammam O, Moussa M, Gabal S, Said N. Impact of epidermal growth factor receptor and transforming growth factor-α on hepatitis C virus-induced hepatocarcinogenesis. APMIS 2015; 123:823-31. [DOI: 10.1111/apm.12431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Olfat Hammam
- Department of Pathology; Theodor Bilharz Research Institute; Imbaba Egypt
| | - Mona Moussa
- Department of Pathology; Theodor Bilharz Research Institute; Imbaba Egypt
| | - Samia Gabal
- Faculty of Medicine; Cairo University; Giza Egypt
| | - Noha Said
- Department of Pathology; Theodor Bilharz Research Institute; Imbaba Egypt
| |
Collapse
|
20
|
Pathway crosstalk analysis of microarray gene expression profile in human hepatocellular carcinoma. Pathol Oncol Res 2014; 21:563-9. [PMID: 25480734 DOI: 10.1007/s12253-014-9855-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 10/14/2014] [Indexed: 01/03/2023]
Abstract
Liver cancer is the third most common cause of cancer death in the world. Hepatocellular carcinoma (HCC) is the main pathological types in liver cancer, which amounts to 70-85 % of primary liver cancer in the world and 90 % in China. The aim of this study was to establish a PPI network and a pathway crosstalk network to isolate important dysfunctional pathways which play an important role in the pathogenesis of HCC. System biology approach was used in this research. A PPI network was firstly built and then a dysfunctional crosstalk network of HCC related pathways was constructed. Several important significant dysfunctional crosstalk pathways were identified. Basal transcription factors (hsa03022), Glycerophospholipid metabolism (hsa00564) and Metabolism of xenobiotics by cytochrome P450 (hsa00980) were significantly interact with Pathway in cancer (hsa05200). Besides, pathway Axon guidance (hsa04360) was also dysfunctional crosstalk with Pathway in cancer (hsa05200). The crosstalks among these pathways reveal some evidence that the pathways closely cooperated and play important tasks in HCC progression. Besides, the pathway hsa04360 dysfunctional crosstalk with the hsa05200 indicates there would be a same mechanism for HCC invasion and migration.
Collapse
|
21
|
Bishayee A. The role of inflammation and liver cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:401-35. [PMID: 24818732 DOI: 10.1007/978-3-0348-0837-8_16] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Persistent inflammation is known to promote and exacerbate malignancy. Primary liver cancer, mostly hepatocellular carcinoma (HCC), is a clear example of inflammation-related cancer as more than 90 % of HCCs arise in the context of hepatic injury and inflammation. HCC represents the fifth most common malignancy and the third leading cause of cancer-related death worldwide with about one million new cases diagnosed every year with almost an equal number of deaths. Chronic unresolved inflammation is associated with persistent hepatic injury and concurrent regeneration, leading to sequential development of fibrosis, cirrhosis, and eventually HCC. Irrespective of the intrinsic differences among various etiological factors, a common denominator at the origin of HCC is the perpetuation of a wound-healing response activated by parenchymal cell death and the resulting inflammatory cascade. Hence, the identification of fundamental inflammatory signaling pathways causing transition from chronic liver injury to dysplasia and HCC could depict new predictive biomarkers and targets to identify and treat patients with chronic liver inflammation. This chapter critically discusses the roles of several major cytokines, chemokines, growth factors, transcription factors, and enzymes as well as a distinct network of inflammatory signaling pathways in the development and progression of HCC. It also highlights and analyzes preclinical animal studies showing innovative approaches of targeting inflammatory mediators and signaling by a variety of natural compounds and synthetic agents to achieve effective therapy as well as prevention of hepatic malignancy. Additionally, current limitations and potential challenges associated with the inhibition of inflammatory signaling as well as future directions of research to accelerate clinical development of anti-inflammatory agents to prevent and treat liver cancer are presented.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, 1600 East Hill Street, Signal Hill, CA, 90755, USA,
| |
Collapse
|
22
|
Garcia-Irigoyen O, Carotti S, Latasa MU, Uriarte I, Fernández-Barrena MG, Elizalde M, Urtasun R, Vespasiani-Gentilucci U, Morini S, Banales JM, Parks WC, Rodriguez JA, Orbe J, Prieto J, Páramo JA, Berasain C, Ávila MA. Matrix metalloproteinase-10 expression is induced during hepatic injury and plays a fundamental role in liver tissue repair. Liver Int 2014; 34:e257-70. [PMID: 24119197 DOI: 10.1111/liv.12337] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/15/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Upon tissue injury, the liver mounts a potent reparative and regenerative response. A role for proteases, including serine and matrix metalloproteinases (MMPs), in this process is increasingly recognized. We have evaluated the expression and function of MMP10 (stromelysin-2) in liver wound healing and regeneration. METHODS The hepatic expression of MMP10 was examined in two murine models: liver regeneration after two-thirds partial hepatectomy (PH) and bile duct ligation (BDL). MMP10 was detected in liver tissues by qPCR, western blotting and immunohistochemistry. The effect of growth factors and toll-like receptor 4 (TLR4) agonists on MMP10 expression was studied in cultured parenchymal and biliary epithelial cells and macrophages respectively. The role of MMP10 was evaluated by comparing the response of Mmp10+/+ and Mmp10-/- mice to PH and BDL. The intrahepatic turnover of the extracellular matrix proteins fibrin (ogen) and fibronectin was examined. RESULTS MMP10 mRNA was readily induced after PH and BDL. MMP10 protein was detected in hepatocytes, cholangiocytes and macrophages. In cultured liver epithelial cells, MMP10 expression was additively induced by transforming growth factor-β and epidermal growth factor receptor ligands. TLR4 ligands also stimulated MMP10 expression in macrophages. Lack of MMP10 resulted in increased liver injury upon PH and BDL. Resolution of necrotic areas was impaired, and Mmp10-/- mice showed increased fibrogenesis and defective turnover of fibrin (ogen) and fibronectin. CONCLUSIONS MMP10 expression is induced during mouse liver injury and participates in the hepatic wound healing response. The profibrinolytic activity of MMP10 may be essential in this novel hepatoprotective role.
