1
|
Ratko M, Habek N, Radmilović MD, Škokić S, Justić H, Barić A, Dugandžić A. Role of uroguanylin's signaling pathway in the development of ischemic stroke. Eur J Neurosci 2022; 56:3720-3737. [PMID: 35445449 PMCID: PMC9542124 DOI: 10.1111/ejn.15674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Stroke is one of the leading causes of mortality and disability worldwide. By affecting bradykinin function, activation of guanylate cyclase (GC)‐A has been shown to have a neuroprotective effect after ischaemic stroke, whereas the same has not been confirmed for GC‐B; therefore, we aimed to determine the possible role of GC‐C and its agonist, uroguanylin (UGN), in the development of stroke. In this study, middle cerebral artery occlusion (MCAO) was performed on wild‐type (WT), GC‐C KO and UGN KO mice. MR images were acquired before and 24 h after MCAO. On brain slices 48 h after MCAO, the Ca2+ response to UGN stimulation was recorded. Our results showed that the absence of GC‐C in GC‐C KO mice resulted in the development of smaller ischaemic lesions compared with WT littermates, which is an opposite effect compared with the effects of GC‐A agonists on brain lesions. WT and UGN KO animals showed a stronger Ca2+ response upon UGN stimulation in astrocytes of the peri‐ischaemic cerebral cortex compared with the same cortical region of the unaffected contralateral hemisphere. This stronger activation was not observed in GC‐C KO animals, which may be the reason for smaller lesion development in GC‐C KO mice. The reason why GC‐C might affect Ca2+ signalling in peri‐ischaemic astrocytes is that GC‐C is expressed in these cells after MCAO, whereas under normoxic conditions, it is expressed mainly in cortical neurons. Stronger activation of the Ca2+‐dependent signalling pathway could lead to the stronger activation of the Na+/H+ exchanger, tissue acidification and neuronal death.
Collapse
Affiliation(s)
- Martina Ratko
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikola Habek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Siniša Škokić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Helena Justić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Barić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Aleksandra Dugandžić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Takei Y. Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors. Gen Comp Endocrinol 2022; 315:113797. [PMID: 33957096 DOI: 10.1016/j.ygcen.2021.113797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Guanylyl cyclase (GC) is an enzyme that produces 3',5'-cyclic guanosine monophosphate (cGMP), one of the two canonical cyclic nucleotides used as a second messenger for intracellular signal transduction. The GCs are classified into two groups, particulate/membrane GCs (pGC) and soluble/cytosolic GCs (sGC). In relation to the endocrine system, pGCs include hormone receptors for natriuretic peptides (GC-A and GC-B) and guanylin peptides (GC-C), while sGC is a receptor for nitric oxide and carbon monoxide. Comparing the functions of pGCs in eukaryotes, it is apparent that pGCs perceive various environmental factors such as light, temperature, and various external chemical signals in addition to endocrine hormones, and transmit the information into the cell using the intracellular signaling cascade initiated by cGMP, e.g., cGMP-dependent protein kinases, cGMP-sensitive cyclic nucleotide-gated ion channels and cGMP-regulated phosphodiesterases. Among vertebrate pGCs, GC-E and GC-F are localized on retinal epithelia and are involved in modifying signal transduction from the photoreceptor, rhodopsin. GC-D and GC-G are localized in olfactory epithelia and serve as sensors at the extracellular domain for external chemical signals such as odorants and pheromones. GC-G also responds to guanylin peptides in the urine, which alters sensitivity to other chemicals. In addition, guanylin peptides that are secreted into the intestinal lumen, a pseudo-external environment, act on the GC-C on the apical membrane for regulation of epithelial transport. In this context, GC-C and GC-G appear to be in transition from exocrine pheromone receptor to endocrine hormone receptor. The pGCs also exist in various deuterostome and protostome invertebrates, and act as receptors for environmental, exocrine and endocrine factors including hormones. Tracing the evolutionary history of pGCs, it appears that pGCs first appeared as a sensor for physicochemical signals in the environment, and then evolved to function as hormone receptors. In this review, the author proposes an evolutionary history of pGCs that highlights the emerging role of the GC/cGMP system for signal transduction in hormone action.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
3
|
Prasad H, Mathew JKK, Visweswariah SS. Receptor Guanylyl Cyclase C and Cyclic GMP in Health and Disease: Perspectives and Therapeutic Opportunities. Front Endocrinol (Lausanne) 2022; 13:911459. [PMID: 35846281 PMCID: PMC9276936 DOI: 10.3389/fendo.2022.911459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor Guanylyl Cyclase C (GC-C) was initially characterized as an important regulator of intestinal fluid and ion homeostasis. Recent findings demonstrate that GC-C is also causally linked to intestinal inflammation, dysbiosis, and tumorigenesis. These advances have been fueled in part by identifying mutations or changes in gene expression in GC-C or its ligands, that disrupt the delicate balance of intracellular cGMP levels and are associated with a wide range of clinical phenotypes. In this review, we highlight aspects of the current knowledge of the GC-C signaling pathway in homeostasis and disease, emphasizing recent advances in the field. The review summarizes extra gastrointestinal functions for GC-C signaling, such as appetite control, energy expenditure, visceral nociception, and behavioral processes. Recent research has expanded the homeostatic role of GC-C and implicated it in regulating the ion-microbiome-immune axis, which acts as a mechanistic driver in inflammatory bowel disease. The development of transgenic and knockout mouse models allowed for in-depth studies of GC-C and its relationship to whole-animal physiology. A deeper understanding of the various aspects of GC-C biology and their relationships with pathologies such as inflammatory bowel disease, colorectal cancer, and obesity can be leveraged to devise novel therapeutics.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | - Sandhya S. Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
- *Correspondence: Sandhya S. Visweswariah,
| |
Collapse
|
4
|
Bose A, Banerjee S, Visweswariah SS. Mutational landscape of receptor guanylyl cyclase C: Functional analysis and disease-related mutations. IUBMB Life 2020; 72:1145-1159. [PMID: 32293781 DOI: 10.1002/iub.2283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
Guanylyl cyclase C (GC-C) is the receptor for the heat-stable enterotoxin, which causes diarrhea, and the endogenous ligands, guanylin and uroguanylin. GC-C is predominantly expressed in the intestinal epithelium and regulates fluid and ion secretion in the gut. The receptor has a complex domain organization, and in the absence of structural information, mutational analysis provides clues to mechanisms of regulation of this protein. Here, we review the mutational landscape of this receptor that reveals regulatory features critical for its activity. We also summarize the available information on mutations in GC-C that have been reported in humans and contribute to severe gastrointestinal abnormalities. Since GC-C is also expressed in extra-intestinal tissues, it is likely that mutations thus far reported in humans may also affect other organ systems, warranting a close observation of these patients in future.
Collapse
Affiliation(s)
- Avipsa Bose
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sanghita Banerjee
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
5
|
Snook AE, Baybutt TR, Xiang B, Abraham TS, Flickinger JC, Hyslop T, Zhan T, Kraft WK, Sato T, Waldman SA. Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. J Immunother Cancer 2019; 7:104. [PMID: 31010434 PMCID: PMC6477737 DOI: 10.1186/s40425-019-0576-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/22/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The colorectal cancer antigen GUCY2C exhibits unique split tolerance, evoking antigen-specific CD8+, but not CD4+, T-cell responses that deliver anti-tumor immunity without autoimmunity in mice. Here, the cancer vaccine Ad5-GUCY2C-PADRE was evaluated in a first-in-man phase I clinical study of patients with early-stage colorectal cancer to assess its safety and immunological efficacy. METHODS Ten patients with surgically-resected stage I or stage II (pN0) colon cancer received a single intramuscular injection of 1011 viral particles (vp) of Ad5-GUCY2C-PADRE. Safety assessment and immunomonitoring were carried out for 6 months following immunization. This trial employed continual monitoring of both efficacy and toxicity of subjects as joint primary outcomes. RESULTS All patients receiving Ad5-GUCY2C-PADRE completed the study and none developed adverse events greater than grade 1. Antibody responses to GUCY2C were detected in 10% of patients, while 40% exhibited GUCY2C-specific T-cell responses. GUCY2C-specific responses were exclusively CD8+ cytotoxic T cells, mimicking pre-clinical studies in mice in which GUCY2C-specific CD4+ T cells are eliminated by self-tolerance, while CD8+ T cells escape tolerance and mediate antitumor immunity. Moreover, pre-existing neutralizing antibodies (NAbs) to the Ad5 vector were associated with poor vaccine-induced responses, suggesting that Ad5 NAbs oppose GUCY2C immune responses to the vaccine in patients and supported by mouse studies. CONCLUSIONS Split tolerance to GUCY2C in cancer patients can be exploited to safely generate antigen-specific cytotoxic CD8+, but not autoimmune CD4+, T cells by Ad5-GUCY2C-PADRE in the absence of pre-existing NAbs to the viral vector. TRIAL REGISTRATION This trial (NCT01972737) was registered at ClinicalTrials.gov on October 30th, 2013. https://clinicaltrials.gov/ct2/show/NCT01972737.
