1
|
Wilson SM, Oba PM, Applegate CC, Koziol SA, Panasevich MR, Norton SA, Swanson KS. Effects of a Saccharomyces cerevisiae fermentation product-supplemented diet on fecal characteristics, oxidative stress, and blood gene expression of adult dogs undergoing transport stress. J Anim Sci 2023; 101:skac378. [PMID: 36373401 PMCID: PMC9838799 DOI: 10.1093/jas/skac378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Previously, a Saccharomyces cerevisiae fermentation product (SCFP) was shown to positively alter fecal microbiota, fecal metabolites, oxidative stress, and circulating immune cell function of adult dogs. The objective of this study was to measure the effects of SCFP on fecal characteristics, serum oxidative stress biomarkers, and whole blood gene expression of dogs undergoing transport stress. Sixteen adult pointer dogs [8M, 8F; mean age = 6.7 ± 2.1 yr; mean body weight (BW) = 25.5 ± 3.9 kg] were used in a randomized crossover design study. All dogs were fed a control diet for 4 wk, then randomly assigned to a control or SCFP-supplemented diet (formulated to include approximately 0.13% of the active SCFP ingredient) and fed to maintain BW for 11 wk. A 6-wk washout preceded the second 11-wk experimental period with dogs receiving opposite treatments. After 11 wk, fresh fecal and blood samples were collected before and after transport in a van for 45 min. Change from baseline data (i.e., before and after transport) were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and P < 0.10 being trends. Change in serum malondialdehyde concentrations increased (P < 0.05) and serum 8-isoprostane concentrations tended to increase (P < 0.10) in dogs fed SCFP, but decreased (P < 0.05) in control dogs after transport. Other serum markers were unaffected by diet during transport stress. Fecal dry matter percentage tended to be affected (P < 0.10) by diet during transport stress, being reduced in control dogs, but stable in dogs fed SCFP. Other fecal characteristics were unaffected by diet during transport stress. Genes associated with activation of innate immunity were impacted by diet in response to transport stress, with blood cyclooxygenase-2 and malondialdehyde mRNA expression being increased (P < 0.05) in control dogs, but stable or decreased in dogs fed SCFP. Expression of other genes was unaffected by diet during transport stress. These data suggest that the benefits of feeding a SCFP during transport stress may be mediated through suppression of innate immune cell activation.
Collapse
Affiliation(s)
- Sofia M Wilson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine C Applegate
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Samantha A Koziol
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Yen TH, Chang CW, Tsai HR, Fu JF, Yen HC. Immunosuppressive therapies attenuate paraquat-induced renal dysfunction by suppressing inflammatory responses and lipid peroxidation. Free Radic Biol Med 2022; 191:249-260. [PMID: 36031164 DOI: 10.1016/j.freeradbiomed.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
Abstract
Although paraquat (PQ) induces oxidative damage and inflammatory responses in the lungs, the mechanism underlying PQ-induced acute kidney injury in patients is unclear. Immunosuppressive therapy with glucocorticoids and the immunosuppressant cyclophosphamide (CP) has been employed to treat patients with PQ poisoning. This study examined whether PQ could concurrently cause renal injury, inflammatory responses, and oxidative damage in the kidneys, and whether CP and dexamethasone (DEX) could suppress PQ-induced alterations. Mice were assigned to eight groups: Control, PQ, DEX, PQ plus DEX, CP, PQ plus CP, DEX plus CP, and PQ plus DEX with CP. DEX, CP, and DEX plus CP reversed PQ-induced renal injury, as indicated by urinary albumin-to-creatinine ratios and urea nitrogen levels in serum. The treatments also attenuated PQ-induced renal infiltration of leukocytes and macrophages and induction of the Il6, Tnf, Icam, Cxcl2, Tlr4, and Tlr9 genes encoding the inflammatory mediators in the kidneys. However, DEX only partially suppressed the macrophage infiltration, whereas DEX plus CP provided stronger protection than DEX or CP alone for the induction of Il6 and Cxcl2. Moreover, through the detection of F2-isoprostanes (F2-IsoPs) and isofurans in the kidneys and lungs and F2-IsoPs in the plasma and urine, the therapies were found to suppress PQ-induced lipid peroxidation, although DEX was less effective. Finally, PQ decreased ubiquinol-9:ubiquinone-9 ratios in the kidneys. This effect of PQ was not found under CP treatment, but the ratio was lower than that of the control group. Our findings suggest that the suppression of PQ-induced inflammatory responses by DEX and CP in the kidneys can mitigate oxidative damage and acute kidney injury.
Collapse
Affiliation(s)
- Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Poison Center, Kidney Research Center, And Center for Tissue Engineering, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Wei Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huei-Ru Tsai
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Poison Center, Kidney Research Center, And Center for Tissue Engineering, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jen-Fen Fu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiu-Chuan Yen
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Wilson SM, Oba PM, Koziol SA, Applegate CC, Soto-Diaz K, Steelman AJ, Panasevich MR, Norton SA, Swanson KS. Effects of a Saccharomyces cerevisiae fermentation product-supplemented diet on circulating immune cells and oxidative stress markers of dogs. J Anim Sci 2022; 100:skac245. [PMID: 36044986 PMCID: PMC9433306 DOI: 10.1093/jas/skac245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 11/14/2022] Open
Abstract
Feeding Saccharomyces cerevisiae fermentation product (SCFP) has previously altered fecal microbiota, fecal metabolites, and immune function of adult dogs. The objective of this study was to investigate measures of skin and coat health, changes in circulating immune cell numbers and activity, antioxidant status, and oxidative stress marker concentrations of healthy adult dogs fed a SCFP-supplemented extruded diet. Sixteen adult English Pointer dogs (8 M, 8 F; mean age = 6.7 ± 2.1 yr; mean BW = 25.9 ± 4.5 kg) were used in a randomized crossover design study. All dogs were fed a control diet for 4 wk, then randomly assigned to either the control or SCFP-supplemented diet (0.13% of active SCFP) and fed to maintain BW for 10 wk. A 6-wk washout preceded the second 10-wk experimental period with dogs receiving opposite treatments. After baseline/washout and treatment phases, skin and coat were scored, and pre and postprandial blood samples were collected. Transepidermal water loss (TEWL), hydration status, and sebum concentrations were measured (back, inguinal, ear) using external probes. Oxidative stress and immune cell function were measured by ELISA, circulating immune cell percentages were analyzed by flow cytometry, and mRNA expression of oxidative stress genes was analyzed by RT-PCR. Change from baseline data was analyzed using the Mixed Models procedure of SAS 9.4. Sebum concentration changes tended to be higher (P < 0.10; inguinal, ear) in SCFP-fed dogs than in controls. TEWL change was lower (P < 0.05) on the back of controls, but lower (P = 0.054) on the ear of SCFP-fed dogs. Delayed-type hypersensitivity response was affected by diet and time post-inoculation. Other skin and coat measures and scores were not affected by diet. Changes in unstimulated lymphocytes and stimulated IFN-γ secreting T cells were lower (P < 0.05) in SCFP-fed dogs, while changes in stimulated T cells were lower (P < 0.05) in control-fed dogs. Upon stimulation, the percentage of cytotoxic T cells delta trended lower (P < 0.10) in SCFP-fed dogs. Change in serum superoxide dismutase concentrations was higher (P < 0.05) and change in catalase mRNA expression was lower (P < 0.05) in SCFP-fed dogs. All other measurements of immune cell populations, oxidative stress markers, and gene expression were unaffected by treatment. In conclusion, our data suggest that SCFP positively impacts indicators of skin and coat health of dogs, modulates immune responses, and enhances some antioxidant defense markers.
Collapse
Affiliation(s)
- Sofia M Wilson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Samantha A Koziol
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine C Applegate
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Katiria Soto-Diaz
- Neuroscience program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801,USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Nattagh-Eshtivani E, Gheflati A, Barghchi H, Rahbarinejad P, Hachem K, Shalaby MN, Abdelbasset WK, Ranjbar G, Olegovich Bokov D, Rahimi P, Gholizadeh Navashenaq J, Pahlavani N. The role of Pycnogenol in the control of inflammation and oxidative stress in chronic diseases: Molecular aspects. Phytother Res 2022; 36:2352-2374. [PMID: 35583807 DOI: 10.1002/ptr.7454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
The prevalence of chronic diseases has increased significantly with the rising trend of sedentary lifestyles, reduced physical activity, and dietary modifications in recent decades. Inflammation and oxidative stress play a key role in the pathophysiology of several chronic diseases, such as type II diabetes, cardiovascular diseases, and hepatic conditions. Therefore, reducing inflammation and oxidative stress may be beneficial in the prevention and treatment of various chronic disorders. Since chronic diseases are not completely curable, various methods have been proposed for their control. Complementary therapies and the use of natural antioxidant and antiinflammatory compounds are among these novel approaches. Pycnogenol (PYC) is a natural compound that could control inflammation and oxidative stress. Furthermore, some previous studies have shown that PYC could effectively reduce inflammation through signaling the downstream of insulin receptors, inhibiting the phosphorylation of the serine residues of insulin receptor substrate-1, reducing pro-inflammatory cytokines and oxidative stress indices through the stimulation of antioxidant pathways, increasing free radical scavenging activities, preventing lipid peroxidation, and protecting the erythrocytes in glucose-6-phosphate dehydrogenase-deficient individuals, although these effects have not been fully proved. The present study aimed to comprehensively review the evidence concerning the positive physiological and pharmacological properties of PYC, with an emphasis on the therapeutic potential of this natural component for enhancing human health.
Collapse
Affiliation(s)
- Elyas Nattagh-Eshtivani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Gheflati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Barghchi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Rahbarinejad
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences, University of Saida- Dr Moulay Tahar, Saida, Algeria
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Golnaz Ranjbar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
5
|
Sauriasari R, Zulfa AI, Sekar AP, Azmi NU, Tan XW, Matsuura E. Role of urinary H2O2, 8-iso-PGF2α, and serum oxLDL/β2GP1 complex in the diabetic kidney disease. PLoS One 2022; 17:e0263113. [PMID: 35381015 PMCID: PMC8982868 DOI: 10.1371/journal.pone.0263113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Oxidant species is reported as a major determinant in the pathophysiology of diabetic kidney disease. However, reactive oxygen species (ROS) formation in the initial phase and progressing phase of diabetic kidney disease remains unclear. Therefore, we conducted this study to find out what ROS and their modified product are associated with eGFR in type 2 diabetes mellitus (T2DM) patients. A cross-sectional study was performed on 227 T2DM patients. The study subjects were divided into three groups based on their eGFR stage (Group 1, eGFR > 89 ml/min/1.73 m2; Group 2, eGFR = 60-89 ml/min/1.73 m2; and Group 3, eGFR < 60 ml/min/1.73 m2). Enzyme-linked immunosorbent assay (ELISA) was used to measure serum oxLDL/β2GPI complex and urinary 8-iso-PGF2α, while ferrous ion oxidation xylenol orange method 1 (FOX-1) was used to measure urinary hydrogen peroxide (H2O2). H2O2 significantly decreased across the groups, whereas OxLDL/β2GPI complex increased, but not significant, and there was no trend for 8-iso-PGF2α. Consistently, in the total study population, only H2O2 showed correlation with eGFR (r = 0.161, p = 0.015). Multiple linear regression analysis showed that significant factors for increased eGFR were H2O2, diastolic blood pressure, and female. Whereas increased systolic blood pressure and age were significant factors affecting the decrease of eGFR. We also found that urinary H2O2 had correlation with serum oxLDL/β2GPI complex in total population. This finding could lead to further research on urinary H2O2 for early detection and research on novel therapies of diabetic kidney disease.