Collapse
Affiliation(s)
- Oihane Garcia-Irigoyen
- Centro de Investigación Médica Aplicada (CIMA), Division of Hepatology and Gene Therapy, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang YA, Tang WJ, Zhang X, Yuan JW, Liu XH, Zhu HL. Synthesis, molecular docking and biological evaluation of glycyrrhizin analogs as anticancer agents targeting EGFR. Molecules 2014; 19:6368-81. [PMID: 24853453 PMCID: PMC6271220 DOI: 10.3390/molecules19056368] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/04/2014] [Accepted: 05/14/2014] [Indexed: 01/20/2023] Open
Abstract
Glycyrrhizin (GA) analogs in the form of 3-glucuronides and 18-epimers were synthesized and their anticancer activities were evaluated. Alkaline isomerization of monoglucuronides is reported. In vitro and in vivo studies showed that glycyrrhetinic acid monoglucuronides (GAMGs) displayed higher anticancer activities than those of bisglucuronide GA analogs, while anticancer activity of the 18α-epimer was superior to that of the 18β-epimer. 18α-GAMG was firstly nicely bound to epidermal growth factor receptor (EGFR) via six hydrogen bonds and one charge interaction, and the docking calculation proved the correlation between anticancer activities and EGFR inhibitory activities. Highly active 18α-GAMG is thus of interest for the further studies as a potential anticancer agent.
Collapse
Affiliation(s)
- Yong-An Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China.
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Xin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China.
| | - Ji-Wen Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China.
| | - Xin-Hua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
24
|
CKAP4 inhibited growth and metastasis of hepatocellular carcinoma through regulating EGFR signaling. Tumour Biol 2014; 35:7999-8005. [PMID: 24838946 DOI: 10.1007/s13277-014-2000-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/22/2014] [Indexed: 12/22/2022] Open
Abstract
CKAP4, one kind of type II trans-membrane protein, plays an important role to maintain endoplasmic reticulum structure and inhibits the proliferation of bladder cancer cells by combining its ligand anti-proliferative factor (APF). However, the biological function of CKAP4 in the progression of liver cancer has not been clearly demonstrated. In the present study, we knocked down or overexpressed CKAP4 in hepatocellular carcinoma (HCC) cells and cell proliferation, invasion, and migration capacities were investigated by CCK-8 and transwell assays. In vivo tumor model in mice was used to evaluate the role of CKAP4 on growth and metastasis of HCC. The data documented that HCC cells with high CKAP4 levels were featured by low proliferation capability as well as low invasion potential. Interestingly, we found that CKAP4 suppressed the activation of epithelial growth factor receptor (EGFR) signaling, which may partly explain the role of CKAP4 in cell biological behavior of HCC. Further study revealed that CKAP4 could associate with EGFR at basal status and the complex was reduced upon EGF stimulation, leading to release EGFR into cytoplasm. Thus, we demonstrate the novel mechanism, for the first time, expression of CKAP4 regulates progression and metastasis of HCC and it may provide therapeutic values in this tumor.
Collapse
|
25
|
Pan Y, Ye S, Yuan D, Zhang J, Bai Y, Shao C. Hydrogen sulfide (H2S)/cystathionine γ-lyase (CSE) pathway contributes to the proliferation of hepatoma cells. Mutat Res 2014; 763-764:10-18. [PMID: 24657251 DOI: 10.1016/j.mrfmmm.2014.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
Hydrogen sulfide (H2S)/cystathionine γ-lyase (CSE) pathway has been demonstrated to play vital roles in physiology and pathophysiology. However, its role in tumor cell proliferation remains largely unclear. Here we found that CSE over-expressed in hepatoma HepG2 and PLC/PRF/5 cells. Inhibition of endogenous H2S/CSE pathway drastically decreased the proliferation of HepG2 and PLC/PRF/5 cells, and it also enhanced ROS production and mitochondrial disruption, pronounced DNA damage and increased apoptosis. Moreover, this increase of apoptosis was associated with the activation of p53 and p21 accompanied by a decreased ratio of Bcl-2/Bax and up-regulation of phosphorylated c-Jun N-terminal kinase (JNK) and caspase-3 activity. In addition, the negative regulation of cell proliferation by inhibition of H2S/CSE system correlated with the blockage of cell mitogenic and survival signal transduction of epidermal growth factor receptor (EGFR) via down-regulating the extracellular-signal-regulated kinase 1/2 (ERK1/2) activation. These results demonstrate that H2S/CSE and its downstream pathway contribute to the proliferation of hepatoma cells, and inhibition of this pathway strongly suppress the excessive growth of hepatoma cells by stimulating mitochondrial apoptosis and suppressing cell growth signal transduction.
Collapse
Affiliation(s)
- Yan Pan
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Shuang Ye
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
26
|
Berasain C, Avila MA. The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. J Gastroenterol 2014; 49:9-23. [PMID: 24318021 DOI: 10.1007/s00535-013-0907-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/28/2013] [Indexed: 02/04/2023]
Abstract
The liver displays an outstanding wound healing and regenerative capacity unmatched by any other organ. This reparative response is governed by a complex network of inflammatory mediators, growth factors and metabolites that are set in motion in response to hepatocellular injury. However, when liver injury is chronic, these regenerative mechanisms become dysregulated, facilitating the accumulation of genetic alterations leading to unrestrained cell proliferation and the development of hepatocellular carcinoma (HCC). The epidermal growth factor receptor (EGFR or ErbB1) signaling system has been identified as a key player in all stages of the liver response to injury, from early inflammation and hepatocellular proliferation to fibrogenesis and neoplastic transformation. The EGFR system engages in extensive crosstalk with other signaling pathways, acting as a true signaling hub for other growth factors, cytokines and inflammatory mediators. Here, we briefly review essential aspects of the biology of the EGFR, the other ErbB receptors, and their ligands in liver injury, regeneration and HCC development. Some aspects of the preclinical and clinical experience with EGFR therapeutic targeting in HCC are also discussed.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy and CIBEREhd, CIMA-University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain,
| | | |
Collapse
|
27
|
Wang RY, Chen L, Chen HY, Hu L, Li L, Sun HY, Jiang F, Zhao J, Liu GMY, Tang J, Chen CY, Yang YC, Chang YX, Liu H, Zhang J, Yang Y, Huang G, Shen F, Wu MC, Zhou WP, Wang HY. MUC15 inhibits dimerization of EGFR and PI3K-AKT signaling and is associated with aggressive hepatocellular carcinomas in patients. Gastroenterology 2013; 145:1436-48.e1-12. [PMID: 23933603 DOI: 10.1053/j.gastro.2013.08.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 07/30/2013] [Accepted: 08/04/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Aberrant expression of MUC15 correlates with development of colorectal adenocarcinoma, and MUC15 has been reported to prevent trophoblast invasion of human placenta. However, little is known about the role of MUC15 in pathogenesis of hepatocellular carcinoma (HCC). METHODS We analyzed HCC samples and matched nontumor liver tissues (controls) collected from 313 patients who underwent hepatectomy in Shanghai, China, from January 2006 through September 2009. Levels of messenger RNAs and proteins were determined by immunohistochemical, quantitative reverse transcription polymerase chain reaction, and immunoblot analyses. Statistical analyses were used to associate levels of MUC15 with tumor features and patient outcomes. RESULTS Levels of MUC15 messenger RNA and protein were reduced in a greater percentage of HCC samples than control tissues. Tumors with reduced levels of MUC15 were more likely to have aggressive characteristics (eg, high levels of α-fetoprotein, vascular invasion, lack of encapsulation, and poor differentiation) than those with low levels. Patients whose tumors had reduced levels of MUC15 had shorter overall survival times (24 months vs 46 months for patients with tumors with high levels of MUC15) and time to disease recurrence. Stable expression of MUC15 in HCC cell lines (SMMC-7721 and HCC-LM3) reduced their proliferation and invasive features in vitro, and ability to form metastatic tumors in mice. MUC15 reduced transcription of the matrix metalloproteinases 2 and 7 increased expression of tissue inhibitor of metalloproteinase-2, which required phosphoinositide 3-kinase-v-akt murine thymoma viral oncogene homolog signaling. Physical interaction between MUC15 and epidermal growth factor receptor led to its relocation and degradation within early endosomes and was required for inactivation of phosphoinositide 3-kinase-v-akt murine thymoma viral oncogene homolog signaling. CONCLUSIONS Reduced levels of MUC15 in HCCs are associated with shorter survival times of patients and reduced time to disease recurrence. Expression of MUC15 in HCC cells reduces their aggressive behavior in vitro and in mice by inducing dimerization of epidermal growth factor receptor and decreasing phosphoinositide 3-kinase signaling via v-akt murine thymoma viral oncogene homolog.