Collapse
Affiliation(s)
- Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA.
| | - Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Bo Xiang
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Tara S Abraham
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Terry Hyslop
- Department of Biostatistics and Bioinformatics, Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Tingting Zhan
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Walter K Kraft
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| |
Collapse
|
6
|
Zegeye ED, Govasli ML, Sommerfelt H, Puntervoll P. Development of an enterotoxigenic Escherichia coli vaccine based on the heat-stable toxin. Hum Vaccin Immunother 2018; 15:1379-1388. [PMID: 30081709 PMCID: PMC6663125 DOI: 10.1080/21645515.2018.1496768] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection with enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea-related illness and death among children under 5 years of age in low– and middle-income countries (LMIC). Recent studies have found that it is the ETEC subtypes that produce the heat-stable enterotoxin (ST), irrespective of whether they also secrete the heat-labile enterotoxin (LT), which contribute most importantly to the disease burden in children from LMIC. Therefore, adding an ST toxoid would importantly complement ongoing ETEC vaccine development efforts. The ST’s potent toxicity, its structural similarity to the endogenous peptides guanylin and uroguanylin, and its poor immunogenicity have all complicated the advancement of ST-based vaccine development. Recent remarkable progress, however, including the unprecedented screening for optimal ST mutants, mapping of cross-reacting ST epitopes and improved ST-carrier coupling strategies (bioconjugation and genetic fusion), enables the rational design of safe, immunogenic, and well-defined ST-based vaccine candidates.
Collapse
Affiliation(s)
| | | | - Halvor Sommerfelt
- b Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care , University of Bergen , Bergen , Norway.,c Norwegian Institute of Public Health , Oslo , Norway
| | - Pål Puntervoll
- a Centre for Applied Biotechnology , Uni Research AS , Bergen , Norway
| |
Collapse
|
7
|
Snook AE, Baybutt TR, Hyslop T, Waldman SA. Preclinical Evaluation of a Replication-Deficient Recombinant Adenovirus Serotype 5 Vaccine Expressing Guanylate Cyclase C and the PADRE T-helper Epitope. Hum Gene Ther Methods 2017; 27:238-250. [PMID: 27903079 DOI: 10.1089/hgtb.2016.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There is an unmet need for improved therapeutics for colorectal cancer, the second leading cause of cancer mortality worldwide. Adjuvant chemotherapy only marginally improves survival in some patients and has no benefit in others, underscoring the clinical opportunity for novel immunotherapeutic approaches to improve survival in colorectal cancer. In that context, guanylate cyclase C (GUCY2C) is an established biomarker and therapeutic target for metastatic colorectal cancer with immunological characteristics that promote durable antitumor efficacy without autoimmunity. Preliminary studies established non-replicating human type 5 adenovirus (Ad5) expressing GUCY2C as safe and effective to induce GUCY2C-specific immune responses and antitumor immunity in mice. This study characterized the biodistribution, immunogenicity, and safety of a vector expressing GUCY2C fused with the human CD4+ T helper cell epitope PADRE (Ad5-GUCY2C-PADRE) to advance this vaccine into clinical trials in colorectal cancer patients. Ad5-GUCY2C-PADRE levels were highest in the injection site and distributed in vivo primarily to draining lymph nodes, the liver, spleen and, unexpectedly, to the bone marrow. Immune responses following Ad5-GUCY2C-PADRE administration were characterized by PADRE-specific CD4+ T-cell and GUCY2C-specific B-cell and CD8+ T-cell responses, producing antitumor immunity targeting GUCY2C-expressing colorectal cancer metastases in the lungs, without acute or chronic autoimmune or other toxicities. Collectively, these data support Ad5-GUCY2C-PADRE as a safe and effective vaccination strategy in preclinical models and position Ad5-GUCY2C-PADRE for Phase I clinical testing in colorectal cancer patients.
Collapse
Affiliation(s)
- Adam E Snook
- 1 Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Trevor R Baybutt
- 1 Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Terry Hyslop
- 2 Department of Biostatistics and Bioinformatics, Duke Cancer Institute, Duke University , Durham, North Carolina
| | - Scott A Waldman
- 1 Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Shen K, Johnson DW, Gobe GC. The role of cGMP and its signaling pathways in kidney disease. Am J Physiol Renal Physiol 2016; 311:F671-F681. [PMID: 27413196 DOI: 10.1152/ajprenal.00042.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/10/2016] [Indexed: 01/20/2023] Open
Abstract
Cyclic nucleotide signal transduction pathways are an emerging research field in kidney disease. Activated cell surface receptors transduce their signals via intracellular second messengers such as cAMP and cGMP. There is increasing evidence that regulation of the cGMP-cGMP-dependent protein kinase 1-phosphodiesterase (cGMP-cGK1-PDE) signaling pathway may be renoprotective. Selective PDE5 inhibitors have shown potential in treating kidney fibrosis in patients with chronic kidney disease (CKD), via their downstream signaling, and these inhibitors also have known activity as antithrombotic and anticancer agents. This review gives an outline of the cGMP-cGK1-PDE signaling pathways and details the downstream signaling and regulatory functions that are modulated by cGK1 and PDE inhibitors with regard to antifibrotic, antithrombotic, and antitumor activity. Current evidence that supports the renoprotective effects of regulating cGMP-cGK1-PDE signaling is also summarized. Finally, the effects of icariin, a natural plant extract with PDE5 inhibitory function, are discussed. We conclude that regulation of cGMP-cGK1-PDE signaling might provide novel, therapeutic strategies for the worsening global public health problem of CKD.
Collapse
Affiliation(s)
- Kunyu Shen
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia; Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China; and
| | - David W Johnson
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia; Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia;
| |
Collapse
|
9
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Fellner RC, Moss NG, Goy MF. Dietary salt regulates uroguanylin expression and signaling activity in the kidney, but not in the intestine. Physiol Rep 2016; 4:4/9/e12782. [PMID: 27185905 PMCID: PMC4873633 DOI: 10.14814/phy2.12782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/29/2016] [Indexed: 12/28/2022] Open
Abstract
The peptide uroguanylin (Ugn) is expressed at significant levels only in intestine and kidney, and is stored in both tissues primarily (perhaps exclusively) as intact prouroguanylin (proUgn). Intravascular infusion of either Ugn or proUgn evokes well-characterized natriuretic responses in rodents. Furthermore, Ugn knockout mice display hypertension and salt handling deficits, indicating that the Na(+) excretory mechanisms triggered when the peptides are infused into anesthetized animals are likely to operate under normal physiological conditions, and contribute to electrolyte homeostasis in conscious animals. Here, we provide strong corroborative evidence for this hypothesis, by demonstrating that UU gnV (the rate of urinary Ugn excretion) approximately doubled in conscious, unrestrained rats consuming a high-salt diet, and decreased by ~15% after salt restriction. These changes in UU gnV were not associated with altered plasma proUgn levels (shown here to be an accurate index of intestinal proUgn secretion). Furthermore, enteric Ugn mRNA levels were unaffected by salt intake, whereas renal Ugn mRNA levels increased sharply during periods of increased dietary salt consumption. Together, these data suggest that diet-evoked Ugn signals originate within the kidney, rather than the intestine, thus strengthening a growing body of evidence against a widely cited hypothesis that Ugn serves as the mediator of an entero-renal natriuretic signaling axis, while underscoring a likely intrarenal natriuretic role for the peptide. The data further suggest that intrarenal Ugn signaling is preferentially engaged when salt intake is elevated, and plays only a minor role when salt intake is restricted.
Collapse
Affiliation(s)
- Robert C Fellner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas G Moss
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael F Goy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Uroguanylin modulates (Na++K+)ATPase in a proximal tubule cell line: Interactions among the cGMP/protein kinase G, cAMP/protein kinase A, and mTOR pathways. Biochim Biophys Acta Gen Subj 2016; 1860:1431-8. [PMID: 27102282 DOI: 10.1016/j.bbagen.2016.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND The natriuretic effect of uroguanylin (UGN) involves reduction of proximal tubule (PT) sodium reabsorption. However, the target sodium transporters as well as the molecular mechanisms involved in these processes remain poorly understood. METHODS To address the effects of UGN on PT (Na(+)+K(+))ATPase and the signal transduction pathways involved in this effect, we used LLC-PK1 cells. The effects of UGN were determined through ouabain-sensitive ATP hydrolysis and immunoblotting assays during different experimental conditions. RESULTS We observed that UGN triggers cGMP/PKG and cAMP/PKA pathways in a sequential way. The activation of PKA leads to the inhibition of mTORC2 activity, PKB phosphorylation at S473, PKB activity and, consequently, a decrease in the mTORC1/S6K pathway. The final effects are decreased expression of the α1 subunit of (Na(+)+K(+))ATPase and inhibition of enzyme activity. CONCLUSIONS These results suggest that the molecular mechanism of action of UGN on sodium reabsorption in PT cells is more complex than previously thought. We propose that PKG-dependent activation of PKA leads to the inhibition of the mTORC2/PKB/mTORC1/S6K pathway, an important signaling pathway involved in the maintenance of the PT sodium pump expression and activity. GENERAL SIGNIFICANCE The current results expand our understanding of the signal transduction pathways involved in the overall effect of UGN on renal sodium excretion.
Collapse
|
12
|
|
13
|
Hodes A, Lichtstein D. Natriuretic hormones in brain function. Front Endocrinol (Lausanne) 2014; 5:201. [PMID: 25506340 PMCID: PMC4246887 DOI: 10.3389/fendo.2014.00201] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023] Open
Abstract
Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume, and blood pressure (BP). In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of NH is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the NH and their receptors in the brain is summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that NH participate in the central regulation of BP, neuroprotection, satiety, and various psychiatric conditions, including anxiety, addiction, and depressive disorders. In addition, the interactions between the different NH in the periphery and the brain are discussed.
Collapse
Affiliation(s)
- Anastasia Hodes
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lichtstein
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Yu SW, Rao SS. Advances in the management of constipation-predominant irritable bowel syndrome: the role of linaclotide. Therap Adv Gastroenterol 2014; 7:193-205. [PMID: 25177366 PMCID: PMC4107700 DOI: 10.1177/1756283x14537882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Constipation-predominant irritable bowel syndrome (IBS-C) is a commonly prevalent and clinically challenging disorder to treat. Until recently, most therapeutic agents had limited ability to address the complexity of symptoms inherent to the syndrome. The development of linaclotide provides a physiologically sound approach to treatment of the multiple symptoms of IBS-C. Clinical trials demonstrate the efficacy of linaclotide, and a platform to better understand the symptomatology of IBS-C. Based on recent clinical evidence, linaclotide should be considered for patients with IBS-C because it improves abdominal pain and bowel symptoms. In phase III trials, linaclotide met the US Food and Drug Administration responder endpoint with a number needed to treat (NNT) of 5.1-7.9, and European Medicines Agency coprimary endpoints at 12 weeks with a NNT of 4.39-7.69, and at 26 weeks with a NNT of 4.93-5.68. It is safe and effective, with diarrhea reported as the most common adverse effect, which leads to discontinuation of the medication in approximately 5% of patients.