Collapse
Affiliation(s)
- Rani Sauriasari
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
- * E-mail:
| | | | | | | | - Xian Wen Tan
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiji Matsuura
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Kongtasai T, Paepe D, Meyer E, Mortier F, Marynissen S, Stammeleer L, Defauw P, Daminet S. Renal biomarkers in cats: A review of the current status in chronic kidney disease. J Vet Intern Med 2022; 36:379-396. [PMID: 35218249 PMCID: PMC8965260 DOI: 10.1111/jvim.16377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022] Open
Abstract
Serum creatinine concentration, the classical biomarker of chronic kidney disease (CKD) in cats, has important limitations that decrease its value as a biomarker of early CKD. Recently, serum symmetric dimethylarginine concentration was introduced as a novel glomerular filtration rate biomarker for the early detection of CKD in cats. However, data on its specificity are still limited. The limitations of conventional biomarkers and the desire for early therapeutic intervention in cats with CKD to improve outcomes have prompted the discovery and validation of novel renal biomarkers to detect glomerular or tubular dysfunction. Changes in the serum or urinary concentrations of these biomarkers may indicate early kidney damage or predict the progression of kidney before changes in conventional biomarkers are detectable. This review summarizes current knowledge on renal biomarkers in CKD in cats, a field that has progressed substantially over the last 5 years.
Collapse
Affiliation(s)
- Thirawut Kongtasai
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium.,Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Dominique Paepe
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Femke Mortier
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Sofie Marynissen
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Lisa Stammeleer
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Pieter Defauw
- Lumbry Park Veterinary Specialists, Alton, United Kingdom
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| |
Collapse
|
7
|
Akhiani O, Zangouie N, Laripour R, Rashidian A, Ebrahimi M, Hami Z, Chamanara M. Sub-Flap Use of Nano-Selenium Oxide Solution Enhances Skin Flap Viability in Rats: Study the Novel Role of mTOR and p-mTOR Expression. Aesthetic Plast Surg 2022; 46:1452-1462. [PMID: 35048147 DOI: 10.1007/s00266-021-02681-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/14/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nano-selenium oxide (NSeO) particles are highly noticeable due to their tissue-protective and antioxidant properties. For this purpose, the effect of NSeO was evaluated on skin flap survival and flap oxidative stress markers in rats. Also, another effect of NSeO was investigated on the expression of mTOR and p-mTOR. MATERIALS AND METHODS Fifty rats were divided into five groups of ten. Skin flap size was 3×8 cm in all groups. Groups were: (1) Sham, (2) Flap Surgery group, (3) Flap Surgery + NSeO, (4) Flap Surgery + Rapamycin (mTOR inhibitor), (5) Flap Surgery + Rapamycin + NSeO. The flap necrosis rate was computed using the paper pattern method on day seven after surgery. After day seven, flap tissues were collected for histological evaluations. Then, malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured. Furthermore, the expression levels of mTOR and p-mTOR were measured using the Western blot method. RESULTS Treatment with NSeO significantly reduced necrosis (P<0.05). It also resulted in a decrease in MDA level (P<0.05). Histologically, NSeO reduced inflammation and increased positive signs of tissue healing (epithelialization, neovascularization, fibroblast migration, and granulation tissue). NSeO increased SOD activity significantly (P<0.05), whereas, using rapamycin reversed these effects. Also, in all groups, mTOR changes were not significant. Additionally, p-mTOR expression was significantly reduced in groups that rapamycin was injected. CONCLUSION NSeO can reduce flap necrosis and enhance tissue healing in rats. So, it can potentially be used clinically to promote tissue repair significantly, and its effects are independent of the mTOR pathway. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Omid Akhiani
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and toxicology, School of Pharmacy, Iran university of medical sciences, Tehran, Iran
| | - Nasim Zangouie
- Pharmaceutical Sciences Branch, Tehran Islamic Azad University, Tehran, Iran
| | - Reza Laripour
- Center for Educational Research in Medical Sciences, University of Medical Sciences, Tehran, Iran
- School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ebrahimi
- Department of pharmacology and toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Zahra Hami
- Toxicology Research Center, Aja University of Medical Sciences, 1411718541, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.
- Toxicology Research Center, Aja University of Medical Sciences, 1411718541, Tehran, Iran.
| |
Collapse
|
8
|
Do Seminal Isoprostanes Have a Role in Assisted Reproduction Outcome? Life (Basel) 2021; 11:life11070675. [PMID: 34357046 PMCID: PMC8303377 DOI: 10.3390/life11070675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022] Open
Abstract
F2-isoprostanes (F2-IsoPs), stereoisomers of prostaglandin F2α generated by the free radical-induced oxidation of arachidonic acid, have been associated with different male infertility conditions. This study aimed to evaluate the role of seminal isoprostane levels and sperm characteristics in the reproductive outcome and embryo quality of 49 infertile couples. Semen analysis was performed following WHO guidelines. Sperm chromatin maturity was detected using an aniline blue (AB) assay, and DNA integrity was assessed using the acridine orange (AO) test. Seminal F2-IsoP levels were quantified by gas chromatography/negative ion chemical ionization tandem mass spectrometry (GC/NICI–MS/MS) analysis. Correlations among variables and their impact on in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) outcome were investigated. F2-IsoP levels are positively correlated with double-stranded DNA sperm (p < 0.001) and negatively correlated with mature sperm chromatin (p < 0.001). Patients with positive outcomes had an increased percentage of sperm with double-stranded DNA, as did patients producing high-quality embryo, who showed higher F2-IsoP levels compared to those detected in the low-quality embryo group. An intriguing relationship between a mild increase in F2-IsoP levels, DNA integrity, and embryo quality seems to indicate that the non-enzymatic oxidation of arachidonic acid can be also a marker of metabolic activity in human semen.
Collapse
|
9
|
Micro-extraction by packed sorbent combined with UHPLC-ESI-MS/MS for the determination of prostanoids and isoprostanoids in dried blood spots. Talanta 2020; 206:120236. [DOI: 10.1016/j.talanta.2019.120236] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/22/2023]
|
10
|
8-Isoprostane is an early biomarker for oxidative stress in chlorine-induced acute lung injury. Toxicol Lett 2017; 282:1-7. [PMID: 29017959 DOI: 10.1016/j.toxlet.2017.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/21/2022]
Abstract
Inhalation of chlorine (Cl2) may cause oxidative acute lung injury (ALI) characterized by pulmonary edema, pneumonitis, and hyperreactive airways. The aim of the study was to identify possible biomarkers for Cl2-induced ALI. Female BALB/c mice were exposed to Cl2 for 15min using two protocols 1) concentration-dependent response (25-200ppm) and 2) time-kinetics (2h-14days post-exposure). Exposure to 50-200ppm Cl2 caused a concentration-dependent inflammatory response with increased expression of IL-1β, IL-6 and CXCL1/KC in bronchoalveolar lavage fluid 2-6h after exposure which was followed by increased lung permeability and a neutrophilic inflammation 12-24h post-exposure. The early inflammatory cytokine response was associated with a clear but transient increase of 8-isoprostane, a biomarker for oxidative stress, with its maximum at 2h after exposure. An increase of 8-isoprostane could also be detected in serum 2h after exposure to 200ppm Cl2, which was followed by increased levels of IL-6 and CXCL1/KC and signs of increased fibrinogen and PAI-1. Melphalan, a non-oxidizing mustard gas analog, did not increase the 8-isoprostane levels, indicating that 8-isoprostane is induced in airways through direct oxidation by Cl2. We conclude that 8-isoprostane represents an early biomarker for oxidative stress in airways and in the blood circulation following Cl2-exposure.
Collapse
|
11
|
Nichols HB, Anderson C, White AJ, Milne GL, Sandler DP. Oxidative Stress and Breast Cancer Risk in Premenopausal Women. Epidemiology 2017; 28:667-674. [PMID: 28520645 PMCID: PMC5580344 DOI: 10.1097/ede.0000000000000685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Detrimental effects of oxidative stress are widely recognized, but induction of apoptosis and senescence may also have benefits for cancer prevention. Recent studies suggest oxidative stress may be associated with lower breast cancer risk before menopause. METHODS We conducted a nested case-control study (N = 457 cases, 910 controls) within the NIEHS Sister Study cohort of 50,884 women. Premenopausal women ages 35-54 were eligible for selection. We matched controls 2:1 to cases on age and enrollment year and were breast cancer-free at the time of the corresponding case's diagnosis. Oxidative stress was measured by urinary F2-isoprostane and metabolite (15-F2t-isoprostane-M) concentrations. Odds ratios (OR) and 95% confidence intervals (CIs) were calculated with multivariable conditional logistic regression. RESULTS After multivariable adjustment for body mass index (BMI) and other potential confounders, the OR for breast cancer comparing the >90th (≥2.94 ng/mgCr) to <25th percentile (1.01 ng/mgCr) was 1.1 (CI: 0.65, 1.7) for F2-isoprostane and 0.70 (CI: 0.43, 1.1) for the metabolite. Higher metabolite concentrations were associated with lower breast cancer risk among women who were also premenopausal (353 cases, OR: 0.59, CI: 0.34, 1.0) or <46 years (82 cases, OR: 0.15, CI: 0.06, 0.42) at diagnosis. ORs for the metabolite and breast cancer were inverse among women with BMI 18.5-24.9 kg/m (OR: 0.47, CI: 0.18, 1.2, 208 cases) and >30 kg/m (OR: 0.71, CI: 0.30, 1.7, 107 cases), but not among women with BMI 25-29.9 kg/m (OR: 0.98, CI: 0.39, 2.5, 138 cases). CONCLUSIONS Together with other studies, our results support a possible inverse association between oxidative stress and premenopausal breast cancer risk.
Collapse
Affiliation(s)
- Hazel B. Nichols
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health
| | - Chelsea Anderson
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC
| | | | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC
| |
Collapse
|
12
|
Mehta V, Malairaman U. Flavonoids. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Diabetes Mellitus is one of the major healthcare problems faced by the society today and has become alarmingly epidemic in many parts of the world. Despite enormous knowledge and technology advancement, available diabetes therapeutics only provide symptomatic relief by reducing blood glucose level, thereby, just slows down development and progression of diabetes and its associated complications. Thus, the need of the day is to develop alternate strategies that can not only prevent the progression but also reverse already “set-in” diabetic complications. Many flavonoids are reported, traditionally as well as experimentally, to be beneficial in averting diabetes and lowering risk of its accompanying complications. In the present chapter we have convened different flavonoids beneficial in diabetes and comorbid complications and discussed their mechanisms of action. Further, we conclude that coupling current therapeutics with flavonoids might provide exceptional advantage in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Vineet Mehta
- Jaypee University of Information Technology, India
| | | |
Collapse
|
13
|
Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit-Dahm K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid Redox Signal 2016; 25:657-684. [PMID: 26906673 PMCID: PMC5069735 DOI: 10.1089/ars.2016.6664] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intrarenal oxidative stress plays a critical role in the initiation and progression of diabetic kidney disease (DKD). Enhanced oxidative stress results from overproduction of reactive oxygen species (ROS) in the context of concomitant, insufficient antioxidant pathways. Renal ROS production in diabetes is predominantly mediated by various NADPH oxidases (NOXs), but a defective antioxidant system as well as mitochondrial dysfunction may also contribute. Recent Advances: Effective agents targeting the source of ROS generation hold the promise to rescue the kidney from oxidative damage and prevent subsequent progression of DKD. Critical Issues and Future Directions: In the present review, we summarize and critically analyze molecular and cellular mechanisms that have been demonstrated to be involved in NOX-induced renal injury in diabetes, with particular focus on the role of increased glomerular injury, the development of albuminuria, and tubulointerstitial fibrosis, as well as mitochondrial dysfunction. Furthermore, novel agents targeting NOX isoforms are discussed. Antioxid. Redox Signal. 25, 657-684.