Collapse
Affiliation(s)
- Ruo-Yu Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Shanghai, China; The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chettouh H, Fartoux L, Aoudjehane L, Wendum D, Clapéron A, Chrétien Y, Rey C, Scatton O, Soubrane O, Conti F, Praz F, Housset C, Rosmorduc O, Desbois-Mouthon C. Mitogenic insulin receptor-A is overexpressed in human hepatocellular carcinoma due to EGFR-mediated dysregulation of RNA splicing factors. Cancer Res 2013; 73:3974-86. [PMID: 23633480 DOI: 10.1158/0008-5472.can-12-3824] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin receptor (IR) exists as two isoforms resulting from the alternative splicing of IR pre-mRNA. IR-B promotes the metabolic effects of insulin, whereas IR-A rather signals proliferative effects. IR-B is predominantly expressed in the adult liver. Here, we show that the alternative splicing of IR pre-mRNA is dysregulated in a panel of 85 human hepatocellular carcinoma (HCC) while being normal in adjacent nontumor liver tissue. An IR-B to IR-A switch is frequently observed in HCC tumors regardless of tumor etiology. Using pharmacologic and siRNA approaches, we show that the autocrine or paracrine activation of the EGF receptor (EGFR)/mitogen-activated protein/extracellular signal-regulated kinase pathway increases the IR-A:IR-B ratio in HCC cell lines, but not in normal hepatocytes, by upregulating the expression of the splicing factors CUGBP1, hnRNPH, hnRNPA1, hnRNPA2B1, and SF2/ASF. In HCC tumors, there is a significant correlation between the expression of IR-A and that of splicing factors. Dysregulation of IR pre-mRNA splicing was confirmed in a chemically induced model of HCC in rat but not in regenerating livers after partial hepatectomy. This study identifies a mechanism responsible for the generation of mitogenic IR-A and provides a novel interplay between IR and EGFR pathways in HCC. Increased expression of IR-A during neoplastic transformation of hepatocytes could mediate some of the adverse effects of hyperinsulinemia on HCC.
Collapse
Affiliation(s)
- Hamza Chettouh
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine; UPMC Univ Paris 06, UMR_S 938, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. BIOMED RESEARCH INTERNATIONAL 2012; 2013:187204. [PMID: 23533994 PMCID: PMC3591180 DOI: 10.1155/2013/187204] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/13/2012] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human cancers worldwide. HCC is an example of inflammation-related cancer and represents a paradigm of the relation occurring between tumor microenvironment and tumor development. Tumor-associated macrophages (TAMs) are a major component of leukocyte infiltrate of tumors and play a pivotal role in tumor progression of inflammation-related cancer, including HCC. Several studies indicate that, in the tumor microenvironment, TAMs acquire an M2-polarized phenotype and promote angiogenesis, metastasis, and suppression of adaptive immunity through the expression of cytokines, chemokines, growth factors, and matrix metalloproteases. Indeed, an established M2 macrophage population has been associated with poor prognosis in HCC. The molecular links that connect cancer cells and TAMs are not completely known, but recent studies have demonstrated that NF-κB, STAT-3, and HIF-1 signaling pathways play key roles in this crosstalk. In this paper, we discuss the current knowledge about the role of TAMs in HCC development, highlighting the role of TAM-derived cytokines, chemokines, and growth factors in the initiation and progression of liver cancer and outlining the signaling pathways involved in the interplay between cancer cells and TAMs.