Collapse
Affiliation(s)
- Siegfried W.B. Yu
- Division of Gastroenterology and Hepatology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Satish S.C. Rao
- Section of Gastroenterology and Hepatology, Medical College of Georgia, Georgia Regents University, BBR2540, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
15
|
da Silva Lima V, Crajoinas RO, Carraro-Lacroix LR, Godinho AN, Dias JLG, Dariolli R, Girardi ACC, Fonteles MC, Malnic G, Lessa LMA. Uroguanylin inhibits H-ATPase activity and surface expression in renal distal tubules by a PKG-dependent pathway. Am J Physiol Cell Physiol 2014; 307:C532-41. [PMID: 25031022 DOI: 10.1152/ajpcell.00392.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cumulative evidence suggests that guanylin peptides play an important role on electrolyte homeostasis. We have previously reported that uroguanylin (UGN) inhibits bicarbonate reabsorption in a renal distal tubule. In the present study, we tested the hypothesis that the bicarbonaturic effect of UGN is at least in part attributable to inhibition of H(+)-ATPase-mediated hydrogen secretion in the distal nephron. By in vivo stationary microperfusion experiments, we were able to show that UGN inhibits H(+)-ATPase activity by a PKG-dependent pathway because KT5823 (PKG inhibitor) abolished the UGN effect on distal bicarbonate reabsorption and H89 (PKA inhibitor) was unable to prevent it. The in vivo results were confirmed by the in vitro experiments, where we used fluorescence microscopy to measure intracellular pH (pHi) recovery after an acid pulse with NH4Cl. By this technique, we observed that UGN and 8 bromoguanosine-cGMP (8Br-cGMP) inhibited H(+)-ATPase-dependent pHi recovery and that the UGN inhibitory effect was abolished in the presence of the PKG inhibitor. In addition, by using RT-PCR technique, we verified that Madin-Darby canine kidney (MDCK)-C11 cells express guanylate cyclase-C. Besides, UGN stimulated an increase of both cGMP content and PKG activity but was unable to increase the production of cellular cAMP content and PKA activity. Furthermore, we found that UGN reduced cell surface abundance of H+-ATPase B1 subunit in MDCK-C11 and that this effect was abolished by the PKG inhibitor. Taken together, our data suggest that UGN inhibits H(+)-ATPase activity and surface expression in renal distal cells by a cGMP/PKG-dependent pathway.
Collapse
Affiliation(s)
- Vanessa da Silva Lima
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Luciene R Carraro-Lacroix
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Alana N Godinho
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - João L G Dias
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Manassés C Fonteles
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil; Mackenzie University, São Paulo, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Lucília M A Lessa
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil;
| |
Collapse
|
16
|
Rozenfeld J, Tal O, Kladnitsky O, Adler L, Efrati E, Carrithers SL, Alper SL, Zelikovic I. Pendrin, a novel transcriptional target of the uroguanylin system. Cell Physiol Biochem 2013; 32:221-37. [PMID: 24429828 DOI: 10.1159/000356641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2013] [Indexed: 12/22/2022] Open
Abstract
Guanylin (GN) and uroguanylin (UGN) are low-molecular-weight peptide hormones produced mainly in the intestinal mucosa in response to oral salt load. GN and UGN (guanylin peptides) induce secretion of electrolytes and water in both intestine and kidney. Thought to act as "intestinal natriuretic factors", GN and UGN modulate renal salt secretion by both endocrine mechanisms (linking the digestive system and kidney) and paracrine/autocrine (intrarenal) mechanisms. The cellular function of GN and UGN in intestine and proximal tubule is mediated by guanylyl cyclase C (GC-C)-, cGMP-, and G protein-dependent pathways, whereas, in principal cells of the cortical collecting duct (CCD), these peptide hormones act via GC-C-independent signaling through phospholipase A2 (PLA2). The Cl(-)/HCO(-)3 exchanger pendrin (SLC26A4), encoded by the PDS gene, is expressed in non-α intercalated cells of the CCD. Pendrin is essential for CCD bicarbonate secretion and is also involved in NaCl balance and blood pressure regulation. Our recent studies have provided evidence that pendrin-mediated anion exchange in the CCD is regulated at the transcriptional level by UGN. UGN exerts an inhibitory effect on the pendrin gene promoter likely via heat shock factor 1 (HSF1) action at a defined heat shock element (HSE) site. Recent studies have unraveled novel roles for guanylin peptides in several organ systems including involvement in appetite regulation, olfactory function, cell proliferation and differentiation, inflammation, and reproductive function. Both the guanylin system and pendrin have also been implicated in airway function. Future molecular research into the receptors and signal transduction pathways involved in the action of guanylin peptides and the pendrin anion exchanger in the kidney and other organs, and into the links between them, may facilitate discovery of new therapies for hypertension, heart failure, hepatic failure and other fluid retention syndromes, as well as for diverse diseases such as obesity, asthma, and cancer.
Collapse
Affiliation(s)
- Julia Rozenfeld
- Laboratory of Developmental Nephrology, Department of Physiology and Biophysics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Magee MS, Snook AE, Marszalowicz GP, Waldman SA. Immunotherapeutic strategies to target prognostic and predictive markers of cancer. Biomark Med 2013; 7:23-35. [PMID: 23387482 DOI: 10.2217/bmm.12.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Throughout the last century medical advances in cancer treatment in the fields of surgery, radiation therapy and chemotherapy have greatly impacted patients' survival rates. Nevertheless, cancer remains a significant cause of mortality, with an estimated 7.6 million deaths worldwide in 2008, reflecting the inability of existing therapies to effectively cure disease. The emergence of vaccines and their successes in preventing the spread of infectious diseases has demonstrated the unique specificity and therapeutic potential of the immune system. This potential has driven the development of novel cancer immunotherapeutics. This review focuses on the current status of the use of immunologic effectors to target known biomarkers in cancer.
Collapse
Affiliation(s)
- Michael S Magee
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
18
|
Abstract
The alarming prevalence of obesity has led to a better understanding of the molecular mechanisms controlling energy homeostasis. Regulation of energy intake and expenditure is more complex than previously thought, being influenced by signals from many peripheral tissues. In this sense, a wide variety of peripheral signals derived from different organs contributes to the regulation of body weight and energy expenditure. Besides the well-known role of insulin and adipokines, such as leptin and adiponectin, in the regulation of energy homeostasis, signals from other tissues not previously thought to play a role in body weight regulation have emerged in recent years. The role of fibroblast growth factor 21 (FGF21), insulin-like growth factor 1 (IGF-I), and sex hormone-binding globulin (SHBG) produced by the liver in the regulation of body weight and insulin sensitivity has been recently described. Moreover, molecules expressed by skeletal muscle such as myostatin have also been involved in adipose tissue regulation. Better known is the involvement of ghrelin, cholecystokinin, glucagon-like peptide 1 (GLP-1) and PYY(3-36), produced by the gut, in energy homeostasis. Even the kidney, through the production of renin, appears to regulate body weight, with mice lacking this hormone exhibiting resistance to diet-induced obesity. In addition, the skeleton has recently emerged as an endocrine organ, with effects on body weight control and glucose homeostasis through the actions of bone-derived factors such as osteocalcin and osteopontin. The comprehension of these signals will help in a better understanding of the aetiopathology of obesity, contributing to the potential development of new therapeutic targets aimed at tackling excess body fat accumulation.
Collapse
|
19
|
Simões-Silva L, Moreira-Rodrigues M, Quelhas-Santos J, Fernandes-Cerqueira C, Pestana M, Soares-Silva I, Sampaio-Maia B. Intestinal and renal guanylin peptides system in hypertensive obese mice. Exp Biol Med (Maywood) 2013; 238:90-7. [PMID: 23479768 DOI: 10.1258/ebm.2012.012232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Guanylin (GN), uroguanylin (UGN) and the GC-C receptor have been associated with two endocrine axes: the salt and water homeostasis regulating enterorenal axis and the recently described appetite-regulating UGN/GC-C extraintestinal axis. The present work assessed the mRNA expression levels of GN peptides system (GPS) in a model of diet-induced obesity. Male C57BL/6J mice were submitted to either a high-fat high-simple carbohydrate diet (obese) or a normal diet (control). The renal and intestinal GN, UGN and GC-C receptor mRNA expression were evaluated by reverse transcriptase quantitative polymerase chain reaction in both groups, during normo-saline (NS) and high-saline (HS) diet. The diet-induced obesity was accompanied by glucose intolerance and insulin resistance as well as by a significant increase in blood pressure. During NS diet, obese mice presented reduced mRNA expression of GN in ileum and colon, UGN in duodenum, ileum and colon and GC-C in duodenum, jejunum, ileum and colon. This was accompanied by increased UGN mRNA expression in renal cortex. During HS diet, obese mice presented reduced mRNA expression of GN in jejunum as well as reduced mRNA expression of UGN and GC-C in duodenum, jejunum and colon. The data obtained suggest that, in a mouse model of diet-induced obesity, a down-regulation of intestinal mRNA expression of GN, UGN and its GC-C receptor is accompanied by a compensatory increase of renal UGN mRNA expression. We hypothesize that the decrease in gene expression levels of intestinal GPS may contribute to the development of hypertension and obesity during hypercaloric diet intake.