Collapse
Affiliation(s)
- Jay C Jha
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Claudine Banal
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Bryna S M Chow
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Mark E Cooper
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| | - Karin Jandeleit-Dahm
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| |
Collapse
|
14
|
Jha JC, Thallas-Bonke V, Banal C, Gray SP, Chow BSM, Ramm G, Quaggin SE, Cooper ME, Schmidt HHHW, Jandeleit-Dahm KA. Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia 2016; 59:379-89. [PMID: 26508318 PMCID: PMC6450410 DOI: 10.1007/s00125-015-3796-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Changes in podocyte morphology and function are associated with albuminuria and progression of diabetic nephropathy. NADPH oxidase 4 (NOX4) is the main source of reactive oxygen species (ROS) in the kidney and Nox4 is upregulated in podocytes in response to high glucose. We assessed the role of NOX4-derived ROS in podocytes in vivo in a model of diabetic nephropathy using a podocyte-specific NOX4-deficient mouse, with a major focus on the development of albuminuria and ultra-glomerular structural damage. METHODS Streptozotocin-induced diabetes-associated changes in renal structure and function were studied in male floxedNox4 and podocyte-specific, NOX4 knockout (podNox4KO) mice. We assessed albuminuria, glomerular extracellular matrix accumulation and glomerulosclerosis, and markers of ROS and inflammation, as well as glomerular basement membrane thickness, effacement of podocytes and expression of the podocyte-specific protein nephrin. RESULTS Podocyte-specific Nox4 deletion in streptozotocin-induced diabetic mice attenuated albuminuria in association with reduced vascular endothelial growth factor (VEGF) expression and prevention of the diabetes-induced reduction in nephrin expression. In addition, podocyte-specific Nox4 deletion reduced glomerular accumulation of collagen IV and fibronectin, glomerulosclerosis and mesangial expansion, as well as glomerular basement membrane thickness. Furthermore, diabetes-induced increases in renal ROS, glomerular monocyte chemoattractant protein-1 (MCP-1) and protein kinase C alpha (PKC-α) were attenuated in podocyte-specific NOX4-deficient mice. CONCLUSIONS/INTERPRETATION Collectively, this study shows the deleterious effect of Nox4 expression in podocytes by promoting podocytopathy in association with albuminuria and extracellular matrix accumulation in experimental diabetes, emphasising the role of NOX4 as a target for new renoprotective agents.
Collapse
Affiliation(s)
- Jay C Jha
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Vicki Thallas-Bonke
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Claudine Banal
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Stephen P Gray
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Bryna S M Chow
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Georg Ramm
- Monash Micro-imaging, Monash University, Melbourne, VIC, Australia
| | | | - Mark E Cooper
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Medicine, Health & Life Science, Maastricht University, Maastricht, the Netherlands
| | - Karin A Jandeleit-Dahm
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia.
- Department of Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Mohammedi K, Patente TA, Bellili-Muñoz N, Driss F, Le Nagard H, Fumeron F, Roussel R, Hadjadj S, Corrêa-Giannella ML, Marre M, Velho G. Glutathione peroxidase-1 gene (GPX1) variants, oxidative stress and risk of kidney complications in people with type 1 diabetes. Metabolism 2016; 65:12-9. [PMID: 26773925 DOI: 10.1016/j.metabol.2015.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Glutathione peroxidase (GPX) is a class of antioxidant enzymes that catalyze the reduction of hydrogen peroxide to water. GPX1 is the most abundant isoform and is expressed in all kidney cells. Isoprostane and advanced oxidation protein products (AOPP) were identified as markers of oxidative stress in patients with kidney disease. We investigated associations of GPX1 genotypes with kidney complications, and with plasma concentrations of isoprostane and AOPP in type 1 diabetic patients. METHODS Four SNPs in the GPX1 gene region were genotyped in SURGENE (n=340; 10-year follow-up); GENEDIAB (n=461) and GENESIS (n=584) cohorts of type 1 diabetic patients. Subsets of GENEDIAB (n=237) and GENESIS (n=466) participants were followed up for 9 and 5years, respectively. Plasma concentrations of isoprostane and AOPP were measured at baseline in GENEDIAB. Hazard ratios (HR) were estimated for incidence of kidney complications. RESULTS In SURGENE, 98 renal events (new cases of microalbuminuria or progression to more severe stage of diabetic nephropathy) occurred during follow-up. The minor T-allele of rs3448 was associated with the incidence of renal events (HR 1.81, 95% CI 1.16-2.84, p=0.008). In GENESIS/GENEDIAB pooled study, end stage renal disease (ESRD) occurred during follow-up in 52 individuals. The same variant was associated with the incidence of ESRD (HR 3.34, 95% CI, 1.69-6.98, p=0.0004). The variant was also associated with higher plasma isoprostane concentration in GENEDIAB cohort: 2.02±0.12 (TT+CT) vs 1.75±0.13 (CC) ng/mL (p=0.009), and with higher plasma AOPP in the subset of participants with the baseline history of ESRD (TT+CT 67±6 vs CC 48±6μmol/L, p=0.006). CONCLUSIONS The minor T-allele of rs3448 was associated with kidney complications (incidences of microalbuminuria, renal events and ESRD) in patients with type 1 diabetes. The risk allele was associated with higher plasma concentrations of isoprostane and AOPP. Our results are consistent with the implication of GPX1 in the mechanism of renal protection against oxidative stress in type 1 diabetic patients.
Collapse
Affiliation(s)
- Kamel Mohammedi
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 15 rue de l'École de Médecine, 75006, Paris, France; Assistance Publique Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Department of Diabetology, Endocrinology and Nutrition, 46 rue Henri Huchard, 75018, Paris, France
| | - Thiago A Patente
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 15 rue de l'École de Médecine, 75006, Paris, France; Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Dr. Arnaldo 455, CEP 01246903, São Paulo, SP, Brazil
| | - Naima Bellili-Muñoz
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 15 rue de l'École de Médecine, 75006, Paris, France
| | - Fathi Driss
- INSERM, Research Unit 773, 16 rue Henri Huchard, 75018, Paris, France; Assistance Publique Hôpitaux de Paris, Bichat Hospital, Department of Biochemistry, 46 rue Henri Huchard, 75018, Paris, France
| | - Hervé Le Nagard
- INSERM, Research Unit 1137 - IAME, 16 rue Henri Huchard, 75018, Paris, France
| | - Frédéric Fumeron
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 15 rue de l'École de Médecine, 75006, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, 16 rue Henri Huchard, 75018, Paris, France
| | - Ronan Roussel
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 15 rue de l'École de Médecine, 75006, Paris, France; Assistance Publique Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Department of Diabetology, Endocrinology and Nutrition, 46 rue Henri Huchard, 75018, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, 16 rue Henri Huchard, 75018, Paris, France
| | - Samy Hadjadj
- Centre Hospitalier Universitaire de Poitiers, Department of Endocrinology and Diabetology, 2 rue de la Milétrie, 86021, Poitiers, France; INSERM, Research Unit 1082, 2 rue de la Milétrie, 86021, Poitiers, France; INSERM, CIC 1402, 2 rue de la Milétrie, 86021, Poitiers, France; Université de Poitiers, UFR de Médecine et Pharmacie, 6 rue de la Milétrie, 86073, Poitiers, France
| | - Maria Lúcia Corrêa-Giannella
- Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Dr. Arnaldo 455, CEP 01246903, São Paulo, SP, Brazil; Centro de Terapia Celular e Molecular (NUCEL/NETCEM) da FMUSP, Avenida Dr. Arnaldo 455, CEP 01246903, São Paulo, SP, Brazil
| | - Michel Marre
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 15 rue de l'École de Médecine, 75006, Paris, France; Assistance Publique Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Department of Diabetology, Endocrinology and Nutrition, 46 rue Henri Huchard, 75018, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, 16 rue Henri Huchard, 75018, Paris, France
| | - Gilberto Velho
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 15 rue de l'École de Médecine, 75006, Paris, France.
| |
Collapse
|
16
|
Sauriasari R, Andrajati R, Saputri DA, Muris RU, Manfaatun A, Amanda OF, Setiawan H, Sakano N, Wang DH, Ogino K. Marker of lipid peroxidation related to diabetic nephropathy in Indonesian type 2 diabetes mellitus patients. Diabetes Res Clin Pract 2015; 108:193-200. [PMID: 25726335 DOI: 10.1016/j.diabres.2014.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/15/2014] [Accepted: 12/26/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Even though diabetes patients exhibit an increased oxidative stress, its correlation with diabetic nephropathy is not fully understood. The purpose of this study was to determine whether lipid peroxidation marker correlates well with eGFR and UACR in type 2 diabetes mellitus patients. METHODS We collected urine and serum samples of Indonesian type 2 diabetes mellitus outpatients with normo- and microalbuminuria at a Local Government Clinic (from ages: 39-74 years). Urinary 8-iso-PGF2α was measured by ELISA, the serum malondialdehyde by TBARS assay, and urinary albumin by BCG albumin assay. eGFR was calculated using the corrected-Cockcroft-Gault (CG), MDRD, and CKD-EPI equation. Other necessary data were obtained through questionnaires. RESULTS The results showed that the increasing level of malondialdehyde was mildly correlated with the decline in eGFR (MDRD). In contrary, there was a significant positive correlation between 8-iso-PGF2α concentration and eGFR based on the corrected-CG, MDRD study, and CKD-EPI equation (r=0.457, p<0.001; r=0.424, p<0.001; r=0.443, p<0.001). This relationship still persisted in the normoalbuminuric subjects (n=43) (r=0.491, p=0.001; r=0.461, p=0.002; r=0.455, p=0.002). The multivariate analysis showed that 8-iso-PGF2α together with fasting plasma glucose was the most predictive factor for the high 2-quantile eGFR (adjusted OR 1.001, (95% CI, 1.000-1.001)). However, there was no significant correlation between UACR with malondialdehyde (r=0.268, p=0.050) and 8-iso-PGF2α(r=-0.030, p=0.808). UACR itself was inversely correlated with eGFR based on the corrected-CG, the MDRD, and CKD-EPI (r=-0.232, p<0.05; r=-0.228, p<0.05; r=-0.232, p<0.05). CONCLUSIONS Increased 8-iso-PGF2α and malondialdehyde in type 2 diabetes mellitus patients may play a role in the pathophysiologic significance of diabetic nephropathy, even while considering the effect of potential confounders.