Collapse
|
30
|
Latasa MU, Salis F, Urtasun R, Garcia-Irigoyen O, Elizalde M, Uriarte I, Santamaria M, Feo F, Pascale RM, Prieto J, Berasain C, Avila MA. Regulation of amphiregulin gene expression by β-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system. PLoS One 2012; 7:e52711. [PMID: 23285165 PMCID: PMC3527604 DOI: 10.1371/journal.pone.0052711] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/20/2012] [Indexed: 01/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR) signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies. We and others have identified a central role for the EGFR ligand amphiregulin (AR) in the proliferation, survival and drug resistance of HCC cells. AR expression is frequently up-regulated in HCC tissues and cells through mechanisms not completely known. Here we identify the β-catenin signaling pathway as a novel mechanism leading to transcriptional activation of the AR gene in human HCC cells. Activation of β-catenin signaling, or expression of the T41A β-catenin active mutant, led to the induction of AR expression involving three specific β-catenin-Tcf responsive elements in its proximal promoter. We demonstrate that HCC cells expressing the T41A β-catenin active mutant show enhanced proliferation that is dependent in part on AR expression and EGFR signaling. We also demonstrate here a novel cross-talk of the EGFR system with fibroblast growth factor 19 (FGF19). FGF19 is a recently identified driver gene in hepatocarcinogenesis and an activator of β-catenin signaling in HCC and colon cancer cells. We show that FGF19 induced AR gene expression through the β-catenin pathway in human HCC cells. Importantly, AR up-regulation and EGFR signaling participated in the induction of cyclin D1 and cell proliferation elicited by FGF19. Finally, we demonstrate a positive correlation between FGF19 and AR expression in human HCC tissues, therefore supporting in clinical samples our experimental observations. These findings identify the AR/EGFR system as a key mediator of FGF19 responses in HCC cells involving β-catenin signaling, and suggest that combined targeting of FGF19 and AR/EGFR may enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Maria U. Latasa
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Fabiana Salis
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Raquel Urtasun
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Oihane Garcia-Irigoyen
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Maria Elizalde
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
| | - Monica Santamaria
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Francesco Feo
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Rosa M. Pascale
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
- * E-mail: (CB); (MAA)
| | - Matías A. Avila
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
- * E-mail: (CB); (MAA)
| |
Collapse
|
31
|
Abstract
Erlotinib is a small-molecular inhibitor of epidermal growth factor receptor (EGFR). Here, we identify that cancerous inhibitor of protein phosphatase 2A (CIP2A) is a major determinant mediating erlotinib-induced apoptosis in hepatocellular carcinoma (HCC). Erlotinib showed differential effects on apoptosis in 4 human HCC cell lines. Erlotinib induced significant apoptosis in Hep3B and PLC5 cell lines; however, Huh-7 and HA59T cell lines showed resistance to erlotinib-induced apoptosis at all tested doses. Down-regulation of CIP2A, a cellular inhibitor of protein phosphatase 2A (PP2A), mediated the apoptotic effect of erlotinib in HCC. Erlotinib inhibited CIP2A in a dose- and time-dependent manner in all sensitive HCC cells whereas no alterations in CIP2A were found in resistant cells. Overexpression of CIP2A upregulated phospho-Akt and protected Hep3B cells from erlotinib-induced apoptosis. In addition, silencing CIP2A by siRNA restored the effects of erlotinib in Huh-7 cells. Moreover, adding okadaic acid, a PP2A inhibitor, abolished the effects of erlotinib on apoptosis in Hep3B cells; and forskolin, a PP2A agonist enhanced the effect of erlotinib in resistant HA59T cells. Combining Akt inhibitor MK-2206 with erlotinib restored the sensitivity of HA59T cells to erlotinib. Furthermore, in vivo xenograft data showed that erlotinib inhibited the growth of PLC5 tumor but had no effect on Huh-7 tumor. Erlotinib downregulated CIP2A and upregulated PP2A activity in PLC5 tumors, but not in Huh-7 tumors. In conclusion, inhibition of CIP2A determines the effects of erlotinib on apoptosis in HCC. CIP2A may be useful as a therapeutic biomarker for predicting clinical response to erlotinib in HCC treatment.
Collapse
|
32
|
Tveteraas IH, Müller KM, Aasrum M, Ødegård J, Dajani O, Guren T, Sandnes D, Christoffersen T. Mechanisms involved in PGE2-induced transactivation of the epidermal growth factor receptor in MH1C1 hepatocarcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:72. [PMID: 22967907 PMCID: PMC3542006 DOI: 10.1186/1756-9966-31-72] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/01/2012] [Indexed: 12/31/2022]
Abstract
Background It is important to understand the mechanisms by which the cells integrate signals from different receptors. Several lines of evidence implicate epidermal growth factor (EGF) receptor (EGFR) in the pathophysiology of hepatocarcinomas. Data also suggest a role of prostaglandins in some of these tumours, through their receptors of the G protein-coupled receptor (GPCR) family. In this study we have investigated mechanisms of interaction between signalling from prostaglandin receptors and EGFR in hepatocarcinoma cells. Methods The rat hepatocarcinoma cell line MH1C1 and normal rat hepatocytes in primary culture were stimulated with EGF or prostaglandin E2 (PGE2) and in some experiments also PGF2α. DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA, phosphorylation of proteins in signalling pathways was assessed by Western blotting, mRNA expression of prostaglandin receptors was determined using qRT-PCR, accumulation of inositol phosphates was measured by incorporation of radiolabelled inositol, and cAMP was determined by radioimmunoassay. Results In the MH1C1 hepatocarcinoma cells, stimulation with PGE2 or PGF2α caused phosphorylation of the EGFR, Akt, and ERK, which could be blocked by the EGFR tyrosine kinase inhibitor gefitinib. This did not occur in primary hepatocytes. qRT-PCR revealed expression of EP1, EP4, and FP receptor mRNA in MH1C1 cells. PGE2 stimulated accumulation of inositol phosphates but not cAMP in these cells, suggesting signalling via PLCβ. While pretreatment with EP1 and EP4 receptor antagonists did not inhibit the effect of PGE2, pretreatment with an FP receptor antagonist blocked the phosphorylation of EGFR, Akt and ERK. Further studies suggested that the PGE2-induced signal was mediated via Ca2+ release and not PKC activation, and that it proceeded through Src and shedding of membrane-bound EGFR ligand precursors by proteinases of the ADAM family. Conclusion The results indicate that in MH1C1 cells, unlike normal hepatocytes, PGE2 activates the MEK/ERK and PI3K/Akt pathways by transactivation of the EGFR, thus diversifying the GPCR-mediated signal. The data also suggest that the underlying mechanisms in these cells involve FP receptors, PLCβ, Ca2+, Src, and proteinase-mediated release of membrane-associated EGFR ligand(s).