Collapse
Affiliation(s)
- Liliana Simões-Silva
- Nephrology Research and Development Unit, Faculty of Medicine, University of Porto, Alameda Prof. Hernaˆ ni Monteiro, 4200–319 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
20
|
Sindic A. Current understanding of guanylin peptides actions. ISRN NEPHROLOGY 2013; 2013:813648. [PMID: 24967239 PMCID: PMC4045495 DOI: 10.5402/2013/813648] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/26/2013] [Indexed: 01/12/2023]
Abstract
Guanylin peptides (GPs) family includes guanylin (GN), uroguanylin (UGN), lymphoguanylin, and recently discovered renoguanylin. This growing family is proposed to be intestinal natriuretic peptides. After ingestion of a salty meal, GN and UGN are secreted into the intestinal lumen, where they inhibit sodium absorption and induce anion and water secretion. At the same conditions, those hormones stimulate renal electrolyte excretion by inducing natriuresis, kaliuresis, and diuresis and therefore prevent hypernatremia and hypervolemia after salty meals.
In the intestine, a well-known receptor for GPs is guanylate cyclase C (GC-C) whose activation increases intracellular concentration of cGMP. However, in the kidney of GC-C-deficient mice, effects of GPs are unaltered, which could be by new cGMP-independent signaling pathway (G-protein-coupled receptor). This is not unusual as atrial natriuretic peptide also activates two different types of receptors: guanylate cylcase A and clearance receptor which is also G-protein coupled receptor. Physiological role of GPs in other organs (liver, pancreas, lung, sweat glands, and male reproductive system) needs to be discovered. However, it is known that they are involved in pathological conditions like cystic fibrosis, asthma, intestinal tumors, kidney and heart failure, obesity, and metabolic syndrome.
Collapse
Affiliation(s)
- Aleksandra Sindic
- Department of Physiology, School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia
| |
Collapse
|
21
|
Sodium challenge does not support an acute gastrointestinal–renal natriuretic signaling axis in humans. Kidney Int 2012; 82:1313-20. [DOI: 10.1038/ki.2012.269] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Abstract
The uroguanylin system is a newly discovered endocrine/paracrine system that may have a role in the regulation of salt balance, appetite and gut health. The precursor pro-uroguanylin is predominantly synthesized in the gut, although there may be other sites of synthesis, including the kidney tubules. Products from pro-uroguanylin may mediate natriuresis following oral consumption of a salt load through both GC-C (guanylate cyclase C)-dependent and -independent mechanisms, and recent evidence suggests a role in appetite regulation. Local paracrine effects in the gut through GC-C stimulation may have tumour-suppressing actions through the regulation of cell proliferation and metabolism. Although most information on this system has been derived from knockout models, recent human studies have indicated possible roles in heart failure and renal failure. An improved understanding of the nature of its natriuretic, appetite and tumour-suppressing actions may facilitate the discovery of new therapies for heart failure, obesity and cancer prophylaxis.
Collapse
|
23
|
Lessa LMA, Carraro-Lacroix LR, Crajoinas RO, Bezerra CN, Dariolli R, Girardi ACC, Fonteles MC, Malnic G. Mechanisms underlying the inhibitory effects of uroguanylin on NHE3 transport activity in renal proximal tubule. Am J Physiol Renal Physiol 2012; 303:F1399-408. [PMID: 22952280 DOI: 10.1152/ajprenal.00385.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We previously demonstrated that uroguanylin (UGN) significantly inhibits Na(+)/H(+) exchanger (NHE)3-mediated bicarbonate reabsorption. In the present study, we aimed to elucidate the molecular mechanisms underlying the action of UGN on NHE3 in rat renal proximal tubules and in a proximal tubule cell line (LLC-PK(1)). The in vivo studies were performed by the stationary microperfusion technique, in which we measured H(+) secretion in rat renal proximal segments, through a H(+)-sensitive microelectrode. UGN (1 μM) significantly inhibited the net of proximal bicarbonate reabsorption. The inhibitory effect of UGN was completely abolished by either the protein kinase G (PKG) inhibitor KT5823 or by the protein kinase A (PKA) inhibitor H-89. The effects of UGN in vitro were found to be similar to those obtained by microperfusion. Indeed, we observed that incubation of LLC-PK(1) cells with UGN induced an increase in the intracellular levels of cAMP and cGMP, as well as activation of both PKA and PKG. Furthermore, we found that UGN can increase the levels of NHE3 phosphorylation at the PKA consensus sites 552 and 605 in LLC-PK(1) cells. Finally, treatment of LLC-PK(1) cells with UGN reduced the amount of NHE3 at the cell surface. Overall, our data suggest that the inhibitory effect of UGN on NHE3 transport activity in proximal tubule is mediated by activation of both cGMP/PKG and cAMP/PKA signaling pathways which in turn leads to NHE3 phosphorylation and reduced NHE3 surface expression. Moreover, this study sheds light on mechanisms by which guanylin peptides are intricately involved in the maintenance of salt and water homeostasis.
Collapse
Affiliation(s)
- Lucília M A Lessa
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo/SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gong JP, Schulz S, Hyslop T, Waldman SA. GUCY2C molecular staging personalizes colorectal cancer patient management. Biomark Med 2012; 6:339-48. [PMID: 22731908 PMCID: PMC3477399 DOI: 10.2217/bmm.12.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
While the most significant prognostic and predictive marker in the management of colorectal cancer patients is cancer cells in regional lymph nodes, approximately 30% of patients whose lymph nodes are ostensibly free of tumor cells by histopathology ultimately develop recurrent disease reflecting occult metastases. Molecular techniques utilizing highly specific markers and ultra-sensitive detection technologies have emerged as powerful staging platforms to establish prognosis and predict responsiveness to chemotherapy in colorectal cancer patients. This review describes the evolution of the tumor suppressor GUCY2C as a prognostic and predictive molecular biomarker that quantifies occult tumor burden in regional lymph nodes for staging patients with colorectal cancer.
Collapse
Affiliation(s)
- Jian P Gong
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
- Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Stephanie Schulz
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Terry Hyslop
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Mejia A, Schulz S, Hyslop T, Weinberg DS, Waldman SA. Molecular staging individualizing cancer management. J Surg Oncol 2012; 105:468-74. [PMID: 22441898 PMCID: PMC3312802 DOI: 10.1002/jso.21858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although the most important prognostic and predictive marker in colorectal cancer is tumor cells in lymph nodes, approximately 30% of patients who are node-negative die from occult metastases. Molecular staging employing specific markers and sensitive detection technologies has emerged as a powerful platform to assess prognosis in node-negative colon cancer. Integrating molecular staging into algorithms that individualize patient management will require validation and the definition of relationships between occult tumor cells, prognosis, and responses to chemotherapy.
Collapse
Affiliation(s)
- Alex Mejia
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson Unviersity,
| | - Stephanie Schulz
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson Unviersity,
| | - Terry Hyslop
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson Unviersity,
| | | | - Scott A. Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson Unviersity,
| |
Collapse
|
26
|
Rozenfeld J, Tal O, Kladnitsky O, Adler L, Efrati E, Carrithers SL, Alper SL, Zelikovic I. The pendrin anion exchanger gene is transcriptionally regulated by uroguanylin: a novel enterorenal link. Am J Physiol Renal Physiol 2011; 302:F614-24. [PMID: 22129966 DOI: 10.1152/ajprenal.00189.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pendrin/SLC26A4 Cl(-)/HCO(3)(-) exchanger, encoded by the PDS gene, is expressed in cortical collecting duct (CCD) non-A intercalated cells. Pendrin is essential for CCD bicarbonate secretion and is also involved in NaCl balance and blood pressure regulation. The intestinal peptide uroguanylin (UGN) is produced in response to oral salt load and can function as an "intestinal natriuretic hormone." We aimed to investigate whether UGN modulates pendrin activity and to explore the molecular mechanisms responsible for this modulation. Injection of UGN into mice resulted in decreased pendrin mRNA and protein expression in the kidney. UGN decreased endogenous pendrin mRNA levels in HEK293 cells. A 4.2-kb human PDS (hPDS) promoter sequence and consecutive 5' deletion products were cloned into luciferase reporter vectors and transiently transfected into HEK293 cells. Exposure of transfected cells to UGN decreased hPDS promoter activity. This UGN-induced effect on the hPDS promoter occurred within a 52-bp region encompassing a single heat shock element (HSE). The effect of UGN on the promoter was abolished when the HSE located between nt -1119 and -1115 was absent or was mutated. Furthermore, treatment of HEK293 cells with heat shock factor 1 (HSF1) small interfering RNA (siRNA) reversed the UGN-induced decrease in endogenous PDS mRNA level. In conclusion, pendrin-mediated Cl(-)/HCO(3)(-) exchange in the renal tubule may be regulated transcriptionally by the peptide hormone UGN. UGN exerts its inhibitory activity on the hPDS promoter likely via HSF1 action at a defined HSE site. These data define a novel signaling pathway involved in the enterorenal axis controlling electrolyte and water homeostasis.