Collapse
Affiliation(s)
- R Sauriasari
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia.
| | - R Andrajati
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - D A Saputri
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - R U Muris
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - A Manfaatun
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - O F Amanda
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - H Setiawan
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - N Sakano
- Department of Gerontology Research, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - D H Wang
- Department of Environmental Biochemistry, Okayama University of Science, Japan
| | - K Ogino
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| |
Collapse
|
17
|
Milne GL, Dai Q, Roberts LJ. The isoprostanes--25 years later. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:433-45. [PMID: 25449649 PMCID: PMC5404383 DOI: 10.1016/j.bbalip.2014.10.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023]
Abstract
Isoprostanes (IsoPs) are prostaglandin-like molecules generated independent of the cyclooxygenase (COX) by the free radical-induced peroxidation of arachidonic acid. The first isoprostane species discovered were isomeric to prostaglandin F2α and were thus termed F2-IsoPs. Since the initial discovery of the F2-IsoPs, IsoPs with differing ring structures have been identified as well as IsoPs from different polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexanenoic acid. The discovery of these molecules in vivo in humans has been a major contribution to the field of lipid oxidation and free radical research over the course of the past 25 years. These molecules have been determined to be both biomarkers and mediators of oxidative stress in numerous disease settings. This review focuses on recent developments in the field with an emphasis on clinical research. Special focus is given to the use of IsoPs as biomarkers in obesity, ischemia-reperfusion injury, the central nervous system, cancer, and genetic disorders. Additionally, attention is paid to diet and lifestyle factors that can affect endogenous levels of IsoPs. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Dai
- Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - L Jackson Roberts
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
18
|
Marrazzo G, Barbagallo I, Galvano F, Malaguarnera M, Gazzolo D, Frigiola A, D'Orazio N, Li Volti G. Role of dietary and endogenous antioxidants in diabetes. Crit Rev Food Sci Nutr 2014; 54:1599-616. [PMID: 24580561 DOI: 10.1080/10408398.2011.644874] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Diabetes affects different people of all ages, race, and sex. This is a condition characterized by a state of chronic hyperglycaemia that leads to an increase of intracellular oxidative stress linked to the overproduction of free radicals. In the present review, we focus our attention on the molecular mechanisms leading to oxidative stress-mediates complications with particular regard to central nervous system (CNS). Furthermore, the present review reports the effects of different kind of antioxidants with enzymatic and nonenzymatic action that may significantly decrease the intracellular free radicals' overproduction and prevents the hyperglycaemia-mediated complications.
Collapse
Affiliation(s)
- Giuseppina Marrazzo
- a Department of Drug Science, Section of Biochemistry , University of Catania , Catanina , Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Effects of CP-900691, a novel peroxisome proliferator-activated receptor α, agonist on diabetic nephropathy in the BTBR ob/ob mouse. J Transl Med 2014; 94:851-62. [PMID: 24955894 PMCID: PMC4404155 DOI: 10.1038/labinvest.2014.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/02/2014] [Accepted: 05/20/2014] [Indexed: 12/14/2022] Open
Abstract
Piperidine-based peroxisome proliferator-activated receptor-α agonists are agents that are efficacious in improving lipid, glycemic, and inflammatory indicators in diabetes and obesity. This study sought to determine whether CP-900691 ((S)-3-[3-(1-carboxy-1-methyl-ethoxy)-phenyl]-piperidine-1-carboxylic acid 4-trifluoromethyl-benzyl ester; CP), a member of this novel class of agents, by decreasing plasma triglycerides, could prevent diabetic nephropathy in the Black and Tan, BRachyuric (BTBR) ob/ob mouse model of type 2 diabetes mellitus. Four-week old female BTBR WT and BTBR ob/ob mice received either regular chow or one containing CP (3 mg/kg per day) for 14 weeks. CP elevated plasma high-density lipoprotein, albuminuria, and urinary excretion of 8-epi PGF(2α), a product of the nonenzymatic metabolism of arachidonic acid and whose production is elevated in oxidative stress, in BTBR WT mice. In BTBR ob/ob mice, CP reduced plasma triglycerides and non-esterified fatty acids, fasting blood glucose, body weight, and plasma interleukin-6, while concomitantly improving insulin resistance. Despite these beneficial metabolic effects, CP had no effect on elevated plasma insulin, 8-epi PGF(2α) excretion, and albuminuria, and surprisingly, did not ameliorate the development of diabetic nephropathy, having no effect on the accumulation of renal macrophages, glomerular hypertrophy, and increased mesangial matrix expansion. In addition, CP did not increase plasma high-density lipoprotein in BTBR ob/ob mice, while paradoxically increasing total cholesterol levels. These findings indicate that 8-epi PGF(2α), possibly along with hyperinsulinemia and inflammatory and dysfunctional lipoproteins, is integral to the development of diabetic nephropathy and should be considered as a potential target of therapy in the treatment of diabetic nephropathy.
Collapse
|
20
|
Isoprostanes and 4-hydroxy-2-nonenal: markers or mediators of disease? Focus on Rett syndrome as a model of autism spectrum disorder. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:343824. [PMID: 23844273 PMCID: PMC3697420 DOI: 10.1155/2013/343824] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation, a process known to induce oxidative damage to key cellular components, has been implicated in several diseases. Following three decades of explorations mainly on in vitro models reproducible in the laboratories, lipid peroxidation has become increasingly relevant for the interpretation of a wide range of pathophysiological mechanisms in the clinical setting. This cumulative effort has led to the identification of several lipid peroxidation end-products meeting the needs of the in vivo evaluation. Among these different molecules, isoprostanes and 4-hydroxy-2-nonenal protein adducts appear to be particularly interesting. This review shows how specific oxidation products, deriving from polyunsaturated fatty acids precursors, are strictly related to the clinical manifestations and the natural history of Rett syndrome, a genetically determined neurodevelopmental pathology, currently classified among the autism spectrum disorders. In our experience, Rett syndrome offers a unique setting for physicians, biologists, and chemists to explore the borders of the lipid mediators concept.
Collapse
|
21
|
PKCβ inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfunction in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 2011; 122:161-73. [PMID: 21892921 DOI: 10.1042/cs20110176] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative stress plays critical roles in the development of diabetic cardiovascular complications, including myocardial hypertrophy. The β isoform of PKC (protein kinase C) is preferentially overexpressed in the myocardium of diabetic subjects accompanied with increased activation of the pro-oxidant enzyme NADPH oxidase, which may exacerbate oxidative stress. We hypothesized that myocardial PKCβ is a major upstream mediator of oxidative stress in diabetes and that PKCβ inhibition can attenuate myocardial hypertrophy and dysfunction. Control or streptozotocin-induced diabetic rats were treated with the selective PKCβ inhibitor RBX (ruboxistaurin; 1 mg/kg of body weight per day) or the antioxidant NAC (N-acetylcysteine) for 4 weeks. LV (left ventricular) dimensions and functions were detected by echocardiography. 15-F2t-isoprostane (a specific index of oxidative stress) and myocardial activities of superoxide dismutase as well as protein levels of NADPH oxidase were assessed by immunoassay or Western blotting. Echocardiography revealed that the LV mass/body weight ratio was significantly increased in diabetic rats (P<0.01 compared with the control group) in parallel with the impaired LV relaxation. A significant increase in cardiomyocyte cross-sectional area was observed in diabetic rats accompanied by an increased production of O2- (superoxide anion) and 15-F2t-isoprostane (all P<0.05 compared with the control group). RBX normalized these changes with concomitant inhibition of PKCβ2 activation and prevention of NADPH oxidase subunit p67phox membrane translocation and p22phox overexpression. The effects of RBX were comparable with that of NAC, except that NAC was inferior to RBX in attenuating cardiac dysfunction. It is concluded that RBX can ameliorate myocardial hypertrophy and dysfunction in diabetes, which may represent a novel therapy in the prevention of diabetic cardiovascular complications.
Collapse
|
22
|
Rajashekhar G, Gupta A, Marin A, Friedrich J, Willuweit A, Berg DT, Cramer MS, Sandusky GE, Sutton TA, Basile DP, Grinnell BW, Clauss M. Soluble thrombomodulin reduces inflammation and prevents microalbuminuria induced by chronic endothelial activation in transgenic mice. Am J Physiol Renal Physiol 2011; 302:F703-12. [PMID: 22129968 DOI: 10.1152/ajprenal.00558.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease pathogenesis involves both tubular and vascular injuries. Despite abundant investigations to identify the risk factors, the involvement of chronic endothelial dysfunction in developing nephropathies is insufficiently explored. Previously, soluble thrombomodulin (sTM), a cofactor in the activation of protein C, has been shown to protect endothelial function in models of acute kidney injury. In this study, the role for sTM in treating chronic kidney disease was explored by employing a mouse model of chronic vascular activation using endothelial-specific TNF-α-expressing (tie2-TNF) mice. Analysis of kidneys from these mice after 3 mo showed no apparent phenotype, whereas 6-mo-old mice demonstrated infiltration of CD45-positive leukocytes accompanied by upregulated gene expression of inflammatory chemokines, markers of kidney injury, and albuminuria. Intervention with murine sTM with biweekly subcutaneous injections during this window of disease development between months 3 and 6 prevented the development of kidney pathology. To better understand the mechanisms of these findings, we determined whether sTM could also prevent chronic endothelial cell activation in vitro. Indeed, treatment with sTM normalized increased chemokines, adhesion molecule expression, and reduced transmigration of monocytes in continuously activated TNF-expressing endothelial cells. Our results suggest that vascular inflammation associated with vulnerable endothelium can contribute to loss in renal function as suggested by the tie2-TNF mice, a unique model for studying the role of vascular activation and inflammation in chronic kidney disease. Furthermore, the ability to restore the endothelial balance by exogenous administration of sTM via downregulation of specific adhesion molecules and chemokines suggests a potential for therapeutic intervention in kidney disease associated with chronic inflammation.
Collapse
Affiliation(s)
- Gangaraju Rajashekhar
- Indiana Center for Vascular Biology and Medicine, IU School of Medicine, 975 W. Walnut St., Med. Lib./Rm. IB442B, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bobrowska B, Tokarz A, Białek S, Seweryn M. Effect of dietary supplementation on the prognostic value of urinary and serum 8-isoprostaglandin F2α in chemically-induced mammary carcinogenesis in the rat. Lipids Health Dis 2011; 10:40. [PMID: 21371291 PMCID: PMC3056819 DOI: 10.1186/1476-511x-10-40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/03/2011] [Indexed: 11/17/2022] Open
Abstract
Backround The aim of the present study was to assess the effects of zinc or copper and polyphenolic compounds on the 8-isoprostaglandin F2α concentration in the serum and urine of rats with mammary cancer (adenocarcinoma) induced with 7,12-dimethylbenz[a]antracene. The research focused on the kinetics of alterations in urinary 8-isoPGF2α at the early stage of carcinogenesis as well as the influence of dietary factors on the process. The impact of selected compounds on the intensity of DMBA - induced carcinogenesis was also assessed. Result and conclusions Administration of DMBA, a compound that inducers mammary tumors in experimental animals, increased the serum and urinary 8-isoPGF2α levels in study rats. In the rat model, diet supplementation with zinc, combined with selected polyphenolic compounds (resveratrol or genistein) yielded a statistically significant decrease in the rat serum and urinary biomarker concentration with a simultaneously significant stimulation of carcinogenesis. The results indicate that there is an inverse correlation between the intensity of DMBA-induced carcinogenicity and the level of 8-isoPGF2α in urine and serum of rats.