Collapse
Affiliation(s)
- Ingun Heiene Tveteraas
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P,O,Box 1057 Blindern, N-0316 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Blivet-Van Eggelpoël MJ, Chettouh H, Fartoux L, Aoudjehane L, Barbu V, Rey C, Priam S, Housset C, Rosmorduc O, Desbois-Mouthon C. Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. J Hepatol 2012; 57:108-15. [PMID: 22414764 DOI: 10.1016/j.jhep.2012.02.019] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/06/2012] [Accepted: 02/01/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Sorafenib is the standard of care for the treatment of advanced hepatocellular carcinoma (HCC). However, primary and acquired resistance is observed in patients. We examined whether gefitinib, which inhibits both epidermal growth factor receptor (EGFR) and HER-3 phosphorylation, could improve HCC cell response to sorafenib. METHODS Sorafenib and gefitinib were tested in HCC tumor xenografts and in sorafenib-sensitive and sorafenib-resistant HCC cell lines. Biomarkers relevant to the HER system were analyzed by Western blotting and ELISA. RNA interference was used to downregulate the HER system. Amphiregulin concentrations were measured by ELISA in sera from patients under sorafenib treatment. RESULTS Sorafenib combined with gefitinib significantly inhibited tumor growth in mice and reduced cell viability in vitro compared to single agents. In cell lines cultured in 10% serum or treated with EGF, sorafenib alone inhibited phospho-STAT3 while it maintained or even increased phospho-ERK and/or phospho-AKT. The paradoxical effects of sorafenib were prevented by gefitinib or by downregulation of EGFR and HER-3 expression. In cells with acquired resistance to sorafenib, aberrant activation of EGFR/HER-3 receptors as well as overexpression of several EGFR ligands were observed. These enhanced autocrine/paracrine loops led to the constitutive activation of ERK and AKT and conferred increased sensitivity to gefitinib. Increased serum concentrations of amphiregulin were observed in 10 out of 14 patients under sorafenib treatment compared to baselines. CONCLUSIONS Signaling pathways controlled by EGFR and HER-3 restrict sorafenib effects both in naive and sorafenib-resistant HCC cells. Consequently, gefitinib cooperates with sorafenib to increase antiproliferative response and to prevent resistance.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Amphiregulin
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Benzenesulfonates/pharmacology
- Benzenesulfonates/therapeutic use
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Division/drug effects
- Cell Division/physiology
- Drug Resistance, Neoplasm/physiology
- EGF Family of Proteins
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Female
- Gefitinib
- Glycoproteins/metabolism
- Hep G2 Cells
- Humans
- Intercellular Signaling Peptides and Proteins/metabolism
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Male
- Mice
- Mice, Nude
- Middle Aged
- Niacinamide/analogs & derivatives
- Phenylurea Compounds
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Quinazolines/pharmacology
- Receptor, ErbB-3/metabolism
- Sorafenib
- Xenograft Model Antitumor Assays
Collapse
|
34
|
Turner SL, Mangnall D, Bird NC, Bunning RAD, Blair-Zajdel ME. Expression of ADAMTS-1, ADAMTS-4, ADAMTS-5 and TIMP3 by hepatocellular carcinoma cell lines. Int J Oncol 2012; 41:1043-9. [PMID: 22735305 DOI: 10.3892/ijo.2012.1525] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/24/2012] [Indexed: 11/06/2022] Open
Abstract
Little is known about the expression or role of ADAMTS-1, -4 and -5 and their endogenous inhibitor TIMP3 in the liver in physiological and pathological conditions. Their expression was, therefore, investigated in the hepatocellular carcinoma cell lines HepG2 and HuH-7 using qRT-PCR and western blotting, and their cellular localisation by immunocytochemistry. Cytokine treatments were used to assess mRNA and protein modulation. ADAMTS-1, -4, -5 and TIMP3 mRNA and protein were detected in both HepG2 and HuH-7 cells. IL-1β and IL-6 treatments significantly modulated ADAMTS-1 mRNA expression and IL-1β treatment ADAMTS-4 mRNA expression in HepG2 cells. Modulations of mRNA by ≥ 5-fold did not translate to increased protein expression. This study showed that ADAMTS-1, -4, -5 and TIMP3 were expressed at differential levels in hepatocellular carcinoma cell lines. The pro-inflammatory cytokines IL-1β, TNF-α or IL-6 induced changes in mRNA expression, although these did not translate to the protein level.
Collapse
Affiliation(s)
- Sharon L Turner
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | | | | | | | | |
Collapse
|
35
|
Losert A, Lötsch D, Lackner A, Koppensteiner H, Peter-Vörösmarty B, Steiner E, Holzmann K, Grunt T, Schmid K, Marian B, Grasl-Kraupp B, Schulte-Hermann R, Krupitza G, Berger W, Grusch M. The major vault protein mediates resistance to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Lett 2012; 319:164-172. [PMID: 22261339 DOI: 10.1016/j.canlet.2012.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/05/2011] [Accepted: 01/09/2012] [Indexed: 12/16/2022]
Abstract
To better understand the response of HCC to EGFR inhibition, we analyzed factors connected to the resistance of HCC cells against gefitinib. Sensitive HCC3 cells co-expressed EGFR and ErbB3 but lacked kinase-domain mutations in EGFR. Interestingly, expression of MVP was restricted to resistant cell lines, whereas ABCB1 and ABCC1 showed no association with gefitinib resistance. Moreover, ectopic MVP expression in HCC3 cells decreased gefitinib sensitivity, increased AKT phosphorylation and reduced the expression of inflammatory pathway-associated genes, whereas silencing of MVP in Hep3B and HepG2 cells increased sensitivity. These findings suggest MVP as a novel player in resistance against EGFR inhibition.
Collapse
Affiliation(s)
- Annemarie Losert
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Daniela Lötsch
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Andreas Lackner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Herwig Koppensteiner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Barbara Peter-Vörösmarty
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Elisabeth Steiner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Klaus Holzmann
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Thomas Grunt
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Währingergürtel 18-20, A-1090 Vienna, Austria
| | - Katharina Schmid
- Department of Pathology, Medical University of Vienna, Währingergürtel 18-20, A-1090 Vienna, Austria
| | - Brigitte Marian
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Bettina Grasl-Kraupp
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Rolf Schulte-Hermann
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Währingergürtel 18-20, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
36
|
EGFR: A Master Piece in G1/S Phase Transition of Liver Regeneration. Int J Hepatol 2012; 2012:476910. [PMID: 23050157 PMCID: PMC3461622 DOI: 10.1155/2012/476910] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/11/2012] [Indexed: 02/07/2023] Open
Abstract
Unraveling the molecular clues of liver proliferation has become conceivable thanks to the model of two-third hepatectomy. The synchronicity and the well-scheduled aspect of this process allow scientists to slowly decipher this mystery. During this phenomenon, quiescent hepatocytes of the remnant lobes are able to reenter into the cell cycle initiating the G1-S progression synchronously before completing the cell cycle. The major role played by this step of the cell cycle has been emphasized by loss-of-function studies showing a delay or a lack of coordination in the hepatocytes G1-S progression. Two growth factor receptors, c-Met and EGFR, tightly drive this transition. Due to the level of complexity surrounding EGFR signaling, involving numerous ligands, highly controlled regulations and multiple downstream pathways, we chose to focus on the EGFR pathway for this paper. We will first describe the EGFR pathway in its integrity and then address its essential role in the G1/S phase transition for hepatocyte proliferation. Recently, other levels of control have been discovered to monitor this pathway, which will lead us to discuss regulations of the EGFR pathway and highlight the potential effect of misregulations in pathologies.