Collapse
Affiliation(s)
- Julia Rozenfeld
- Laboratory of Developmental Nephrology, Department of Physiology and Biophysics, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rozenfeld J, Efrati E, Adler L, Tal O, Carrithers SL, Alper SL, Zelikovic I. Transcriptional regulation of the pendrin gene. Cell Physiol Biochem 2011; 28:385-96. [PMID: 22116353 DOI: 10.1159/000335100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2011] [Indexed: 12/20/2022] Open
Abstract
Pendrin (SLC26A4), a Cl(-)/anion exchanger encoded by the gene PDS, is highly expressed in the kidney, thyroid and inner ear epithelia and is essential for bicarbonate secretion/chloride reabsorption, iodide accumulation and endolymph ion balance, respectively. The molecular mechanisms controlling pendrin activity in renal, thyroid and inner ear epithelia have been the subject of recent studies. The effects of ambient pH, the hormone aldosterone and the peptide uroguanylin (UGN; the "intestinal natriuretic hormone"), known modulators of electrolyte balance, on transcription of the pendrin gene, have been investigated. Luciferase reporter plasmids containing different length fragments of the human PDS (hPDS) promoter were transfected into renal HEK293, thyroid LA2, and inner ear VOT36 epithelial cells. Acidic pH decreased and alkaline pH increased hPDS promoter activity in transfected HEK293 and VOT36, but not in LA2 cells. Aldosterone reduced hPDS promoter activity in HEK293 but had no effect in LA2 and VOT36 cells. These pH and aldosterone-induced effects on the hPDS promoter occurred within 96-bp and 89-bp regions, respectively, which likely contain distinct response elements to these modulators. Injection of UGN into mice resulted in decreased pendrin mRNA and protein expression in the kidney. Exposure of transfected HEK293 to UGN decreased hPDS promoter activity. The findings provided evidence for the presence of a UGN response element within the 96-bp region overlapping with the pH response element on the hPDS promoter. Pendrin is also expressed in airway epithelium. The cytokins interleukin 4 (IL-4) and interleukin-13 (IL-13), known regulators of airway surface function, have been shown to increase hPDS promoter activity by a STAT6-dependent mechanism. In conclusion, systemic pH, the hormone aldosterone, and the peptide UGN influence renal tubular pendrin gene expression and, perhaps, pendrin-mediated Cl(-)/HCO(3)(-) exchange at the transcriptional level. Pendrin-driven anion transport in the endolymph and at the airway surface may be regulated transcriptionally by systemic pH and IL-3/IL-4, respectively. The distinct response elements and the corresponding transcription factors mediating the effect of these modulators on the PDS promoter remain to be identified and characterized.
Collapse
Affiliation(s)
- Julia Rozenfeld
- Laboratory of Developmental Nephrology, Department of Physiology and Biophysics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
28
|
Valentino MA, Lin JE, Snook AE, Li P, Kim GW, Marszalowicz G, Magee MS, Hyslop T, Schulz S, Waldman SA. A uroguanylin-GUCY2C endocrine axis regulates feeding in mice. J Clin Invest 2011; 121:3578-88. [PMID: 21865642 DOI: 10.1172/jci57925] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/29/2011] [Indexed: 12/16/2022] Open
Abstract
Intestinal enteroendocrine cells are critical to central regulation of caloric consumption, since they activate hypothalamic circuits that decrease appetite and thereby restrict meal size by secreting hormones in response to nutrients in the gut. Although guanylyl cyclase and downstream cGMP are essential regulators of centrally regulated feeding behavior in invertebrates, the role of this primordial signaling mechanism in mammalian appetite regulation has eluded definition. In intestinal epithelial cells, guanylyl cyclase 2C (GUCY2C) is a transmembrane receptor that makes cGMP in response to the paracrine hormones guanylin and uroguanylin, which regulate epithelial cell dynamics along the crypt-villus axis. Here, we show that silencing of GUCY2C in mice disrupts satiation, resulting in hyperphagia and subsequent obesity and metabolic syndrome. This defined an appetite-regulating uroguanylin-GUCY2C endocrine axis, which we confirmed by showing that nutrient intake induces intestinal prouroguanylin secretion into the circulation. The prohormone signal is selectively decoded in the hypothalamus by proteolytic liberation of uroguanylin, inducing GUCY2C signaling and consequent activation of downstream anorexigenic pathways. Thus, evolutionary diversification of primitive guanylyl cyclase signaling pathways allows GUCY2C to coordinate endocrine regulation of central food acquisition pathways with paracrine control of intestinal homeostasis. Moreover, the uroguanylin-GUCY2C endocrine axis may provide a therapeutic target to control appetite, obesity, and metabolic syndrome.
Collapse
Affiliation(s)
- Michael A Valentino
- Department of Pharmacology and Experimental Therapeutics, Division of Clinical Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fonteles MC, do Nascimento NRF. Guanylin peptide family: history, interactions with ANP, and new pharmacological perspectives. Can J Physiol Pharmacol 2011; 89:575-85. [PMID: 21815750 DOI: 10.1139/y11-050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The guanylin family of peptides has 3 subclasses of peptides containing either 3 intramolecular disulfide bonds found in bacterial heat-stable enterotoxins (ST), or 2 disulfides observed in guanylin and uroguanylin, or a single disulfide exemplified by lymphoguanylin. These peptides bind to and activate cell-surface receptors that have intrinsic guanylate cyclase (GC) activity. These hormones are synthesized in the intestine and released both luminally and into the circulation, and are also produced within the kidney. Stimulation of renal target cells by guanylin peptides in vivo or ex vivo elicits a long-lived diuresis, natriuresis, and kaliuresis by both cGMP-dependent and independent mechanisms. Uroguanylin may act as a hormone in a novel endocrine axis linking the digestive system and kidney as well as a paracrine system intrarenally to increase sodium excretion in the postprandial period. This highly integrated and redundant mechanism allows the organism to maintain sodium balance by eliminating excess sodium in the urine. In addition, small concentrations of the atrial natriuretic peptide (ANP) can synergize with low concentrations of both guanylin or uroguanylin, which do not induce natriuresis per se, to promote significant natriuresis. Interestingly, the activation of the particulate guanylate cyclase receptors by natriuretic peptides can promote relaxation of animal and human penile erectile tissue and increase intracavernosal pressure to induce penile erection. These peptides can be prototypes for new drugs to treat erectile dysfunction, especially in patients with endothelial and nitrergic dysfunction, such as in diabetes.
Collapse
Affiliation(s)
- Manassés Claudino Fonteles
- Instituto Superior de Ciências Biomédicas (ISCB), Laboratório de Farmacologia - Universidade Estadual do Ceará (UECE), Avenida Paranjana 1700, Campus do Itaperi, CEP 60740-000, Fortaleza-CE, Brazil.
| | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Production of cyclic guanosine monophosphate (cGMP) by guanylate cyclase is of critical importance to gastrointestinal physiology. Tight regulation of cGMP concentration is necessary for proper intestinal secretion and intestinal epithelial cell proliferative and apoptotic homeostasis. This review focuses on recent work detailing the role of a subset of transmembrane guanylate cyclases in the pathophysiology of intestinal secretory and motility disorders and intestinal epithelial cell transformation. Also considered is the potential for therapeutic manipulation of intestinal guanylate cyclase/cGMP signaling for the correction of chronic constipation and gastrointestinal cancer. RECENT FINDINGS Recent work in mice and humans suggests a role for transmembrane guanylate cyclases in intestinal fluid secretion as well as hormonal enteric-renal signaling which mediates postprandial natriuresis. Transmembrane guanylate cyclases are also important in gastrointestinal transit rate and motility. Ongoing clinical trials have found that guanylate cyclase activating peptides are safe and effective in the treatment of constipation-predominant irritable bowel syndrome and chronic constipation. In addition, accumulating evidence indicates that membrane-associated guanylate cyclase receptors regulate intestinal epithelial cell homeostatic proliferation and apoptosis as well as gastrointestinal malignancy. The anticancer activity of cGMP signaling in animal studies suggests additional therapeutic applications for guanylate cyclase agonists. SUMMARY Progress toward understanding gastrointestinal transmembrane guanylate cyclase/cGMP physiology has recently accelerated due to definitive in-vitro studies and work using gene-targeted animal models and has facilitated the development of safe and effective drugs designed to regulate cGMP production in the intestine. Current work should be directed toward a detailed understanding of cGMP effector pathways and the manner in which subcellular concentrations of cGMP regulate them to influence intestinal health and disease.