Collapse
Affiliation(s)
- Barbara Bobrowska
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | | | | | | |
Collapse
|
24
|
Nikolaidis MG, Kyparos A, Vrabas IS. F2-isoprostane formation, measurement and interpretation: The role of exercise. Prog Lipid Res 2011; 50:89-103. [DOI: 10.1016/j.plipres.2010.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/02/2010] [Indexed: 01/14/2023]
|
25
|
Gayen JR, Zhang K, RamachandraRao SP, Mahata M, Chen Y, Kim HS, Naviaux RK, Sharma K, Mahata SK, O'Connor DT. Role of reactive oxygen species in hyperadrenergic hypertension: biochemical, physiological, and pharmacological evidence from targeted ablation of the chromogranin a (Chga) gene. ACTA ACUST UNITED AC 2010; 3:414-25. [PMID: 20729505 DOI: 10.1161/circgenetics.109.924050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Oxidative stress, an excessive production of reactive oxygen species (ROS) outstripping antioxidant defense mechanisms, occurs in cardiovascular pathologies, including hypertension. In the present study, we used biochemical, physiological, and pharmacological approaches to explore the role of derangements of catecholamines, ROS, and the endothelium-derived relaxing factor nitric oxide (NO(•)) in the development of a hyperadrenergic model of hereditary hypertension: targeted ablation (knockout [KO]) of chromogranin A (Chga) in the mouse. METHODS AND RESULTS Homozygous ⁻(/)⁻ Chga gene knockout (KO) mice were compared with wild-type (WT, +/+) control mice. In the KO mouse, elevations of systolic and diastolic blood pressure were accompanied by not only elevated catecholamine (norepinephrine and epinephrine) concentrations but also increased ROS (H₂O₂) and isoprostane (an index of lipid peroxidation), as well as depletion of NO(•). Renal transcript analyses implicated changes in Nox1/2, Xo/Xdh, and Sod1,2 mRNAs in ROS elevation by the KO state. KO alterations in blood pressure, catecholamines, H₂O₂, isoprostane, and NO(•) could be abrogated or even normalized (rescued) by either sympathetic outflow inhibition (with clonidine) or NADPH oxidase inhibition (with apocynin). In cultured renal podocytes, H₂O₂ production was substantially augmented by epinephrine (probably through β₂-adrenergic receptors) and modestly diminished by norepinephrine (probably through α₁-adrenergic receptors). CONCLUSIONS ROS appear to play a necessary role in the development of hyperadrenergic hypertension in this model, in a process mechanistically linking elevated blood pressure with catecholamine excess, renal transcriptional responses, ROS elevation, lipid peroxidation, and NO(•) depletion. Some of the changes appear to be dependent on transcription, whereas others are immediate. The cycle could be disrupted by inhibition of either sympathetic outflow or NADPH oxidase. Because common genetic variation at the human CHGA locus alters BP, the results have implications for antihypertensive treatment as well as prevention of target-organ consequences of the disease. The results document novel pathophysiological links between the adrenergic system and oxidative stress and suggest new strategies to probe the role and actions of ROS within this setting.
Collapse
Affiliation(s)
- Jiaur R Gayen
- University of California at San Diego, La Jolla, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 2010; 30:49-59. [PMID: 20718759 DOI: 10.1111/j.1755-5922.2010.00218.x] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The prevalence of diabetes has dramatically increased worldwide due to the vast increase in the obesity rate. Diabetic nephropathy is one of the major complications of type 1 and type 2 diabetes and it is currently the leading cause of end-stage renal disease. Hyperglycemia is the driving force for the development of diabetic nephropathy. It is well known that hyperglycemia increases the production of free radicals resulting in oxidative stress. While increases in oxidative stress have been shown to contribute to the development and progression of diabetic nephropathy, the mechanisms by which this occurs are still being investigated. Historically, diabetes was not thought to be an immune disease; however, there is increasing evidence supporting a role for inflammation in type 1 and type 2 diabetes. Inflammatory cells, cytokines, and profibrotic growth factors including transforming growth factor-β (TGF-β), monocyte chemoattractant protein-1 (MCP-1), connective tissue growth factor (CTGF), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-18 (IL-18), and cell adhesion molecules (CAMs) have all been implicated in the pathogenesis of diabetic nephropathy via increased vascular inflammation and fibrosis. The stimulus for the increase in inflammation in diabetes is still under investigation; however, reactive oxygen species are a primary candidate. Thus, targeting oxidative stress-inflammatory cytokine signaling could improve therapeutic options for diabetic nephropathy. The current review will focus on understanding the relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy to help elucidate the question of which comes first in the progression of diabetic nephropathy, oxidative stress, or inflammation.
Collapse
Affiliation(s)
- Ahmed A Elmarakby
- Department of Oral Biology, Medical College of Georgia, Augusta, GA, USA Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta, GA, USA Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
| | | |
Collapse
|
27
|
Glomerular angiotensinogen is induced in mesangial cells in diabetic rats via reactive oxygen species--ERK/JNK pathways. Hypertens Res 2010; 33:1174-81. [PMID: 20686488 DOI: 10.1038/hr.2010.143] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Whereas intra-renal angiotensinogen is predominantly localized in proximal tubular cells under basal conditions, it has been previously reported that angiotensinogen expression is induced in glomeruli under pathological conditions. However, there is no detailed information regarding the mechanism of the induced glomerular angiotensinogen. We used genetic pairs of Zucker diabetic fatty (ZDF) obese and lean rats to determine glomerular angiotensinogen expression. The levels of glomerular angiotensinogen immunoreactivity in ZDF obese rats were higher than those in ZDF lean rats. Double staining by IHC or IF with angiotensinogen and Thy1.1 antibodies showed that the majority of angiotensinogen in glomeruli was seen in mesangial cells. The levels of glomerular immunoreactivity for 4-HNE and urinary excretion of 8-isoprostane-markers of ROS-in ZDF obese rats were higher than those in ZDF lean rats. To confirm this system, primary rat mesangial cells were treated with hydrogen peroxide (H₂O₂) to clarify the signal transduction pathway for glomerular angiotensinogen expression. H₂O₂ induced an increase in angiotensinogen expression in a dose- and time-dependent manner, and the H₂O₂-induced upregulation of angiotensinogen was suppressed by catalase. Furthermore, the H₂O₂-induced upregulation of angiotensinogen was inhibited by a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor and a c-Jun N-terminal kinase (JNK) inhibitor, but not inhibited by a p38 MAPK inhibitor. These data suggest that the majority of angiotensinogen was induced in mesangial cells in glomeruli under pathological conditions such as diabetic nephropathy, and angiotensinogen expression in mesangial cells was mediated by H₂O₂ and the subsequent activation of extracellular-regulated kinase (ERK)/JNK pathways.
Collapse
|
28
|
Halliwell B, Lee CYJ. Using isoprostanes as biomarkers of oxidative stress: some rarely considered issues. Antioxid Redox Signal 2010; 13:145-56. [PMID: 20001743 DOI: 10.1089/ars.2009.2934] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The measurement of F2-isoprostanes by methods utilizing mass spectrometry is widely regarded as the best currently available biomarker of lipid peroxidation. F2-isoprostanes and their metabolites can be measured accurately in plasma, urine, and other body fluids using mass spectrometric techniques, and detailed protocols have been published in several papers. However, many clinical studies and intervention studies with diets or supplements, have employed single "spot" measurements of F2-isoprostanes on either plasma/serum or urine to estimate "oxidative stress." This review examines the validity of the common assumption that plasma and urinary F2-isoprostane measurements are equivalent. It identifies scenarios where they may not be and where "spot" measurements can be misleading, with examples from the literature. We also discuss the controversial issue of whether and how F2-isoprostane levels in plasma should be standardized against lipids, and, if so, which lipids to use.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | | |
Collapse
|
29
|
Pazdro R, Burgess JR. The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev 2010; 131:276-86. [PMID: 20307566 DOI: 10.1016/j.mad.2010.03.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 03/04/2010] [Accepted: 03/10/2010] [Indexed: 02/07/2023]
Abstract
Diabetes is a disease characterized by poor glycemic control for which risk of the type 2 form increases with age. A rise in blood glucose concentration causes increased oxidative stress which contributes to the development and progression of diabetes-associated complications. Studies have shown that primary antioxidants or genetic manipulation of antioxidant defenses can at least partially ameliorate this oxidative stress and consequentially, reduce severity of diabetic complications in animal models. Data from humans is less clear and will be summarized in this review. We highlight results from studies performed to investigate the role of vitamin E in preventing diabetes-induced oxidative damage in cell culture, animal models, and human participants, and summarize evidence testing whether this nutrient has an effect on outcomes related to the diabetic complications of nephropathy, retinopathy, and neuropathy. The most compelling evidence for an effect of vitamin E in diabetes is on protection against lipid peroxidation, whereas effects on protein and DNA oxidation are less pronounced. More studies are required to make definitive conclusions about the effect of vitamin E treatment on diabetes complications in human subjects.
Collapse
Affiliation(s)
- Robert Pazdro
- Department of Foods and Nutrition, Purdue University, 700 West State Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
30
|
Wang HD, Rätsep MT, Chapman A, Boyd R. Adventitial fibroblasts in vascular structure and function: the role of oxidative stress and beyondThis review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 2010; 88:177-86. [DOI: 10.1139/y10-015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The vascular adventitia, defined as the area between the external elastic lamina and the outermost edge of the blood vessel, is composed primarily of fibroblasts and for years was thought to be merely a passive structural support for the blood vessel. Consequently, studies pertaining to the role of the adventitia in regulating vascular function have been far outnumbered by those regarding the vascular endothelium. However, recent work has begun to reveal the dynamic properties of the adventitia. It was therefore the aim of this review to provide an overview of the existing knowledge demonstrating the role of the adventitia in regulating vessel structure and function. The main topics covered in this review include the cellular composition of the adventitia and the role of the adventitia in vascular oxidative stress, vasomotor responses, extracellular matrix protein expression, growth factor expression, and endothelin-1 (ET-1) expression. Recent evidence suggests that the adventitia is a major producer of vascular reactive oxygen species. It displays a distinct response to injury, hypoxia, and pulmonary hypertension, mediating vascular remodelling, repair, and extracellular matrix deposition. It may also play a role in regulating vascular tone. More recently, it has been reported that adventitial fibroblasts can produce ET-1 after Ang II treatment. Additionally, emerging evidence suggests that the adventitia may be a potent source of vasoactive hormones such as growth factors and ET-1, which may regulate vascular structure and function via autocrine or paracrine signalling mechanisms. Despite these findings, many important questions regarding the role of the vascular adventitia remain unanswered, suggesting the need for further research to determine its exact function in health and disease.