Collapse
|
37
|
Caja L, Sancho P, Bertran E, Ortiz C, Campbell JS, Fausto N, Fabregat I. The tyrphostin AG1478 inhibits proliferation and induces death of liver tumor cells through EGF receptor-dependent and independent mechanisms. Biochem Pharmacol 2011; 82:1583-92. [DOI: 10.1016/j.bcp.2011.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 12/15/2022]
|
38
|
Dissecting the effect of targeting the epidermal growth factor receptor on TGF-β-induced-apoptosis in human hepatocellular carcinoma cells. J Hepatol 2011; 55:351-8. [PMID: 21147185 DOI: 10.1016/j.jhep.2010.10.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/06/2010] [Accepted: 10/25/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Transforming growth factor-beta (TGF-β) induces apoptosis in hepatocytes, a process that is inhibited by the epidermal growth factor receptor (EGFR) pathway. The aim of this work was to ablate EGFR in hepatocellular carcinoma (HCC) cells to understand its role in impairing TGF-β-induced cell death. METHODS Response to TGF-β in terms of apoptosis was analyzed in different HCC cell lines and the effect of canceling EGFR expression was evaluated. RESULTS TGF-β induces apoptosis in some HCC cells (such as Hep3B, PLC/PRF/5, Huh7, or SNU449), but it also mediates survival signals, coincident with the up-regulation of EGFR ligands. Inhibition of the EGFR, either by targeted knock-down with specific siRNA or by pharmacological inhibition, significantly enhances apoptotic response. TGF-β treatment in EGFR targeted knock-down cells correlates with higher levels of the NADPH oxidase NOX4 and changes in the expression profile of BCL-2 and IAP families. However, other HCC cells, such as HepG2, which show over activation of the Ras/ERKs pathway, SK-Hep1, with an endothelial phenotype, or SNU398, where the TGF-β-Smad signaling is altered, show apoptosis resistance that is not restored through EGFR blockade. CONCLUSIONS The inhibition of EGFR in HCC may enhance TGF-β-induced pro-apoptotic signaling. However, this effect may only concern those tumors with an epithelial phenotype which do not bear alterations in TGF-β signaling nor exhibit an over-activation of the survival pathways downstream of the EGFR.
Collapse
|
39
|
Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer. Cancers (Basel) 2011; 3:2444-61. [PMID: 24212818 PMCID: PMC3757426 DOI: 10.3390/cancers3022444] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/06/2011] [Accepted: 05/12/2011] [Indexed: 01/11/2023] Open
Abstract
Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment.
Collapse
|
40
|
A signature of six genes highlights defects on cell growth and specific metabolic pathways in murine and human hepatocellular carcinoma. Funct Integr Genomics 2011; 11:419-29. [PMID: 21562899 DOI: 10.1007/s10142-011-0230-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC) represents a major health problem as it afflicts an increasing number of patients worldwide. Albeit most of the risk factors for HCC are known, this is a deadly syndrome with a life expectancy at the time of diagnosis of less than 1 year. Definition of the molecular principles governing the neoplastic transformation of the liver is an urgent need to facilitate the clinical management of patients, based on innovative methods to detect the disease in its early stages and on more efficient therapies. In the present study, we have combined the analysis of a murine model and human samples of HCC to identify genes differentially expressed early in the process of hepatocarcinogenesis, using a microarray-based approach. Expression of 190 genes was impaired in murine HCC from which 65 were further validated by low-density array real-time polymerase chain reaction (RT-PCR). The expression of the best 45 genes was then investigated in human samples resulting in 18 genes in which expression was significantly modified in HCC. Among them, JUN, methionine adenosyltransferase 1A and 2A, phosphoglucomutase 1, and acyl CoA dehydrogenase short/branched chain indicate defective cell proliferation as well as one carbon pathway, glucose and fatty acid metabolism, both in HCC and cirrhotic liver, a well-known preneoplastic condition. These alterations were further confirmed in public transcriptomic datasets from other authors. In addition, vasodilator-stimulated phosphoprotein, an actin-associated protein involved in cytoskeleton remodeling, was also found to be increased in the liver and serum of cirrhotic and HCC patients. In addition to revealing the impairment of central metabolic pathways for liver homeostasis, further studies may probe the potential value of the reported genes for the early detection of HCC.
Collapse
|
41
|
Circulating LTD4 in patients with hepatocellular carcinoma. Tumour Biol 2010; 32:139-44. [PMID: 20820981 DOI: 10.1007/s13277-010-0107-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 08/18/2010] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of inflammation-related cancer that usually follows chronic inflammations. Leukotriene D4 (LTD4) is a potent biologically active arachidonic acid-derived lipid mediator that is intimately involved in inflammations and cancers. Although previous researches found overexpression of LTD4 in several other cancers, the circulating LTD4 level in HCC remains unknown. The aim of this study was to examine concentrations of LTD4 and analyze its roles in HCC. The results showed that remarkably high circulating LTD4 in HCC versus healthy subjects (p < 0.001). The levels of LTD4 were neither associated with parameters expressing tumor burden, such as AFP, nor with inflammation factors AST and γ-GT. In addition, the significant increase of circulating LTD4 levels was obtained in patients with HCC accompanied by chronic hepatitis B (CHB), compared with those patients suffering HCC alone(P < 0.05). Furthermore, although the slightly lower levels of LTD4 were detected in HCC patients with non-metastasis and therapy compared with metastasis and non-therapy, no significant differences were detected. Taken together, the levels of circulating LTD4 are elevated in HCC and it may participate in the pathogenesis of HCC as an inflammatory factor from CHB disease to HCC.
Collapse
|
42
|
Wörns MA, Galle PR. Novel inhibitors in development for hepatocellular carcinoma. Expert Opin Investig Drugs 2010; 19:615-29. [PMID: 20374038 DOI: 10.1517/13543781003767418] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE OF THE FIELD The multikinase inhibitor sorafenib was the first agent to demonstrate a survival benefit for patients with locally advanced or metastatic hepatocellular carcinoma (HCC). Although sorafenib represents a landmark in the treatment of HCC and proved molecularly targeted therapy to be effective in this disease, it represents just the first step towards an improvement in systemic therapy. Since then, novel inhibitors have been evaluated in early clinical trials, showing potential activity. AREAS COVERED IN THIS REVIEW This article aims to review novel inhibitors emerging in the field of advanced HCC. An Internet-based search was performed to identify abstracts, clinical trials ( www.clinicaltrials.gov , last accessed 30 November 2009), and original research and review articles. WHAT THE READER WILL GAIN Readers will gain a comprehensive survey of current molecularly targeted therapy approaches in advanced HCC. In addition, challenges such as the design of clinical trials, the assessment of radiological response, the role of combination therapy, and future developments in molecularly targeted therapy are discussed. TAKE HOME MESSAGE Sorafenib is the standard of care in patients with advanced HCC. However, promising novel inhibitors are under investigation. Combined molecularly targeted therapies according to an individual genomic and proteomic profiling will probably lead to more personalised medicine in advanced HCC.
