1
|
Joyce M, Falconio FA, Blackhurst L, Prieto-Godino L, French AS, Gilestro GF. Divergent evolution of sleep in Drosophila species. Nat Commun 2024; 15:5091. [PMID: 38876988 PMCID: PMC11178934 DOI: 10.1038/s41467-024-49501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Living organisms synchronize their biological activities with the earth's rotation through the circadian clock, a molecular mechanism that regulates biology and behavior daily. This synchronization factually maximizes positive activities (e.g., social interactions, feeding) during safe periods, and minimizes exposure to dangers (e.g., predation, darkness) typically at night. Beyond basic circadian regulation, some behaviors like sleep have an additional layer of homeostatic control, ensuring those essential activities are fulfilled. While sleep is predominantly governed by the circadian clock, a secondary homeostatic regulator, though not well-understood, ensures adherence to necessary sleep amounts and hints at a fundamental biological function of sleep beyond simple energy conservation and safety. Here we explore sleep regulation across seven Drosophila species with diverse ecological niches, revealing that while circadian-driven sleep aspects are consistent, homeostatic regulation varies significantly. The findings suggest that in Drosophilids, sleep evolved primarily for circadian purposes. The more complex, homeostatically regulated functions of sleep appear to have evolved independently in a species-specific manner, and are not universally conserved. This laboratory model may reproduce and recapitulate primordial sleep evolution.
Collapse
Affiliation(s)
- Michaela Joyce
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Research Institute, London, UK
| | | | | | | | - Alice S French
- Department of Life Sciences, Imperial College London, London, UK.
- The Francis Crick Research Institute, London, UK.
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| | | |
Collapse
|
2
|
Geissmann Q, Beckwith EJ, Gilestro GF. Most sleep does not serve a vital function: Evidence from Drosophila melanogaster. SCIENCE ADVANCES 2019; 5:eaau9253. [PMID: 30801012 PMCID: PMC6382397 DOI: 10.1126/sciadv.aau9253] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Sleep appears to be a universally conserved phenomenon among the animal kingdom, but whether this notable evolutionary conservation underlies a basic vital function is still an open question. Using a machine learning-based video-tracking technology, we conducted a detailed high-throughput analysis of sleep in the fruit fly Drosophila melanogaster, coupled with a lifelong chronic and specific sleep restriction. Our results show that some wild-type flies are virtually sleepless in baseline conditions and that complete, forced sleep restriction is not necessarily a lethal treatment in wild-type D. melanogaster. We also show that circadian drive, and not homeostatic regulation, is the main contributor to sleep pressure in flies. These results offer a new perspective on the biological role of sleep in Drosophila and, potentially, in other species.
Collapse
|
3
|
Rhodes JA, Lane JM, Vlasac IM, Rutter MK, Czeisler CA, Saxena R. Association of DAT1 genetic variants with habitual sleep duration in the UK Biobank. Sleep 2019; 42:5123695. [PMID: 30299516 PMCID: PMC6335867 DOI: 10.1093/sleep/zsy193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/20/2018] [Indexed: 01/29/2023] Open
Abstract
Short sleep duration has been linked to negative health effects, but is a complex phenotype with many contributing factors, including genetic. We evaluated 27 common single nucleotide polymorphisms (SNPs) in candidate genes previously reported to be associated with other sleep variables for association with self-reported habitual sleep duration in the UK Biobank in 111 975 individuals of European ancestry. Genetic variation in DAT1 (rs464049) was significantly associated with sleep duration after correction for multiple testing (p = 4.00 × 10-5), whereas SNPs correlated to a previously studied variable number tandem repeat (VNTR) in DAT1 were not significant in this population. We also replicated a previously reported association in DRD2. Independent replication of these associations and a second signal in DRD2 (rs11214607) was observed in an additional 261 870 participants of European ancestry from the UK Biobank. Meta-analysis confirmed genome-wide significant association of DAT1 rs464049 (G, beta [standard error, SE] = -0.96 [0.18] minutes/allele, p = 5.71 × 10-10) and study-wide significant association of DRD2 (rs17601612, C, beta [SE] = -0.66 [0.18] minutes/allele, p = 1.77 × 10-5; rs11214607, C, beta [SE] = 1.08 (0.24) minutes/allele, p = 1.39 × 10-6). Overall, SNPs in two dopamine-related genes were significantly associated with sleep duration, highlighting the important link of the dopamine system with adult sleep duration in humans.