Collapse
|
31
|
Sousa CM, Havt A, Santos CF, Arnaud-Batista FJ, Cunha KMA, Cerqueira JBG, Fonteles MC, Nascimento NRF. The relaxation induced by uroguanylin and the expression of natriuretic peptide receptors in human corpora cavernosa. J Sex Med 2011; 7:3610-9. [PMID: 20102442 DOI: 10.1111/j.1743-6109.2009.01672.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Receptors for natriuretic peptides have been demonstrated as potential targets for the treatment of male erectile dysfunction. AIM This study investigates the relaxant effects of the atrial natriuretic peptide (ANP) and uroguanylin (UGN), and expression of natriuretic peptide receptors on strips of human corpora cavernosa (HCC). MAIN OUTCOME MEASURES Quantitative analysis of natriuretic receptor expression and relaxation of precontracted strips were used to assess the membrane-bound guanylate cyclase-cyclic guanosine monophosphate (cGMP) pathway in HCC strips. METHODS HCC was obtained from a cadaver donor at the time of collection of organs for transplantation (14-47 years) and strips were mounted in organ baths for isometric studies. RESULTS ANP and UGN both induced concentration-dependent relaxation on HCC strips with a maximal response attained at 300 nM, corresponding to 45.4±4.0% and 49±4.8%, respectively. The relaxation is not affected by 30 µM 1H-[1,2,4]oxaolodiazolo[4,3-a]quinoxalin-1-one (ODQ) (a soluble guanylate cyclase inhibitor), but it is significantly blocked by 10 µM isatin, a nonspecific particulate guanylate cyclase (pGC) inhibitor. UGN was unable to potentiate electrical field stimulation (EFS) or acetylcholine-induced relaxations. The potential role of pGC activation and cGMP generation in this effect is reinforced by the potentiation of this effect by phosphodiesterase-5 inhibitor vardenafil (55.0±7.5-UGN vs. 98.6±1.4%-UGN+vardenafil; P<0.05). The relaxant effect was also partially (37.6%) blocked by the combination iberitoxin-apamin but was insensitive to glybenclamide. The expression of guanylate cyclase receptors (GC-A, GC-B, GC-C) and the expression of the natriuretic peptide "clearance" receptor (NPR-C) were confirmed by real-time polymerase chain reaction. The exposure of HCC strips to ANP (1 µM) and UGN (10 µM) significantly increased cGMP, but not cyclic adenosine monophosphate (cAMP) levels. CONCLUSIONS UGN relaxes HCC strips by a guanylate cyclase and K(ca)-channel-dependent mechanism. These findings obtained in HCC reveal that the natriuretic peptide receptors are potential targets for the development of new drugs for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Clauber M Sousa
- Superior Institute of Biomedical Sciences, Ceara State University, Fortaleza, Ceara, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Qian X, Moss NG, Fellner RC, Taylor-Blake B, Goy MF. The rat kidney contains high levels of prouroguanylin (the uroguanylin precursor) but does not express GC-C (the enteric uroguanylin receptor). Am J Physiol Renal Physiol 2011; 300:F561-73. [PMID: 21106860 PMCID: PMC3280727 DOI: 10.1152/ajprenal.00282.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/18/2010] [Indexed: 01/13/2023] Open
Abstract
The peptide uroguanylin (Ugn) regulates enteric and renal electrolyte transport. Previous studies have shown that Ugn and its receptor GC-C (a ligand-activated guanylate cyclase) are abundant in the intestine. Less is known about Ugn and GC-C expression in the kidney. Here, we identify a 9.4-kDa polypeptide in rat kidney extracts that appears, based on its biochemical and immunological properties, to be authentic prouroguanylin (proUgn). This propeptide is relatively plentiful in the kidney (~16% of intestinal levels), whereas its mRNA is marginally present (<1% of intestinal levels), and free Ugn peptide levels are below detection limits (<0.4% of renal proUgn levels). The paucity of preproUgn-encoding mRNA and free Ugn peptide raises the possibility that the kidney might absorb intact proUgn from plasma, where the concentration of propeptide greatly exceeds that of Ugn. However, immunocytochemical analysis reveals that renal proUgn is found exclusively in distal tubular segments, sites previously shown not to accumulate radiolabeled proUgn after intravascular infusions. Thus proUgn appears to be synthesized within the kidney, but the factors that determine its abundance (rates of transcription, translation, processing, and secretion) must be balanced quite differently than in the gut. Surprisingly, we also find negligible expression of GC-C in the rat kidney, a result confirmed both by RT-PCR and by functional assays that measure Ugn-activated cGMP synthesis. Taken together, these data provide evidence for an intrarenal Ugn system that differs from the well-described intestinal system in its regulatory mechanisms and in the receptor targeted by the peptide.
Collapse
Affiliation(s)
- Xun Qian
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | | | | | | | | |
Collapse
|
33
|
Toriano R, Ozu M, Politi MT, Dorr RA, Curto MA, Capurro C. Uroguanylin Regulates Net Fluid Secretion via the NHE2 Isoform of the Na +/H + Exchanger in an Intestinal Cellular Model. Cell Physiol Biochem 2011; 28:733-42. [DOI: 10.1159/000335767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2011] [Indexed: 12/31/2022] Open
|
34
|
Basu N, Visweswariah SS. Defying the stereotype: non-canonical roles of the Peptide hormones guanylin and uroguanylin. Front Endocrinol (Lausanne) 2011; 2:14. [PMID: 22654795 PMCID: PMC3356075 DOI: 10.3389/fendo.2011.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 05/26/2011] [Indexed: 01/07/2023] Open
Abstract
The peptide hormones uroguanylin and guanylin have been traditionally thought to be mediators of fluid-ion homeostasis in the vertebrate intestine. They serve as ligands for receptor guanylyl cyclase C (GC-C), and both receptor and ligands are expressed predominantly in the intestine. Ligand binding to GC-C results in increased cyclic GMP production in the cell which governs downstream signaling. In the last decade, a significant amount of research has unraveled novel functions for this class of peptide hormones, in addition to their action as intestinal secretagogues. An additional receptor for uroguanylin, receptor guanylyl cyclase D, has also been identified. Thus, unconventional roles of these peptides in regulating renal filtration, olfaction, reproduction, and cell proliferation have begun to be elucidated in detail. These varied effects suggest that these peptide hormones act in an autocrine, paracrine as well as endocrine manner to regulate diverse cellular processes.
Collapse
Affiliation(s)
- Nirmalya Basu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of ScienceBangalore, India
| | - Sandhya Srikant Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of ScienceBangalore, India
- *Correspondence: Sandhya Srikant Visweswariah, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India. e-mail:
| |
Collapse
|
35
|
Moss NG, Riguera DA, Fellner RC, Cazzolla C, Goy MF. Natriuretic and antikaliuretic effects of uroguanylin and prouroguanylin in the rat. Am J Physiol Renal Physiol 2010; 299:F1433-42. [PMID: 20861080 DOI: 10.1152/ajprenal.00281.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The peptide uroguanylin (Ugn) is stored and released as a propeptide (proUgn) by enterochromaffin cells in the intestine, and converted to Ugn and other metabolites in the renal tubules. Both proUgn and Ugn are natriuretic, although the response to proUgn is thought to depend on its conversion to Ugn within nephrons. To assess the efficiency of intrarenal conversion of proUgn to Ugn, we measured urinary Ugn excretion in rats following intravenous infusions of proUgn or Ugn. Infusion of 2 and 10 nmol proUgn/kg body wt increased plasma proUgn concentration from 2.2 ± 0.3 to 5.6 ± 1.3 pmol/ml and to 37 ± 9.6 pmol/ml, respectively. No proUgn was detected in urine before, during, or after proUgn infusions. These two proUgn infusion doses resulted in total Ugn recovery in urine of 162 ± 64 and 206 ± 39 pmol/kg body wt (9 and 2% of the infused amount, respectively). By contrast, the same molar amounts of Ugn resulted in 1,009 ± 477 and 5,352 ± 2,133 pmol/kg body wt of Ugn in urine (recoveries of ∼50%). Unexpectedly, comparisons of natriuretic dose-response curves for each peptide showed proUgn to be about five times more potent than Ugn, despite the relatively modest amount of Ugn generated from infused proUgn. In addition, both peptides were antikaliuretic at low doses, but in this case Ugn showed greater potency than proUgn. These data do not support Ugn as the primary active principle of proUgn for regulation of renal sodium excretion. Instead, an alternative peptide fragment produced from proUgn may be responsible for natriuretic activity in the kidney, whereas Ugn itself may play an antikaliuretic role.
Collapse
Affiliation(s)
- Nicholas G Moss
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
36
|
Cure and curse: E. coli heat-stable enterotoxin and its receptor guanylyl cyclase C. Toxins (Basel) 2010; 2:2213-29. [PMID: 22069681 PMCID: PMC3153297 DOI: 10.3390/toxins2092213] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/12/2010] [Accepted: 08/24/2010] [Indexed: 12/27/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) associated diarrhea is responsible for roughly half a million deaths per year, the majority taking place in developing countries. The main agent responsible for these diseases is the bacterial heat-stable enterotoxin STa. STa is secreted by ETEC and after secretion binds to the intestinal receptor guanylyl cyclase C (GC-C), thus triggering a signaling cascade that eventually leads to the release of electrolytes and water in the intestine. Additionally, GC-C is a specific marker for colorectal carcinoma and STa is suggested to have an inhibitory effect on intestinal carcinogenesis. To understand the conformational events involved in ligand binding to GC-C and to devise therapeutic strategies to treat both diarrheal diseases and colorectal cancer, it is paramount to obtain structural information on the receptor ligand system. Here we summarize the currently available structural data and report on physiological consequences of STa binding to GC-C in intestinal epithelia and colorectal carcinoma cells.
Collapse
|
37
|
Bacterial heat-stable enterotoxins: translation of pathogenic peptides into novel targeted diagnostics and therapeutics. Toxins (Basel) 2010; 2:2028-54. [PMID: 22069671 PMCID: PMC3153287 DOI: 10.3390/toxins2082028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 08/03/2010] [Indexed: 12/13/2022] Open
Abstract
Heat-stable toxins (STs) produced by enterotoxigenic bacteria cause endemic and traveler’s diarrhea by binding to and activating the intestinal receptor guanylyl cyclase C (GC-C). Advances in understanding the biology of GC-C have extended ST from a diarrheagenic peptide to a novel therapeutic agent. Here, we summarize the physiological and pathophysiological role of GC-C in fluid-electrolyte regulation and intestinal crypt-villus homeostasis, as well as describe translational opportunities offered by STs, reflecting the unique characteristics of GC-C, in treating irritable bowel syndrome and chronic constipation, and in preventing and treating colorectal cancer.
Collapse
|
38
|
Li P, Lin JE, Schulz S, Pitari GM, Waldman SA. Can colorectal cancer be prevented or treated by oral hormone replacement therapy? Curr Mol Pharmacol 2010; 2:285-92. [PMID: 20021465 DOI: 10.2174/1874467210902030285] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Guanylyl cyclase C (GCC) is the receptor specifically expressed by intestinal cells for the paracrine hormones guanylin and uroguanylin and diarrheagenic bacterial heat-stable enterotoxins. This tissue-specific receptor coordinates lineage-dependent regulation of epithelial homeostasis, and its disruption contributes to intestinal tumorigenesis. It coordinates regenerative and metabolic circuits by restricting the cell cycle and proliferation and programming metabolic transitions central to organizing the dynamic crypt-surface axis. Further, mice deficient in GCC signaling are more susceptible to colon cancer induced by Apc mutations or the carcinogen azoxymethane. Moreover, guanylin and uroguanylin are gene products most commonly lost, early, in colon cancer in animals and humans. The role of GCC as a tumor suppressing receptor regulating proliferation and metabolism, together with the universal loss of guanylin and uroguanylin in tumorigenesis, suggests a model in which colorectal cancer is a paracrine hormone deficiency syndrome. In that context, activation of GCC reverses the tumorigenic phenotype by limiting growth of colorectal cancer cells by restricting progression through the G1/S transition and reprogramming metabolic circuits from glycolysis to oxidative phosphorylation, limiting bioenergetic support for rapid proliferation. These observations suggest a pathophysiological hypothesis in which GCC is a lineage-dependent tumor suppressing receptor coordinating proliferative homeostasis whose dysregulation through hormone loss contributes to neoplasia. The correlative therapeutic hypothesis suggests that colorectal cancer is a disease of hormone insufficiency that can be prevented or treated by oral supplementation with GCC ligands.