Collapse
Affiliation(s)
- Marcus Alexander Wörns
- University Medicine of the Johannes Gutenberg-University Mainz, Department of Internal Medicine, Mainz, Germany.
| | | |
Collapse
|
43
|
Berasain C, Goñi S, Castillo J, Latasa MU, Prieto J, Ávila MA. Impairment of pre-mRNA splicing in liver disease: Mechanisms and consequences. World J Gastroenterol 2010; 16:3091-102. [PMID: 20593494 PMCID: PMC2896746 DOI: 10.3748/wjg.v16.i25.3091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pre-mRNA splicing is an essential step in the process of gene expression in eukaryotes and consists of the removal of introns and the linking of exons to generate mature mRNAs. This is a highly regulated mechanism that allows the alternative usage of exons, the retention of intronic sequences and the generation of exonic sequences of variable length. Most human genes undergo splicing events, and disruptions of this process have been associated with a variety of diseases, including cancer. Hepatocellular carcinoma (HCC) is a molecularly heterogeneous type of tumor that usually develops in a cirrhotic liver. Alterations in pre-mRNA splicing of some genes have been observed in liver cancer, and although still scarce, the available data suggest that splicing defects may have a role in hepatocarcinogenesis. Here we briefly review the general mechanisms that regulate pre-mRNA splicing, and discuss some examples that illustrate how this process is impaired in liver tumorigenesis, and may contribute to HCC development. We believe that a more thorough examination of pre-mRNA splicing is still needed to accurately draw the molecular portrait of liver cancer. This will surely contribute to a better understanding of the disease and to the development of new effective therapies.
Collapse
|
44
|
Reschke M, Ferby I, Stepniak E, Seitzer N, Horst D, Wagner EF, Ullrich A. Mitogen-inducible gene-6 is a negative regulator of epidermal growth factor receptor signaling in hepatocytes and human hepatocellular carcinoma. Hepatology 2010; 51:1383-90. [PMID: 20044804 DOI: 10.1002/hep.23428] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED The mitogen-inducible gene-6 (mig-6) is a multi-adaptor protein implicated in the regulation of the HER family of receptor tyrosine kinases. We have reported recently that mig-6 is a negative regulator of epidermal growth factor receptor (EGFR)-dependent skin morphogenesis and tumor formation in vivo. In the liver, ablation of mig-6 leads to an increase in EGFR protein levels, suggesting that mig-6 is a negative regulator of EGFR function. In line with this observation, primary hepatocytes isolated from mig-6 knockout and wild-type control mice display sustained mitogenic signaling in response to EGF. In order to explore the role of mig-6 in the liver in vivo, we analyzed liver regeneration in mig-6 knockout and wild-type control mice. Interestingly, mig-6 knockout mice display enhanced hepatocyte proliferation in the initial phases after partial hepatectomy. This phenotype correlates with activation of endogenous EGFR signaling, predominantly through the protein kinase B pathway. In addition, mig-6 is an endogenous inhibitor of EGFR signaling and EGF-induced tumor cell migration in human liver cancer cell lines. Moreover, mig-6 is down-regulated in human hepatocellular carcinoma and this correlates with increased EGFR expression. CONCLUSION Our data implicate mig-6 as a regulator of EGFR activity in hepatocytes and as a suppressor of EGFR signaling in human liver cancer.
Collapse
Affiliation(s)
- Markus Reschke
- Max-Planck Institute of Biochemistry, Department of Molecular Biology, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Hoshida Y, Toffanin S, Lachenmayer A, Villanueva A, Minguez B, Llovet JM. Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin Liver Dis 2010; 30:35-51. [PMID: 20175032 PMCID: PMC3668687 DOI: 10.1055/s-0030-1247131] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of most lethal cancers worldwide. Strategic decisions for the advancement of molecular therapies in this neoplasm require a clear understanding of its molecular classification. Studies indicate aberrant activation of signaling pathways involved in cellular proliferation (e.g., epidermal growth factor and RAS/mitogen-activated protein kinase pathways), survival (e.g., Akt/mechanistic target of rapamycin pathway), differentiation (e.g., Wnt and Hedgehog pathways), and angiogenesis (e.g., vascular endothelial growth factor and platelet-derived growth factor), which is heterogeneously presented in each tumor. Integrative analysis of accumulated genomic datasets has revealed a global scheme of molecular classification of HCC tumors observed across diverse etiologic factors and geographic locations. Such a framework will allow systematic understanding of the frequently co-occurring molecular aberrations to design treatment strategy for each specific subclass of tumors. Accompanied by a growing number of clinical trials of molecular targeted drugs, diagnostic and prognostic biomarker development will be facilitated with special attention on study design and with new assay technologies specialized for archived fixed tissues. A new class of genomic information, microRNA dysregulation and epigenetic alterations, will provide insight for more precise understanding of disease mechanism and expand the opportunity of biomarker/therapeutic target discovery. These efforts will eventually enable personalized management of HCC.
Collapse
Affiliation(s)
- Yujin Hoshida
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
46
|
Pardo-Saganta A, Latasa MU, Castillo J, Alvarez-Asiain L, Perugorría MJ, Sarobe P, Rodriguez-Ortigosa CM, Prieto J, Berasain C, Santamaría M, Avila MA. The epidermal growth factor receptor ligand amphiregulin is a negative regulator of hepatic acute-phase gene expression. J Hepatol 2009; 51:1010-20. [PMID: 19815304 DOI: 10.1016/j.jhep.2009.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/09/2009] [Accepted: 06/25/2009] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIMS The modulation of the hepatic acute-phase reaction (APR) that occurs during inflammation and liver regeneration is important for allowing normal hepatocellular proliferation and the restoration of homeostasis. Activation of acute-phase protein (APP) gene expression by interleukin-6 (IL-6)-type cytokines is thought to be counteracted by growth factors released during hepatic inflammation and regeneration. The epidermal growth factor receptor (EGFR) ligand amphiregulin (AR) is readily induced by inflammatory signals and plays a nonredundant protective role during liver injury. In this paper, we investigated the role of AR as a modulator of liver APP gene expression. METHODS Expression of APP genes was measured in the livers of AR(+/+) and AR(-/-)mice during inflammation and regeneration and in cultured liver cells treated with AR and oncostatin M (OSM). Crosstalk between AR and OSM signalling was studied. RESULTS APP genes were overexpressed in the livers of AR(-/-) mice during inflammation and hepatocellular regeneration. In cultured AR-null hepatocytes and human hepatocellular carcinoma (HCC) cells after AR knockdown, APP gene expression is enhanced. AR counteracts OSM-triggered signal transducer and activator of transcription 3 signalling in hepatocytes and attenuates APP gene transcription. CONCLUSIONS Our data support the relevance of EGFR-mediated signalling in the modulation of cytokine-activated pathways. We have identified AR as a key regulator of hepatic APP gene expression during inflammation and liver regeneration.