Collapse
Affiliation(s)
- Jessica A Rhodes
- Department of Organismic and Evolutionary Biology, Harvard College, Cambridge, MA
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Jacqueline M Lane
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Irma M Vlasac
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Martin K Rutter
- Manchester Diabetes Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles A Czeisler
- Department of Organismic and Evolutionary Biology, Harvard College, Cambridge, MA
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
4
|
Shin M, Venton BJ. Electrochemical Measurements of Acetylcholine-Stimulated Dopamine Release in Adult Drosophila melanogaster Brains. Anal Chem 2018; 90:10318-10325. [PMID: 30073836 PMCID: PMC6135655 DOI: 10.1021/acs.analchem.8b02114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The fruit fly, Drosophila melanogaster, is a popular model organism for studying neurological processes and diseases due to the availability of sophisticated genetic tools. While endogenous neurotransmitter release has been characterized in Drosophila larvae, here, we measured endogenous dopamine release in isolated adult Drosophila brains for the first time. Dopamine was measured with fast-scan cyclic voltammetry (FSCV), and acetylcholine or nicotine were used as the stimulus, as both interact with nicotinic acetylcholine receptors (nAChRs) to evoke endogenous dopamine release. Stimulations with 10 pmol of acetylcholine elicited 0.26 ± 0.05 μM dopamine, while 70 fmol nicotine stimulations evoked 0.29 ± 0.03 μM in the central complex. Nicotine-stimulated dopamine release lasted much longer than acetylcholine-stimulated release. Dopamine release is reduced in the presence of nAChR antagonist α-bungarotoxin and the sodium channel blocker tetrodotoxin, indicating release is mediated by nAChRs and exocytosis. The identity of dopamine was confirmed by using 3-iodotyrosine, a dopamine synthesis inhibitor, and by confirming that release was not changed in octopamine synthesis mutant flies, Tdc2 RO54. Additionally, the half-decay time ( t50) in fumin (67 ± 15 s), dopamine transporter mutant flies, was larger than in wild-type flies (16 ± 3.7 s) further proving that acetylcholine stimulation evokes dopamine release. This study demonstrates that stimulation of nAChRs can be used to elicit endogenous dopamine release in adult fly brains, which will be a useful technique for future studies probing dopamine changes during aging or in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mimi Shin
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901
| |
Collapse
|
5
|
Big Lessons from Tiny Flies: Drosophila melanogaster as a Model to Explore Dysfunction of Dopaminergic and Serotonergic Neurotransmitter Systems. Int J Mol Sci 2018; 19:ijms19061788. [PMID: 29914172 PMCID: PMC6032372 DOI: 10.3390/ijms19061788] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
The brain of Drosophila melanogaster is comprised of some 100,000 neurons, 127 and 80 of which are dopaminergic and serotonergic, respectively. Their activity regulates behavioral functions equivalent to those in mammals, e.g., motor activity, reward and aversion, memory formation, feeding, sexual appetite, etc. Mammalian dopaminergic and serotonergic neurons are known to be heterogeneous. They differ in their projections and in their gene expression profile. A sophisticated genetic tool box is available, which allows for targeting virtually any gene with amazing precision in Drosophila melanogaster. Similarly, Drosophila genes can be replaced by their human orthologs including disease-associated alleles. Finally, genetic manipulation can be restricted to single fly neurons. This has allowed for addressing the role of individual neurons in circuits, which determine attraction and aversion, sleep and arousal, odor preference, etc. Flies harboring mutated human orthologs provide models which can be interrogated to understand the effect of the mutant protein on cell fate and neuronal connectivity. These models are also useful for proof-of-concept studies to examine the corrective action of therapeutic strategies. Finally, experiments in Drosophila can be readily scaled up to an extent, which allows for drug screening with reasonably high throughput.