Collapse
Affiliation(s)
- Hui Di Wang
- Department of Community Health Sciences, Faculty of Applied Heath Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Matthew T. Rätsep
- Department of Community Health Sciences, Faculty of Applied Heath Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Alexander Chapman
- Department of Community Health Sciences, Faculty of Applied Heath Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Ryan Boyd
- Department of Community Health Sciences, Faculty of Applied Heath Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
31
|
Shevalye H, Stavniichuk R, Xu W, Zhang J, Lupachyk S, Maksimchyk Y, Drel VR, Floyd EZ, Slusher B, Obrosova IG. Poly(ADP-ribose) polymerase (PARP) inhibition counteracts multiple manifestations of kidney disease in long-term streptozotocin-diabetic rat model. Biochem Pharmacol 2009; 79:1007-14. [PMID: 19945439 DOI: 10.1016/j.bcp.2009.11.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 11/26/2022]
Abstract
Evidence for the important role for poly(ADP-ribose) polymerase (PARP) in the pathogenesis of diabetic nephropathy is emerging. We previously reported that PARP inhibitors counteract early Type 1 diabetic nephropathy. This study evaluated the role for PARP in kidney disease in long-term Type 1 diabetes. Control and streptozotocin-diabetic rats were maintained with or without treatment with the PARP inhibitor 10-(4-methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de] anthracen-3-one (GPI-15,427, Eisai Inc.), 30mgkg(-1)d(-1), for 26 weeks after first 2 weeks without treatment. PARP activity in the renal cortex was assessed by Western blot analysis of poly(ADP-ribosyl)ated proteins. Urinary albumin, isoprostane, and 8-hydroxy-2'-deoxyguanosine excretion, and renal concentrations of transforming growth factor-beta(1), vascular endothelial growth factor, soluble intercellular adhesion molecule-1, fibronectin, and nitrotyrosine were evaluated by ELISA, and urinary creatinine and renal lipid peroxidation products by colorimetric assays. PARP inhibition counteracted diabetes-associated increase in renal cortex poly(ADP-ribosyl)ated protein level. Urinary albumin, isoprostane, and 8-hydroxy-2'-deoxyguanosine excretions and urinary albumin/creatinine ratio were increased in diabetic rats, and all these changes were at least partially prevented by GPI-15,427 treatment. PARP inhibition counteracted diabetes-induced renal transforming growth factor-beta(1), vascular endothelial growth factor, and fibronectin, but not soluble intercellular adhesion molecule-1 and nitrotyrosine, accumulations. Lipid peroxidation product concentrations were indistinguishable among control and diabetic rats maintained with or without GPI-15,427 treatment. In conclusion, PARP activation plays an important role in kidney disease in long-term diabetes. These findings provide rationale for development and further studies of PARP inhibitors and PARP inhibitor-containing combination therapies, for prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Hanna Shevalye
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dai Q, Gao YT, Shu XO, Yang G, Milne G, Cai Q, Wen W, Rothman N, Cai H, Li H, Xiang Y, Chow WH, Zheng W. Oxidative stress, obesity, and breast cancer risk: results from the Shanghai Women's Health Study. J Clin Oncol 2009; 27:2482-8. [PMID: 19380446 DOI: 10.1200/jco.2008.19.7970] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Increased reactive oxygen species may exhaust the antioxidant capability of human defense systems, leading to oxidative stress and cancer development. Urinary F2-isoprostanes, secondary end products of lipid peroxidation, are more accurate markers of oxidative stress than other available biomarkers. No prospective study has investigated whether levels of 15-F(2t)-isoprostane (15-F(2t)-IsoP) and its metabolite 2,3-dinor-5,6-dihydro-15-F(2t)-IsoP (15-F(2t)-IsoPM) are related to breast cancer risk. PATIENTS AND METHODS We conducted a nested case-control study within the Shanghai Women's Health Study, a population-based cohort study of 74,942 Chinese women between 40 and 70 years of age. Prediagnostic urinary 15-F(2t)-IsoP and 15-F(2t)-IsoPM were measured by gas chromatography mass spectrometry for 436 breast cancer cases and 852 individually matched controls. RESULTS Urinary excretion of isoprostanes was not significantly different between cases and controls. However, among overweight women, levels of isoprostanes were positively associated with breast cancer risk, which became stronger with increasing body mass index (BMI). Among women with a BMI > or = 29, the odds ratio (OR) increased to 10.27 (95% CI, 2.41 to 43.80) for the highest compared with the lowest tertile of 15-F(2t)-IsoPM (P for trend = .003; P for interaction = .0004). In contrast, 15-F(2t)-IsoP and 15-F(2t)-IsoPM were inversely associated with breast cancer risk among nonoverweight women. Among women with a BMI < or = 23, breast cancer risk was reduced with increasing 15-F(2t)-IsoP levels in a dose-response manner (P for trend = .006), with an OR of 0.46 (95% CI, 0.26 to 0.80) for the highest tertile versus the lowest (P for interaction = .006). CONCLUSION Our results suggest that the role of oxidative stress in breast cancer development may depend on adiposity.
Collapse
Affiliation(s)
- Qi Dai
- Department of Medicine and Pharmacology, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Nashville, TN 37203-1738, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dunaliella salina extract effect on diabetic rats: Metabolic fingerprinting and target metabolite analysis. J Pharm Biomed Anal 2009; 49:786-92. [DOI: 10.1016/j.jpba.2008.12.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/23/2008] [Accepted: 12/23/2008] [Indexed: 11/21/2022]
|
34
|
Dai Q, Zhu X. F2-isoprostanes and Metabolite, and Breast Cancer Risk. ACTA ACUST UNITED AC 2009; 2:106-108. [PMID: 20648235 DOI: 10.7156/v2i3p106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qi Dai
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN
| | | |
Collapse
|
35
|
Ohashi N, Katsurada A, Miyata K, Satou R, Saito T, Urushihara M, Kobori H. Activation of reactive oxygen species and the renin-angiotensin system in IgA nephropathy model mice. Clin Exp Pharmacol Physiol 2008; 36:509-15. [PMID: 19673933 DOI: 10.1111/j.1440-1681.2008.05107.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. Although IgA nephropathy is the most common form of primary glomerulopathy, the detailed mechanisms underlying its development remain uncertain. 2. In the present study, we used male high IgA strain of ddY (HIGA) mice as the IgA nephropathy model and age-matched male BALB/c mice as the control. Recent studies have demonstrated that reactive oxygen species (ROS)-dependent enhancement of the renin-angiotensin system (RAS) plays a potential role in the development and progression of renal injury. Therefore, in the present study we periodically measured the systolic blood pressure (SBP) of mice over the period 21-25 weeks of age and estimated markers for ROS, RAS and renal damage after mice had been killed at 25 weeks of age. 3. Markers for ROS (urinary 8-isoprostane excretion and renal 4-hydroxy-2-nonenal accumulation), RAS (renal angiotensinogen protein expression, urinary angiotensinogen excretion and renal angiotensin II) and renal damage (desmin-positive area and urinary protein excretion), as well as SBP, were significantly increased in HIGA mice compared with control BALB/c mice. 4. The data suggest that both ROS and the RAS are activated at an early phase in IgA nephropathy model mice.
Collapse
Affiliation(s)
- Naro Ohashi
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Rupérez FJ, García-Martínez D, Baena B, Maeso N, Cifuentes A, Barbas C, Herrera E. Evolution of oxidative stress parameters and response to oral vitamins E and C in streptozotocin-induced diabetic rats. J Pharm Pharmacol 2008; 60:871-8. [PMID: 18549673 DOI: 10.1211/jpp.60.7.0008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Type I diabetes in humans and streptozotocin (STZ)-induced diabetes in rats has been associated with oxidative stress, but antioxidant therapy has given contradictory results, in part related to the absence of common conditions used to evaluate in-vivo antioxidant properties. This prompted the study of an experimental model of antioxidant therapy in STZ-treated rats. Adult female rats received STZ (50 mgkg(-1)) and were studied 7 or 14 days later. Adipose tissue weight progressively decreased with the time of treatment, whereas plasma triglycerides increased at 7 days, before returning to control values at 14 days after STZ treatment. STZ diabetic rats had increased plasma thiobarbituric acid reacting substances and alpha-tocopherol levels, but the latter variable was decreased when corrected for total lipids. STZ diabetic rats showed a higher GSSG/GSH ratio at Day 14 and lower GSH + GSSG at Day 7 in liver. To evaluate the effect of short-term antioxidant therapy, rats received 5 doses of vitamins C and E over 3 days before being killed on Day 14. Treatment with antioxidants decreased plasma lactic acid and thiobarbituric acid reacting substances, as well as urine 8-isoprostane, and decreased plasma uric acid in controls. Vitamins increased the plasma alpha-tocopherol/lipids ratio only in control rats, although the plasma and liver alpha-tocopherol concentration increased in both groups. STZ diabetic rats showed moderate oxidative stress and treatment with antioxidant vitamins caused a significant change in a selected group of oxidative stress markers, which reflected an improvement in some of the complications associated with this disease. The present experimental conditions can be used as a sensitive experimental model to study the responsiveness of diabetes to other antioxidant interventions.
Collapse
Affiliation(s)
- Francisco J Rupérez
- Facultad de Farmacia, Universidad San Pablo-CEU, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
37
|
Comporti M, Signorini C, Arezzini B, Vecchio D, Monaco B, Gardi C. F2-isoprostanes are not just markers of oxidative stress. Free Radic Biol Med 2008; 44:247-56. [PMID: 17997380 DOI: 10.1016/j.freeradbiomed.2007.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/04/2007] [Accepted: 10/06/2007] [Indexed: 01/30/2023]
Abstract
F(2)-isoprostanes are not just markers of oxidative stress. The discovery of F(2)-isoprostanes (F(2)-IsoPs) as specific and reliable markers of oxidative stress in vivo is briefly summarized here. F(2)-IsoPs are also agonists of important biological effects, such as the vasoconstriction of renal glomerular arterioles, the retinal vessel, and the brain microcirculature. In addition to the F(2)-IsoPs, E(2)- and D(2)-IsoPs can be formed by rearrangement of H(2)-IsoP endoperoxides and can give rise to cyclopentenone IsoPs, which are very reactive alpha,beta-unsaturated aldehydes. The same type of reactivity is also shown by acyclic gamma-ketoaldehydes formed as products of the IsoP pathway. Because previous studies suggested a relation between oxidative stress and collagen hyperproduction, it was investigated whether collagen synthesis is induced by F(2)-IsoPs, the most proximal products of lipid peroxidation. In contrast to aldehydes, F(2)-IsoPs act through receptors able to elicit definite signal transduction pathways. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma F(2)-IsoPs were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of smooth muscle alpha-actin) and then treated with F(2)-IsoPs in the concentration range found in the in vivo studies (10(-9) to 10(-8) M), a striking increase in DNA synthesis, cell proliferation, and collagen synthesis was observed. Total collagen content was similarly increased. All these stimulatory effects were reversed by the specific antagonist of the thromboxane A(2) receptor, SQ 29 548, whereas the receptor agonist, I-BOP, also had a stimulatory effect. Therefore F(2)-IsoPs generated by lipid peroxidation in hepatocytes may mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.