Collapse
Affiliation(s)
- Ana Pardo-Saganta
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII n. 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Castillo J, Goñi S, Latasa MU, Perugorría MJ, Calvo A, Muntané J, Bioulac-Sage P, Balabaud C, Prieto J, Avila MA, Berasain C. Amphiregulin induces the alternative splicing of p73 into its oncogenic isoform DeltaEx2p73 in human hepatocellular tumors. Gastroenterology 2009; 137:1805-15.e1-4. [PMID: 19664633 DOI: 10.1053/j.gastro.2009.07.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 06/19/2009] [Accepted: 07/30/2009] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS Inactivation of the product of the tumor suppressor gene TP73 does not usually occur by mutation but rather through expression of truncated isoforms that have dominant-negative effects on p73 and p53. The truncated oncogenic isoform DeltaEx2p73 is expressed in hepatocellular carcinomas (HCC) and is produced through the alternative splicing of p73 pre-messenger RNA (pre-mRNA); however, the underlying mechanisms regulating this process are unknown. METHODS We used human normal and diseased liver tissue samples, as well as human HCC cell lines, to examine the association between activation of epidermal growth factor receptor (EGFR) by its ligand amphiregulin (AR) and the alternative splicing of p73 pre-mRNA into the tumorigenic isoform DeltaEx2p73, via c-Jun N-terminal-kinase-1-mediated signaling. RESULTS DeltaEx2p73 was expressed in a subset of premalignant cirrhotic livers and in otherwise healthy livers that harbored a primary tumor, as well as in HCC tissues. DeltaEx2p73 expression was correlated with that of the EGFR ligand AR, which was previously shown to have a role in hepatocarcinogenesis. Autocrine activation of the EGFR by AR triggered c-Jun N-terminal kinase-1 activity and inhibited the expression of the splicing regulator Slu7, leading to the accumulation of DeltaEx2p73 transcripts in HCC cells. CONCLUSIONS This study provided a mechanism for the generation of protumorigenic DeltaEx2p73 during liver tumorigenesis, via activation of EGFR signaling by AR and c-Jun N-terminal kinase-1 activity, leading to inhibition of the splicing regulator Slu7.
Collapse
Affiliation(s)
- Josefa Castillo
- Division of Hepatology and Gene Therapy, CIMA-University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Berasain C, Perugorria MJ, Latasa MU, Castillo J, Goñi S, Santamaría M, Prieto J, Avila MA. The epidermal growth factor receptor: a link between inflammation and liver cancer. Exp Biol Med (Maywood) 2009; 234:713-25. [PMID: 19429859 DOI: 10.3181/0901-mr-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies have established that many tumours occur in association with persistent inflammation. One clear example of inflammation-related cancer is hepatocellular carcinoma (HCC). HCC slowly unfolds on a background of chronic inflammation triggered by exposure to infectious agents (hepatotropic viruses), toxic compounds (ethanol), or metabolic impairment. The molecular links that connect inflammation and cancer are not completely known, but evidence gathered over the past few years is beginning to define the precise mechanisms. A central role for cytokines such as interleukin-6 (IL-6) and IL-1 (alpha and beta) in liver cancer has been established in experimental models. Besides these inflammatory mediators, mounting evidence points to the dysregulation of specific growth and survival-related pathways in HCC development. Among them is the pathway governed by the epidermal growth factor receptor (EGFR), which can be bound and activated by a broad family of ligands. Of special relevance is the fact that the EGFR engages in extensive crosstalk with other signaling pathways, serving as a "signaling hub" for an increasing list of growth factors, cytokines, and inflammatory mediators. In this review, we summarize the most recent evidences supporting a role for the EGFR system in inflammation-related cell signaling, with special emphasis in liver inflammation and HCC. The molecular dissection of the pathways connecting the inflammatory reaction and neoplasia will facilitate the development of novel and more effective antitumor strategies.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Berasain C, Castillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA. Inflammation and liver cancer: new molecular links . Ann N Y Acad Sci 2009; 1155:206-21. [PMID: 19250206 DOI: 10.1111/j.1749-6632.2009.03704.x] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A connection between inflammation and cancer has been long suspected. Epidemiological studies have established that many tumors occur in association with chronic infectious diseases, and it is also known that persistent inflammation in the absence of infections increases the risk and accelerates the development of cancer. One clear example of inflammation-related cancer is hepatocellular carcinoma (HCC). HCC is a type tumor that slowly unfolds on a background of chronic inflammation mainly triggered by exposure to infectious agents (hepatotropic viruses) or to toxic compounds (ethanol). The molecular links that connect inflammation and cancer are not completely known, but evidences gathered over the past few years are beginning to define the precise mechanisms. In this article we review the most compelling evidences on the role of transcription factors such as NF-kappaB and STAT3, cytokines like IL-6 and IL-1alpha, ligands of the EGF receptor and other inflammatory mediators in cancer development, with special emphasis in HCC. The molecular dissection of the pathways connecting the inflammatory reaction and neoplasia will pave the way for better therapies to treat cancers.
Collapse
Affiliation(s)
- C Berasain
- Division of Hepatology and Gene Therapy, CIMA-Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
A phase II study of lapatinib in patients with advanced biliary tree and hepatocellular cancer. Cancer Chemother Pharmacol 2009; 64:777-83. [PMID: 19169683 DOI: 10.1007/s00280-009-0927-7] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 01/05/2009] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the response to lapatinib, an inhibitor of epidermal growth factor receptors 1 and 2, in patients with advanced bilary tree cancer (BTC) and hepatocellular cancer (HCC). METHODS Lapatinib was dosed at 1,500 mg/day orally continuously. RESULTS Fifty-seven patients were accrued (BTC 17, HCC 40). Therapy was well tolerated. The response in BTC was 0% and in HCC was 5%. The progression free survival (PFS) for BTC and HCC patients was 1.8 (95% CI: 1.7-5.2) months and 2.3 (95% CI: 1.7-5.6) months. The median survival for BTC and HCC patients was 5.2 (95% CI 3.3-infinity) months and 6.2 (95% CI: 5.1-infinity) months. EGFR genotyping indicated HCC patients with <20 repeats have the lowest PFS. The occurrence of any skin rash significantly prolonged PFS and survival. CONCLUSIONS Lapatinib was well-tolerated. There was evidence of activity in HCC, but therapy with lapatinib did not meet the predefined efficacy rate.
Collapse
|