Collapse
|
6
|
Genomic Patterns of Geographic Differentiation in Drosophila simulans. Genetics 2016; 202:1229-40. [PMID: 26801179 DOI: 10.1534/genetics.115.185496] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/16/2016] [Indexed: 11/18/2022] Open
Abstract
Geographic patterns of genetic differentiation have long been used to understand population history and to learn about the biological mechanisms of adaptation. Here we present an examination of genomic patterns of differentiation between northern and southern populations of Australian and North American Drosophila simulans, with an emphasis on characterizing signals of parallel differentiation. We report on the genomic scale of differentiation and functional enrichment of outlier SNPs. While, overall, signals of shared differentiation are modest, we find the strongest support for parallel differentiation in genomic regions that are associated with regulation. Comparisons to Drosophila melanogaster yield potential candidate genes involved in local adaptation in both species, providing insight into common selective pressures and responses. In contrast to D. melanogaster, in D. simulans we observe patterns of variation that are inconsistent with a model of temperate adaptation out of a tropical ancestral range, highlighting potential differences in demographic and colonization histories of this cosmopolitan species pair.
Collapse
|
7
|
Ueno T, Tomita J, Tanimoto H, Endo K, Ito K, Kume S, Kume K. Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat Neurosci 2012; 15:1516-23. [PMID: 23064381 DOI: 10.1038/nn.3238] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/17/2012] [Indexed: 12/11/2022]
Abstract
Sleep is required to maintain physiological functions, including memory, and is regulated by monoamines across species. Enhancement of dopamine signals by a mutation in the dopamine transporter (DAT) decreases sleep, but the underlying dopamine circuit responsible for this remains unknown. We found that the D1 dopamine receptor (DA1) in the dorsal fan-shaped body (dFSB) mediates the arousal effect of dopamine in Drosophila. The short sleep phenotype of the DAT mutant was completely rescued by an additional mutation in the DA1 (also known as DopR) gene, but expression of wild-type DA1 in the dFSB restored the short sleep phenotype. We found anatomical and physiological connections between dopamine neurons and the dFSB neuron. Finally, we used mosaic analysis with a repressive marker and found that a single dopamine neuron projecting to the FSB activated arousal. These results suggest that a local dopamine pathway regulates sleep.
Collapse
Affiliation(s)
- Taro Ueno
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Ueno T, Tomita J, Kume S, Kume K. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster. PLoS One 2012; 7:e31513. [PMID: 22347491 PMCID: PMC3274542 DOI: 10.1371/journal.pone.0031513] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 01/11/2012] [Indexed: 01/06/2023] Open
Abstract
Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shits induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine), which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.
Collapse
Affiliation(s)
- Taro Ueno
- Department of Stem Cell Biology, Institute of Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Jun Tomita
- Department of Stem Cell Biology, Institute of Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Global COE program, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Kume
- Department of Stem Cell Biology, Institute of Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
9
|
Yamazaki M, Tomita J, Takahama K, Ueno T, Mitsuyoshi M, Sakamoto E, Kume S, Kume K. High calorie diet augments age-associats sleep impairment in Drosophila. Biochem Biophys Res Commun 2012; 417:812-6. [DOI: 10.1016/j.bbrc.2011.12.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 11/24/2022]
|
10
|
Pan-neuronal knockdown of the c-Jun N-terminal Kinase (JNK) results in a reduction in sleep and longevity in Drosophila. Biochem Biophys Res Commun 2011; 417:807-11. [PMID: 22197814 DOI: 10.1016/j.bbrc.2011.12.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 12/16/2022]
Abstract
Sleep is a unique behavioral state that is conserved between species, and sleep regulation is closely associated to metabolism and aging. The fruit fly, Drosophila melanogaster has been used to study the molecular mechanism underlying these physiological processes. Here we show that the c-Jun N-terminal Kinase (JNK) gene, known as basket (bsk) in Drosophila, functions in neurons to regulate both sleep and longevity in Drosophila. Pan-neuronal knockdown of JNK mRNA expression by RNA interference resulted in a decrease in both sleep and longevity. A heterozygous knockout of JNK showed similar effects, indicating the molecular specificity. The JNK knockdown showed a normal arousal threshold and sleep rebound, suggesting that the basic sleep mechanism was not affected. JNK is known to be involved in the insulin pathway, which regulates metabolism and longevity. A JNK knockdown in insulin-producing neurons in the pars intercerebralis had slight effects on sleep. However, knocking down JNK in the mushroom body had a significant effect on sleep. These data suggest a unique sleep regulating pathway for JNK.
Collapse
|