Collapse
Affiliation(s)
- Mario Comporti
- Department of Pathophysiology, Experimental Medicine, and Public Health, University of Siena, 53100 Siena, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Gardi C, Arezzini B, Monaco B, De Montis MG, Vecchio D, Comporti M. F2-isoprostane receptors on hepatic stellate cells. J Transl Med 2008; 88:124-31. [PMID: 18158556 DOI: 10.1038/labinvest.3700712] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
F2-isoprostanes are considered as the most reliable markers of oxidative stress and can be used to evaluate the oxidative status in a number of human pathologies. Besides being markers of oxidative stress, F2-isoprostanes proved to be mediators of important biological effects and would act through the activation of receptors analogous to those for thromboxane A2. In a previous work, we provided evidence that F(2)-isoprostanes, generated during carbon tetrachloride-induced hepatic fibrosis, mediate hepatic stellate cell (HSC) proliferation and collagen hyperproduction. To investigate whether TxA2 receptor (TxA2r or TPr) is involved in the effects of F2-isoprostanes on HSC, experiments on DNA synthesis were carried out in the presence of 8-epi-prostaglandin F(2alpha) (8-epi-PGF(2alpha)) or the TxA2r-specific agonist I-BOP ([1S-[1alpha,2alpha(Z),3beta(1E,3S*), 4alpha]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid). Both agonists significantly stimulated DNA synthesis, which was almost completely inhibited by the TxA2r-specific antagonist SQ29548 ([1S-[1alpha,2alpha(Z),3alpha,4alpha]]-7-[3-[[2-[(phenylamino)carbonyl] hydrazino] methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptanoic acid), suggesting that much of the effect of 8-epi-PGF(2alpha) is mediated by the TxA2r. Further studies showed that increasing concentrations of SQ29548 progressively inhibit DNA synthesis, suggesting a possible competitive antagonism between the two molecules. In addition, we demonstrated that the stimulatory effect of 8-epi-PGF(2alpha) on collagen synthesis could be mediated by TxA2r. The occurrence of TxA2r on HSC was also investigated using western blotting analysis and immunocytochemistry, which reveals that TP is distributed both on plasma membranes and within the cells. Moreover, binding studies indicated the presence of a specific binding site for 3H-SQ29548 on HSC. Competition binding studies indicated that 8-epi-PGF(2alpha) and I-BOP were both able to displace 3H-SQ29548 binding with a very different affinity (K(i)=4.14+/-1.9 x 10(-6) M and K(i)=1.15+/-0.3 x 10(-9) M, respectively), suggesting the involvement of a modified form of isoprostane receptor, homologous to the classic thromboxane A2-binding site in F2-isoprostanes-evoked responses on HSC.
Collapse
Affiliation(s)
- Concetta Gardi
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Russo LM, Brown D, Lin HY. The soluble transforming growth factor-beta receptor: advantages and applications. Int J Biochem Cell Biol 2008; 41:472-6. [PMID: 18339576 DOI: 10.1016/j.biocel.2008.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/22/2008] [Accepted: 01/22/2008] [Indexed: 11/20/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a cytokine that plays a pivotal role in growth, differentiation, development, immune response and wound healing. TGF-beta is upregulated following wound infliction and inflammation, and plays an important role in the production of extracellular matrix proteins that contribute to tissue repair. However, in some diseases, TGF-beta dysregulation can lead to tumor formation, organ fibrosis and the disruption of organ function. A number of molecules have been designed to counteract the effects of TGF-beta, including anti-TGF-beta monoclonal antibodies and various small molecules. Here we discuss the design, use and advantages of the highly specific TGF-beta binding molecule, the soluble human TGF-beta receptor (sTbetaR.Fc) as a TGF-beta sequestering agent.
Collapse
Affiliation(s)
- Leileata M Russo
- Program in Membrane Biology, Center for Systems Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
40
|
Comporti M, Signorini C, Arezzini B, Vecchio D, Monaco B, Gardi C. Isoprostanes and hepatic fibrosis. Mol Aspects Med 2007; 29:43-9. [PMID: 18061254 DOI: 10.1016/j.mam.2007.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 09/28/2007] [Indexed: 01/28/2023]
Abstract
After a brief introduction to oxidative stress, the discovery of F(2)-isoprostanes as specific and reliable markers of oxidative stress is described. Isoprostanes are also agonists of important biological effects. Since a relation between oxidative stress and collagen hyperproduction has been previously suggested and since lipid peroxidation products have been proposed as possible mediators of liver fibrosis, we investigated whether collagen synthesis is induced by F(2)-isoprostanes the most proximal products of lipid peroxidation. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma isoprostanes were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of alpha-smooth muscle-alpha actin) and then treated with F(2)-isoprostanes in the concentration range found in the in vivo studies (10(-9)-10(-8)M), a striking increase in DNA synthesis, in cell proliferation and in collagen synthesis was observed. Moreover, F(2)-isoprostanes increased the production of transforming growth factor-beta1 by U937 cells, assumed as a model of Kupffer cells or liver macrophages. The data suggest the possibility that F(2)-isoprostanes generated by lipid peroxidation in hepatocytes mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.
Collapse
Affiliation(s)
- Mario Comporti
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, 53100 Siena, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Whaley-Connell A, DeMarco VG, Lastra G, Manrique C, Nistala R, Cooper SA, Westerly B, Hayden MR, Wiedmeyer C, Wei Y, Sowers JR. Insulin resistance, oxidative stress, and podocyte injury: role of rosuvastatin modulation of filtration barrier injury. Am J Nephrol 2007; 28:67-75. [PMID: 17914247 DOI: 10.1159/000109394] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 08/13/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM There is an emerging relationship between insulin resistance/hyperinsulinemia, oxidative stress, and glomerular injury manifesting as albuminuria. HMG-CoA reductase inhibitors (statins) have been shown to reduce oxidative stress in the vasculature as well as albuminuria in animal models and in human studies. The glomerular filtration barrier is emerging as a critical determinant of albumin filtration. We investigated the effects of insulin resistance and rosuvastatin or placebo on the glomerular filtration barrier. METHOD Young Zucker obese and Zucker lean rats (6-7 weeks old) were treated with the HMG-CoA reductase inhibitor rosuvastatin (10 mg/kg/day) or placebo for 21 days. RESULTS In the Zucker obese rats, homeostasis model assessment-insulin resistance index, oxidative markers (NADPH oxidase activity, reactive oxygen species, and urine isoprostane formation), podocyte foot process effacement, and albuminuria were increased as compared with Zucker lean controls, independent of increases in systolic blood pressure. Albuminuria correlated with podocyte foot process effacement (r(2) = 0.61) and insulin level (r(2) = 0.69). Rosuvastatin treatment improved albuminuria, filtration barrier indices, and oxidative stress via copper/zinc superoxide dismutase. CONCLUSIONS These data indicate that hyperinsulinemia together with insulin resistance is associated with podocyte injury and albuminuria independent of the systolic blood pressure. Further, rosuvastatin modulates filtration barrier injury and albuminuria and improves oxidative stress measures via copper/zinc superoxide dismutase.
Collapse
Affiliation(s)
- Adam Whaley-Connell
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65212, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yagci R, Ersöz I, Aydin B, Beyaz E, Gürel A, Durmuş M, Duman S. Aqueous Humor and Serum Concentration of Hydroxyproline in Pseudoexfoliation Syndrome. J Glaucoma 2007; 16:225-9. [PMID: 17473735 DOI: 10.1097/ijg.0b013e31802dfc46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine the concentration of hydroxyproline (Hyp) in aqueous humor and serum samples of patients with and without pseudoexfoliation (PEX). PATIENTS AND METHODS Aqueous humor and serum Hyp levels were measured in cataract patients. Patients were divided into PEX and control groups. Samples were obtained from 27 cataract patients with PEX and 25 cataract patients without PEX. Patients had no elevated intraocular pressure or glaucoma. Hyp concentration was determined spectrophotometrically. RESULTS Mean Hyp concentration in the PEX aqueous (0.86+/-0.27 mg/L) and serum (40.8+/-6.14 mg/L) samples was significantly higher than that measured in the control aqueous (0.56+/-0.2 mg/L) and serum (34.51+/-6.82 mg/L) samples, respectively (P<0.001, P=0.001). No significant correlation could be found between aqueous humor and serum Hyp concentrations. CONCLUSIONS The higher levels of Hyp could be a sign of increased collagen turnover in PEX syndrome.
Collapse
Affiliation(s)
- Ramazan Yagci
- Department of Ophthalmology, Medical School, Fatih University, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
43
|
Davies SS, Brantley EJ, Voziyan PA, Amarnath V, Zagol-Ikapitte I, Boutaud O, Hudson BG, Oates JA, Roberts LJ. Pyridoxamine analogues scavenge lipid-derived gamma-ketoaldehydes and protect against H2O2-mediated cytotoxicity. Biochemistry 2006; 45:15756-67. [PMID: 17176098 PMCID: PMC2597444 DOI: 10.1021/bi061860g] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Isoketals and levuglandins are highly reactive gamma-ketoaldehydes formed by oxygenation of arachidonic acid in settings of oxidative injury and cyclooxygenase activation, respectively. These compounds rapidly adduct to proteins via lysyl residues, which can alter protein structure/function. We examined whether pyridoxamine, which has been shown to scavenge alpha-ketoaldehydes formed by carbohydrate or lipid peroxidation, could also effectively protect proteins from the more reactive gamma-ketoaldehydes. Pyridoxamine prevented adduction of ovalbumin and also prevented inhibition of RNase A and glutathione reductase activity by the synthetic gamma-ketoaldehyde, 15-E2-isoketal. We identified the major products of the reaction of pyridoxamine with the 15-E2-isoketal, including a stable lactam adduct. Two lipophilic analogues of pyridoxamine, salicylamine and 5'-O-pentylpyridoxamine, also formed lactam adducts when reacted with 15-E2-isoketal. When we oxidized arachidonic acid in the presence of pyridoxamine or its analogues, pyridoxamine-isoketal adducts were found in significantly greater abundance than the pyridoxamine-N-acyl adducts formed by alpha-ketoaldehyde scavenging. Therefore, pyridoxamine and its analogues appear to preferentially scavenge gamma-ketoaldehydes. Both pyridoxamine and its lipophilic analogues inhibited the formation of lysyl-levuglandin adducts in platelets activated ex vivo with arachidonic acid. The two lipophilic pyridoxamine analogues provided significant protection against H2O2-mediated cytotoxicity in HepG2 cells. These results demonstrate the utility of pyridoxamine and lipophilic pyridoxamine analogues to assess the potential contributions of isoketals and levuglandins in oxidant injury and inflammation and suggest their potential utility as pharmaceutical agents in these conditions.
Collapse
Affiliation(s)
- Sean S Davies
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Administration of vitamin E in children with immunoglobulin A (IgA) nephropathy, focal segmental glomerulosclerosis (FSGS) and type I diabetes demonstrated potential towards ameliorating progression. Oral vitamin E therapy reduced endothelial dysfunction, lipid peroxidation and oxidative stress in patients with chronic kidney failure (CKF). Moreover, the use of vitamin E-bonded hemodialyzers reduced atherosclerotic changes, erythropoietin dosage and muscular cramps in patients on hemodialysis (HD). However, several controlled clinical trials failed to document beneficial effects on the study subjects' cardiovascular and renal outcomes. A recent report of increased all-cause mortality in adult patients receiving high dose vitamin E therapy has caused considerable concern and debate. These issues regarding the efficacy and safety of vitamin E in renal therapeutic regimens will be reviewed in this article.