Collapse
Affiliation(s)
- P Li
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Abstract
Ongoing clinical trials suggest that linaclotide, a first-in-class, 14-amino acid peptide guanylate cyclase-C (GC-C) receptor agonist and intestinal secretagogue is an effective treatment for chronic constipation. A study in this issue of the Journal suggests that linaclotide also has antihyperalgesic effects in three common rat models of inflammation- and stress-induced hypersensitivity (i.e., acute trinitrobenzene sulfonic acid colitis, water avoidance stress [WAS], and restraint-induced stress) but not in naïve animals. In mice, linaclotide at least partly reduces hyperalgesia via GC-C receptors. Dose-effect relationships of linaclotide were complicated and non-linear. This viewpoint discusses human clinical trials with linaclotide and the results of this study. Potential mechanisms and clinical significance of these findings are explored. Collectively, these data suggest that GC-C receptors exert other, as yet poorly understood, effects on gastrointestinal sensitivity in conditions associated with inflammation and/or stress-induced increased intestinal permeability. However, the data need to be confirmed in humans and in long-term animal models. Further studies are also necessary to elucidate the mechanisms as these effects cannot be explained by linaclotide's known effects on epithelial GC-C receptors.
Collapse
Affiliation(s)
- Adil E. Bharucha
- Enteric Neurosciences Program, Division of Gastroenterology and Hepatology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota, USA
| | - David R. Linden
- Enteric Neurosciences Program, Division of Gastroenterology and Hepatology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota, USA
| |
Collapse
|
41
|
Activation of a novel natriuretic endocrine system in humans with heart failure. Clin Sci (Lond) 2010; 118:367-74. [PMID: 19799566 PMCID: PMC2789435 DOI: 10.1042/cs20090338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/18/2009] [Accepted: 09/23/2009] [Indexed: 01/22/2023]
Abstract
Proguanylin and prouroguanylin are the inactive precursors of guanylin and uroguanylin, natriuretic peptides involved in the regulation of sodium balance. Urinary uroguanylin levels have been found previously to be elevated in patients with HF (heart failure). The aim of the present study was to investigate whether plasma proguanylin and prouroguanylin levels are increased in patients with HF and to evaluate their relationship with cardiac and renal function. In this prospective observational study, we recruited 243 patients with HF (151 men) and 72 healthy controls. In patients with HF, plasma levels of proguanylin [median, 7.2 (range, 0.9-79.0) microg/l] and prouroguanylin [8.3 (1.7-53.0 microg/l)] were both significantly (P<0.0005) higher compared with levels in healthy controls [5.5 (0.4-22.3 microg/l) for proguanylin and 6.3 (2.5-16.9) microg/l for prouroguanylin]. In patients with HF, increased age, a history of hypertension, diabetes and atrial fibrillation, use of diuretics, a higher NYHA (New York Heart Association) class and a lower eGFR (estimated glomerular filtration rate) were significant univariate predictors of proguanylin and prouroguanylin levels. In multivariate analysis, a history of hypertension and low eGFR both had strong independent associations with proguanylin and prouroguanylin levels. Proguanylin and prouroguanylin varied significantly between NYHA class with a trend of increasing plasma concentrations with worsening severity of symptoms. In conclusion, plasma proguanylin and prouroguanylin are elevated in patients with HF. Elevated plasma proguanylin and prouroguanylin levels are associated with hypertension, renal impairment and increasing severity of HF. This novel endocrine system may contribute to the pathophysiology of HF.
Collapse
|
42
|
Mejia A, Schulz S, Hyslop T, Weinberg DS, Waldman SA. Molecular staging estimates occult tumor burden in colorectal cancer. Adv Clin Chem 2010; 52:19-39. [PMID: 21275338 PMCID: PMC7012399 DOI: 10.1016/s0065-2423(10)52007-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor cells in regional lymph nodes are a key prognostic marker of survival and predictive marker of response to adjuvant chemotherapy in colorectal cancer. However, clinicopathologic techniques to detect lymph node metastases remain imperfect, and approximately 30% of patients with lymph nodes negative by histology (pN0) develop recurrent disease, reflecting occult metastases that escape detection. These observations underscore an unmet clinical need for accurate approaches to identify occult nodal metastases in colorectal cancer patients. GUCY2C is a receptor whose expression normally is restricted to intestinal epithelial cells, but is universally overexpressed by colorectal cancer cells. A prospective, multicenter, blinded clinical trial established the prognostic utility of GUCY2C qRT-PCR to detect occult nodal metastases in pN0 colorectal cancer patients. Molecular staging revealed that approximately 13% of pN0 patients were free of cancer cells, while approximately 87% had GUCY2C results that suggested occult metastases. The presence of occult nodal metastases was the most powerful independent predictor of time to recurrence and disease-free survival. These observations establish the utility of molecular detection of occult nodal metastases for assessing prognostic risk in pN0 colorectal cancer patients. Advancing GUCY2C into staging paradigms in clinical laboratories will require validation in independent patient populations, definition of the relationship between the quantity of occult tumor metastases and risk, and determination of the utility of GUCY2C qRT-PCR to identify pN0 patients who might benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Alex Mejia
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stephanie Schulz
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Terry Hyslop
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David S. Weinberg
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Scott A. Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Li P, Lin JE, Marszlowicz GP, Valentino MA, Chang C, Schulz S, Pitari GM, Waldman SA. GCC signaling in colorectal cancer: Is colorectal cancer a paracrine deficiency syndrome? ACTA ACUST UNITED AC 2009; 22:313-8. [PMID: 19771320 DOI: 10.1358/dnp.2009.22.6.1395254] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Guanylyl cyclase C (GCC) is the receptor expressed by intestinal cells for the paracrine hormones guanylin and uroguanylin that coordinate mucosal homeostasis and its silencing contributes to intestinal transformation. It orchestrates proliferative and metabolic circuits by limiting the cell cycle and programming metabolic transitions central to regeneration along the crypt-villus axis. Mice deficient in GCC are more susceptible to colon cancer induced by germline mutations or carcinogens. Moreover, guanylin and uroguanylin are the most commonly lost gene products in colon cancer. The role of GCC as a tumor suppressor and the universal loss of its hormones in transformation suggest a paradigm in which colorectal cancer is a disease of paracrine hormone insufficiency. Indeed, GCC signaling reverses the tumorigenic phenotype of human colon cancer cells by regulating proliferation and metabolism. These data suggest a pathophysiological hypothesis in which GCC is a tumor suppressor coordinating proliferative homeostasis whose silencing through hormone loss initiates transformation. The correlative therapeutic hypothesis suggests that colorectal cancer is a disease of hormone insufficiency that can be prevented or treated by oral hormone replacement therapy employing GCC ligands.
Collapse
Affiliation(s)
- P Li
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Basu N, Arshad N, Visweswariah SS. Receptor guanylyl cyclase C (GC-C): regulation and signal transduction. Mol Cell Biochem 2009; 334:67-80. [PMID: 19960363 DOI: 10.1007/s11010-009-0324-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022]
Abstract
Receptor guanylyl cyclase C (GC-C) is the target for the gastrointestinal hormones, guanylin, and uroguanylin as well as the bacterial heat-stable enterotoxins. The major site of expression of GC-C is in the gastrointestinal tract, although this receptor and its ligands play a role in ion secretion in other tissues as well. GC-C shares the domain organization seen in other members of the family of receptor guanylyl cyclases, though subtle differences highlight some of the unique features of GC-C. Gene knock outs in mice for GC-C or its ligands do not lead to embryonic lethality, but modulate responses of these mice to stable toxin peptides, dietary intake of salts, and development and differentiation of intestinal cells. It is clear that there is much to learn in future about the role of this evolutionarily conserved receptor, and its properties in intestinal and extra-intestinal tissues.