Collapse
|
45
|
Simoni J, Simoni G, Griswold JA, Moeller JF, Tsikouris JP, Khanna A, Roongsritong C, Wesson DE. Role of Free Hemoglobin in 8-Iso Prostaglandin F2-Alpha Synthesis in Chronic Renal Failure and Its Impact on CD163-Hb Scavenger Receptor and on Coronary Artery Endothelium. ASAIO J 2006; 52:652-61. [PMID: 17117055 DOI: 10.1097/01.mat.0000235282.89757.9f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Free hemoglobin (Hb) during autoxidation increases 8-iso-prostaglandin-F2-alpha (8-isoprostane) formation in vitro. Because 8-isoprostane and plasma Hb are elevated in chronic renal failure (CRF), we evaluated the role of Hb in this isoprostane synthesis in vivo. By monitoring correlations between Hb, haptoglobin (Hp), CD163-Hb-scavenger receptor, and 8-isoprostane that is known to induce CD163 shedding, we examined whether 8-isoprostane blocks Hb catabolism in CRF. Additionally, by studying the effect of 8-isoprostane on human coronary artery endothelium (HCAEC) in vitro and its impact on intercellular adhesion molecule-1 (ICAM-1) in vivo, we tested its role in promotion of cardiovascular events in CRF. Twenty-two never-dialyzed CRF patients and 18 control patients were screened for renal function, plasma and urine 8-isoprostane, and plasma Hb, Hp, thiobarbituric-acid-reactants (TBARS), C-reactive-protein (CRP), and soluble (s) ICAM-1 and sCD163. HCAEC exposed to 8-isoprostane were tested for ICAM-1 and apoptosis. In CRF, urine 8-isoprostane was significantly elevated and correlated with free-Hb and TBARS. The increased free-Hb, Hp, and sCD163 in CRF suggested 8-isoprostane-mediated suppression of Hb catabolism through CD163 receptor shedding. 8-Isoprostane enhanced ICAM-1 expression and apoptosis in HCAEC. CRF patients showed elevated sICAM-1. In conclusion, free-Hb, via 8-isoprostane, paradoxically blocks its own catabolism. Free-Hb and/or 8-isoprostane may intensify cardiovascular events in CRF.
Collapse
Affiliation(s)
- Jan Simoni
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lin CL, Wang FS, Kuo YR, Huang YT, Huang HC, Sun YC, Kuo YH. Ras modulation of superoxide activates ERK-dependent fibronectin expression in diabetes-induced renal injuries. Kidney Int 2006; 69:1593-600. [PMID: 16572112 DOI: 10.1038/sj.ki.5000329] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although previous studies have demonstrated that diabetic nephropathy is attributable to early extracellular matrix accumulation in glomerular mesangial cells, the molecular mechanism by which high glucose induces matrix protein deposition remains not fully elucidated. Rat mesangial cells pretreated with or without inhibitors were cultured in high-glucose or advanced glycation end product (AGE) conditions. Streptozotocin-induced diabetic rats were given superoxide dismutase (SOD)-conjugated propylene glycol to scavenge superoxide. Transforming growth factor (TGF)-beta1, fibronectin expression, Ras, ERK, p38, and c-Jun activation of glomerular mesangial cells or urinary albumin secretion were assessed. Superoxide, not nitric oxide or hydrogen peroxide, mediated high glucose- and AGE-induced TGF-beta1 and fibronectin expression. Pretreatment with diphenyliodonium, not allopurinol or rotenone, reduced high-glucose and AGE augmentation of superoxide synthesis and fibronection expression. High glucose and AGEs rapidly enhanced Ras activation and progressively increased cytosolic ERK and nuclear c-Jun activation. Inhibiting Ras by manumycin A reduced the stimulatory effects of high glucose and AGEs on superoxide and fibronectin expression. SOD or PD98059 pretreatment reduced high-glucose and AGE promotion of ERK and c-Jun activation. Exogenous SOD treatment in diabetic rats significantly attenuated diabetes induction of superoxide, urinary albumin excretion, 8-hydroxy-2'-deoxyguanosine, TGF-beta1, and fibronectin immunoreactivities in renal glomerular mesangial cells. Ras induction of superoxide activated ERK-dependent fibrosis-stimulatory factor and extracellular matrix gene transcription of mesangial cells. Reduction of oxidative stress by scavenging superoxide may provide an alternative strategy for controlling diabetes-induced early renal injury.
Collapse
Affiliation(s)
- C-L Lin
- Department of Nephrology, Chiayi Chang Gung Memorial Hospital & Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Chiayi, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Arachidonic acid metabolites are vital for the proper control of renal haemodynamics and, when not properly controlled, can contribute to renal vascular injury and end-stage renal disease. Three major enzymatic pathways, COX (cyclo-oxygenase), CYP450 (cytochrome P450) and LOX (lipoxygenase), are responsible for the metabolism of arachidonic acid metabolites to bioactive eicosanoids. These eicosanoids can dilate or constrict the renal vasculature and maintain vascular resistance in the face of changing vasoactive hormones. Renal vascular generation of eicosanoids is altered in pathophysiological conditions such as hypertension, diabetes, metabolic syndrome and acute renal failure. Experimental evidence supports the concept that altered eicosanoid metabolism contributes to renal haemodynamic alterations and the development and progression of nephropathy. The possible beneficial renal vascular actions of enzymatic inhibitors, eicosanoid analogues and receptor antagonists have been examined in hypertension, diabetes and metabolic syndrome. This review highlights the roles of renal vascular eicosanoids in the pathogenesis of nephropathy and therapeutic targets for renal disease related to hypertension, diabetes, metabolic syndrome and acute renal failure.
Collapse
Affiliation(s)
- John D Imig
- Vascular Biology Center, Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
48
|
Menini S, Amadio L, Oddi G, Ricci C, Pesce C, Pugliese F, Giorgio M, Migliaccio E, Pelicci P, Iacobini C, Pugliese G. Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress. Diabetes 2006; 55:1642-50. [PMID: 16731826 DOI: 10.2337/db05-1477] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
p66(Shc) regulates both steady-state and environmental stress-dependent reactive oxygen species (ROS) generation. Its deletion was shown to confer resistance to oxidative stress and protect mice from aging-associated vascular disease. This study was aimed at verifying the hypothesis that p66(Shc) deletion also protects from diabetic glomerulopathy by reducing oxidative stress. Streptozotocin-induced diabetic p66(Shc) knockout (KO) mice showed less marked changes in renal function and structure, as indicated by the significantly lower levels of proteinuria, albuminuria, glomerular sclerosis index, and glomerular and mesangial areas. Glomerular content of fibronectin and collagen IV was also lower in diabetic KO versus wild-type mice, whereas apoptosis was detected only in diabetic wild-type mice. Serum and renal tissue advanced glycation end products and plasma isoprostane 8-epi-prostaglandin F2alpha levels and activation of nuclear factor kappaB (NF-kappaB) were also lower in diabetic KO than in wild-type mice. Mesangial cells from KO mice grown under high-glucose conditions showed lower cell death rate, matrix production, ROS levels, and activation of NF-kappaB than those from wild-type mice. These data support a role for oxidative stress in the pathogenesis of diabetic glomerulopathy and indicate that p66(Shc) is involved in the molecular mechanism(s) underlying diabetes-induced oxidative stress and oxidant-dependent renal injury.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical Sciences, La Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Talati M, Meyrick B, Peebles RS, Davies SS, Dworski R, Mernaugh R, Mitchell D, Boothby M, Roberts LJ, Sheller JR. Oxidant stress modulates murine allergic airway responses. Free Radic Biol Med 2006; 40:1210-9. [PMID: 16545689 DOI: 10.1016/j.freeradbiomed.2005.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 11/11/2005] [Indexed: 10/25/2022]
Abstract
The allergic inflammation occurring in asthma is believed to be accompanied by the production of free radicals. To investigate the role of free radicals and the cells affected we turned to a murine model of allergic inflammation produced by sensitization to ovalbumin with subsequent aerosol challenge. We examined oxidant stress by measuring and localizing the sensitive and specific marker of lipid peroxidation, the F2-isoprostanes. F2-isoprostanes in whole lung increased from 0.30 +/- 0.08 ng/lung at baseline to a peak of 0.061 +/- 0.09 ng/lung on the ninth day of daily aerosol allergen challenge. Increased immunoreactivity to 15-F2t-IsoP (8-iso-PGF2alpha) or to isoketal protein adducts was found in epithelial cells 24 h after the first aerosol challenge and at 5 days in macrophages. Collagen surrounding airways and blood vessels, and airway and vascular smooth muscle, also exhibited increased immunoreactivity after ovalbumin challenge. Dietary vitamin E restriction in conjunction with allergic inflammation led to increased whole lung F2-isoprostanes while supplemental vitamin E suppressed their formation. Similar changes in immunoreactivity to F2-isoprostanes were seen. Airway responsiveness to methacholine was also increased by vitamin E depletion and decreased slightly by supplementation with the antioxidant. Our findings indicate that allergic airway inflammation in mice is associated with an increase in oxidant stress, which is most striking in airway epithelial cells and macrophages. Oxidant stress plays a role in the production of airway responsiveness.
Collapse
Affiliation(s)
- Megha Talati
- Department of Medicine, T 1217 MCN, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
McGowan TA, Dunn SR, Falkner B, Sharma K. Stimulation of urinary TGF-beta and isoprostanes in response to hyperglycemia in humans. Clin J Am Soc Nephrol 2005; 1:263-8. [PMID: 17699215 DOI: 10.2215/cjn.00990905] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TGF-beta and oxidant stress have been considered to play key roles in the pathogenesis of diabetic vascular complications; however, the stimulus for these factors in humans is not clear. The purpose of this in vivo study was to determine whether transient hyperglycemia in humans is sufficient to increase renal production of TGF-beta1 and urinary isoprostanes in normal humans. A hyperglycemic clamp procedure was performed on 13 healthy volunteers. An infusion of glucose was delivered to maintain the plasma glucose between 200 and 250 mg/dl for 120 min. Timed urine samples, collected on an overnight period before the study, at each void on completion of the procedure, and the following overnight, were assayed for TGF-beta1, F2-isoprostanes, and creatinine. Plasma samples were assayed for TGF-beta1 before and at timed intervals throughout hyperglycemia. Mean baseline TGF-beta1 in plasma was 4.57 +/- 0.22 ng/ml, and no change in plasma TGF-beta1 levels was detected throughout the hyperglycemia period. Baseline urine TGF-beta1 was 4.14 +/- 1.16 pg/mg creatinine. The fractional urine samples showed a sharp increase in TGF-beta1 excretion in the 12-h period after exposure to hyperglycemia, with a mean peak TGF-beta1 of 30.43 +/- 8.05 pg/mg (P = 0.002). TGF-beta1 excretion in the subsequent overnight urine sample was not different from baseline (4.62 +/- 1.21 pg/mg). Urinary isoprostanes increased from a baseline of 4.92 +/- 0.74 to 13.8 +/- 3.37 ng/mg creatinine. It is concluded that 120 min of hyperglycemia in normal humans is sufficient to induce an increase in renal TGF-beta1 and isoprostane production.
Collapse
Affiliation(s)
- Tracy A McGowan
- Center for Diabetic Kidney Disease, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|