Collapse
Affiliation(s)
- Nirmalya Basu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
45
|
Mejia A, Schulz S, Hyslop T, Weinberg DS, Waldman SA. GUCY2C reverse transcriptase PCR to stage pN0 colorectal cancer patients. Expert Rev Mol Diagn 2009; 9:777-85. [PMID: 19895223 PMCID: PMC2810399 DOI: 10.1586/erm.09.67] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The most important prognostic marker of survival and predictive marker of response to adjuvant chemotherapy in colon cancer patients is tumor cells in regional lymph nodes. Despite their importance, standard techniques to assess nodal metastases remain imperfect, as approximately 30% of patients with histology-negative lymph nodes (pN0) die of recurrent disease, reflecting occult metastases that escape detection. These observations highlight the clinical need for novel, accurate approaches to detect occult lymph node metastases in patients with colon cancer. GUCY2C is a biomarker whose expression normally is restricted to intestinal cells, but is near universally overexpressed by colorectal cancer cells. Recently, a prospective, multicenter, blinded clinical trial demonstrated for the first time that the prognostic utility of GUCY2C quantitative reverse transcriptase (qRT)-PCR to detect occult lymph node metastases in pN0 colorectal cancer patients. Molecular staging revealed that approximately 13% of pN0 patients were free of tumor cells, while approximately 87% had GUCY2C results that suggested occult metastases. The presence of occult lymph node metastases was the strongest independent predictor of time to recurrence and disease-free survival. These observations establish the utility of molecular detection of occult lymph node metastases for estimating prognostic risk in pN0 colorectal cancer patients. Advancing this molecular diagnostic into staging paradigms in clinical laboratories will require validation in independent patient populations, definition of the relationship between the quantity of occult tumor metastases and risk, and determination of the utility of GUCY2C qRT-PCR to identify pN0 patients who might benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Alex Mejia
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | - Stephanie Schulz
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | - Terry Hyslop
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | - David S Weinberg
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA, Tel.: +1 215 955 6086
| |
Collapse
|
46
|
Fonteles MC, Havt A, Prata RB, Prata PHB, Monteiro HSA, Lima AAM, Jorge ARC, Santos CF, Greenberg RN, Nascimento NRF. High-salt intake primes the rat kidney to respond to a subthreshold uroguanylin dose during ex vivo renal perfusion. ACTA ACUST UNITED AC 2009; 158:6-13. [PMID: 19632278 DOI: 10.1016/j.regpep.2009.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 07/11/2009] [Accepted: 07/17/2009] [Indexed: 01/25/2023]
Abstract
In a variety of animal models, uroguanylin causes diuresis, natriuresis and kaliuresis and is found in larger concentrations in the urine compared to controls after oral salt intake or in conditions of excess salt and fluid retention. It has been proposed that uroguanylin functions as an intestinal natriuretic hormone following intake of meals high in salt content. In the present work, we examined if 10 days of salt ingestion resulted in an enhanced response to uroguanylin in the isolated perfused rat kidney. Rats were given normal water, 1% NaCl (HS1%), or 2% NaCl (HS2%) for 10 days, at which time the right kidneys were surgically removed and perfused with a modified Krebs-Henseleit solution for 30 min. After a 30-min control period, the kidneys were perfused with a modified Krebs-Henseleit solution containing 0.06 microM uroguanylin for an additional 90 min. Compared to vehicle-matched time controls, 0.06 microM uroguanylin perfusion of kidneys from rats maintained on HS2% resulted in a significantly increased urine flow (UF; from 0.17+/-0.01 to 0.23+/-0.01, after 60 min, n=6, P<0.05), fractional Na(+) excretion (%E(Na+); from 16.6+/-0.7 to 30+/-2, after 60 min, n=6, P<0.05), fractional K(+) excretion (%E(K+); from 20.5+/-0.58 to 37.4+/-2.1, after 60 min, n=6, P<0.05), and fractional Cl(-) excretion increased from 18.16+/-0.52 to 35.2+/-2.0 at 60 min, n=6, P<0.05. With the exception of a significant increase in the %E(K)(+), no other effect was observed in the kidneys from the rats maintained on HS1%, and no significant effects were seen in those that were maintained on normal water. The effect of a higher dose (0.6 microM) of uroguanylin on urinary flow, sodium or potassium excretion was also significantly increased by 2% NaCl (HS2%) treatment (P<0.05). We also observed an expressive upregulation of the GC-C and a slight downregulation of the GC-A receptor in high-salt treated rats. These data demonstrate that prolonged salt ingestion primes the kidney to enhanced renal responses to uroguanylin.
Collapse
Affiliation(s)
- Manassés C Fonteles
- INCT-Institute of Biomedicine & Clinical Research Unit/Center for Global Health, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lessa LMA, Amorim JBO, Fonteles MC, Malnic G. Effect of renoguanylin on hydrogen/bicarbonate ion transport in rat renal tubules. ACTA ACUST UNITED AC 2009; 157:37-43. [PMID: 19540271 DOI: 10.1016/j.regpep.2009.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/26/2009] [Accepted: 06/03/2009] [Indexed: 12/28/2022]
Abstract
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 muM and 10 muM of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 muM concentrations. Comparing control and REN concentration of 1 muM, JHCO(3)(-), nmol cm(-2) s(-1)-1,76+/-0,11(control)x1,29+/-0,08(REN 10 muM); P<0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 muM (JHCO(3)(-), nmol cm(-2) s(-)1-0.80+/-0.07(control)x0.60+/-0.06(REN 1 muM); P<0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na(+)/H(+)exchanger and H(+)-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway.
Collapse
Affiliation(s)
- L M A Lessa
- Dept. Physiology and Biophysics, Inst. of Biomedical Sciences, Univ. São Paulo, Av. Prof. Lineu Prestes 1524, 05508-900 São Paulo, Brazil
| | | | | | | |
Collapse
|
48
|
Moss NG, Riguera DA, Solinga RM, Kessler MM, Zimmer DP, Arendshorst WJ, Currie MG, Goy MF. The natriuretic peptide uroguanylin elicits physiologic actions through 2 distinct topoisomers. Hypertension 2009; 53:867-76. [PMID: 19289652 DOI: 10.1161/hypertensionaha.108.128264] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The peptide uroguanylin regulates electrolyte transport in the intestine and kidney. Human uroguanylin has 2 conformations that can be stably isolated because of their slow interconversion rate. The A isomer potently activates the guanylate cyclase C receptor found primarily in the intestine. The B isomer, by contrast, is a very weak agonist of this receptor, leading to a widely held assumption that it is physiologically irrelevant. We show here, however, that human uroguanylin B has potent natriuretic activity in the kidney. Interestingly, uroguanylin A and B both induce saluretic responses, but the activity profiles for the 2 peptides differ markedly. The uroguanylin B dose-response curve is sigmoidal with a threshold dose of approximately 10 nmol/kg of body weight, whereas uroguanylin A has a comparable threshold but a bell-shaped dose-response curve. In addition, our study indicates a unique interplay between the A and B isoforms, such that the A form at high concentrations antagonizes the natriuretic action of the B form. These data show that the kidney contains a uroguanylin receptor of which the pharmacological profile does not match that of the well-defined intestinal uroguanylin receptor (guanylate cyclase C), an observation consistent with previous studies showing that the kidney of the guanylate cyclase C knockout mouse remains responsive to uroguanylin. The results presented here also support the unconventional notion that distinct conformations of a single endocrine peptide can elicit different responses in different tissues.
Collapse
Affiliation(s)
- Nicholas G Moss
- University of North Carolina at Chapel Hill, Department of Cell and Molecular Physiology, 111 Mason Farm Rd, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kuhn M. Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases. Handb Exp Pharmacol 2009:47-69. [PMID: 19089325 DOI: 10.1007/978-3-540-68964-5_4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Besides soluble guanylyl cyclase (GC), the receptor for NO, there are seven plasma membrane forms of guanylyl cyclase (GC) receptors, enzymes that synthesize the second-messenger cyclic GMP (cGMP). All membrane GCs (GC-A to GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only four of them (GC-A through GC-D). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic and antifibrotic actions in the heart. GC-B, the specific receptor for C-type natriuretic peptide, has a critical role in endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, GC-D and GC-G appear to be pseudogenes in the human. In rodents, GC-D is exclusively expressed in the olfactory neuroepithelium, with chemosensory functions. GC-G is the last member of the membrane GC form to be identified. No other mammalian transmembrane GCs are predicted on the basis of gene sequence repositories. In contrast to the other orphan receptor GCs, GC-G has a broad tissue distribution in rodents, including the lung, intestine, kidney, skeletal muscle, and sperm, raising the possibility that there is another yet to be discovered family of cGMP-generating ligands. This chapter reviews the structure and functions of membrane GCs, with special focus on the insights gained to date from genetically modified mice and the role of alterations of these ligand/receptor systems in human diseases.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institut für Physiologie, Universität Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| |
Collapse
|
50
|
Baba A, Fujimoto S, Kikuchi M, Kita T, Kitamura K. Effects of uroguanylin on natriuresis in experimental nephrotic rats. Nephrology (Carlton) 2008; 14:80-5. [PMID: 19054333 DOI: 10.1111/j.1440-1797.2008.01006.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Uroguanylin, isolated from human and opossum urine, is a candidate intestinal natriuretic hormone that controls the sodium and water balance between the intestine and the kidneys. Levels of immunoreactive (ir)-uroguanylin in the plasma and urine are increased in rats and humans with nephrotic syndrome, which is physiologically characterized by sodium retention with massive proteinuria. The present study evaluates the effect of natriuresis induced by uroguanylin on nephrotic rats. METHODS Normal rats and rats rendered nephrotic by injections of puromycin aminonucleoside (PAN) were treated with uroguanylin (0.5 nmol/h, delivered by an osmotic pump) or with vehicle during the sodium retention phase. All rats consumed the same quantity of sodium. RESULTS Uroguanylin did not increase urinary excretion of sodium and water in normal rats, but significantly increased urinary sodium excretion during the sodium retention phase in nephrotic rats (untreated vs uroguanylin-treated nephrotic rats in mmol/mmol creatinine; 2.92 +/- 0.65 vs 8.93 +/- 2.53 on day 6, P < 0.05; 3.55 +/- 0.47 vs 10.37 +/- 1.73 on day 7, P < 0.01; 14.88 +/- 2.32 vs 24.47 +/- 2.86 on day 8, P < 0.05). Plasma levels of ir-uroguanylin in uroguanylin-treated nephrotic rats on day 6 were significantly increased compared with those in uroguanylin-treated control and untreated nephrotic rats. CONCLUSION Uroguanylin increased urinary sodium excretion in rats with PAN-induced nephrosis, and might be useful for treating sodium retention in patients with nephrotic syndrome.
Collapse
Affiliation(s)
- Akiko Baba
- Department of Internal Medicine, University of Miyazaki, Japan.
| | | | | | | | | |
Collapse
|