1
|
Huang Y, Yu M, Zheng J. Proximal tubules eliminate endocytosed gold nanoparticles through an organelle-extrusion-mediated self-renewal mechanism. NATURE NANOTECHNOLOGY 2023; 18:637-646. [PMID: 37069289 PMCID: PMC10917148 DOI: 10.1038/s41565-023-01366-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/03/2023] [Indexed: 05/14/2023]
Abstract
Proximal tubules energetically internalize and metabolize solutes filtered through glomeruli but are constantly challenged by foreign substances during the lifespan. Thus, it is critical to understand how proximal tubules stay healthy. Here we report a previously unrecognized mechanism of mitotically quiescent proximal tubular epithelial cells for eliminating gold nanoparticles that were endocytosed and even partially transformed into large nanoassemblies inside lysosomes/endosomes. By squeezing ~5 µm balloon-like extrusions through dense microvilli, transporting intact gold-containing endocytic vesicles into the extrusions along with mitochondria or other organelles and pinching the extrusions off the membranes into the lumen, proximal tubular epithelial cells re-eliminated >95% of endocytosed gold nanoparticles from the kidneys into the urine within a month. While this organelle-extrusion mechanism represents a new nanoparticle-elimination route, it is not activated by the gold nanoparticles but is an intrinsic 'housekeeping' function of normal proximal tubular epithelial cells, used to remove unwanted cytoplasmic contents and self-renew intracellular organelles without cell division to maintain homoeostasis.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
2
|
Polesel M, Kaminska M, Haenni D, Bugarski M, Schuh C, Jankovic N, Kaech A, Mateos JM, Berquez M, Hall AM. Spatiotemporal organisation of protein processing in the kidney. Nat Commun 2022; 13:5732. [PMID: 36175561 PMCID: PMC9522658 DOI: 10.1038/s41467-022-33469-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
The kidney regulates plasma protein levels by eliminating them from the circulation. Proteins filtered by glomeruli are endocytosed and degraded in the proximal tubule and defects in this process result in tubular proteinuria, an important clinical biomarker. However, the spatiotemporal organization of renal protein metabolism in vivo was previously unclear. Here, using functional probes and intravital microscopy, we track the fate of filtered proteins in real time in living mice, and map specialized processing to tubular structures with singular value decomposition analysis and three-dimensional electron microscopy. We reveal that degradation of proteins requires sequential, coordinated activity of distinct tubular sub-segments, each adapted to specific tasks. Moreover, we leverage this approach to pinpoint the nature of endo-lysosomal disorders in disease models, and show that compensatory uptake in later regions of the proximal tubule limits urinary protein loss. This means that measurement of proteinuria likely underestimates severity of endocytotic defects in patients. Polesel et al. visualize plasma protein filtration, uptake and metabolism in the kidneys of living mice in real-time. They reveal coordinated activity of different specialized tubular segments, with major compensatory adaptations occurring in disease states.
Collapse
Affiliation(s)
| | - Monika Kaminska
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Dominik Haenni
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Claus Schuh
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Nevena Jankovic
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Jose M Mateos
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Marine Berquez
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland. .,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Molitoris BA, Sandoval RM, Yadav SPS, Wagner MC. Albumin Uptake and Processing by the Proximal Tubule: Physiologic, Pathologic and Therapeutic Implications. Physiol Rev 2022; 102:1625-1667. [PMID: 35378997 PMCID: PMC9255719 DOI: 10.1152/physrev.00014.2021] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Dept.of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ruben M. Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shiv Pratap S. Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Mark C. Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
4
|
Neonatal Proteinuria in Calves-A Quantitative Approach. Animals (Basel) 2021; 11:ani11123602. [PMID: 34944377 PMCID: PMC8698049 DOI: 10.3390/ani11123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary A newborn’s survival depends on the quick adaptation of the organism to new environmental conditions. Newborn calves show high somatic maturity compared to, for example, human newborns, but their body functions with a lower efficiency than that of adult cattle. Adaptation processes concern all organs, including the kidneys, which are not morphologically mature after birth. The ongoing morphological changes imply functional alterations in the kidneys. There is an increase in blood flow through the kidneys and the glomerular filtration rate, as well as an increase in the efficiency of resorption processes of primary urine components into the blood, including proteins. Protein is present in trace amounts in the urine of healthy adults of various species. It can occur in larger amounts in the urine of sick animals, as well as in certain physiological states, e.g., in newborns. The presence of protein in the urine of newborns in the quantity exceeding 300 mg/24 h/m2 is called neonatal proteinuria. The causes of proteinuria in healthy newborns have not been clearly elucidated. Many studies have focused on proteinuria in newborns and sick children and sick animals, especially dogs and cats. The present study was the first to quantify the hypothesis of the occurrence of proteinuria in healthy calves in the first week of life and to assess its intensity and dynamics, based on the analysis of changes in total protein excretion in the urine and its fractions differing in molecular weight (albumin, low molecular weight proteins (LMW) and high molecular weight proteins (HMW)). It should be noted that the analysis of excreted protein fractions is a sensitive diagnostic indicator of the type of kidney disease, e.g., increased HMW protein excretion may indicate damage to the renal glomeruli, and loss of LMW proteins may indicate renal tubular disease. Abstract Urine testing is a convenient, non-invasive method of obtaining information about body functions. Depending on the intended purpose, urine testing may be qualitative and/or quantitative. Urine analysis can also include proteins. There are no data in the literature on the occurrence of proteinuria in healthy neonatal calves. The present study was the first that aimed to quantify the hypothesis of proteinuria occurrence in these animals in the first week of life, to assess its intensity and dynamics and to understand the underlying causes of proteinuria in healthy calves. The research was carried out on 15 healthy calves in the first seven days of life. Calves were catheterized to determine minute diuresis. Total protein concentration was determined in blood plasma and urine. Urine proteins were separated by electrophoresis (SDSPAGE) and their concentration and percentage were determined by densitometry using an image archiving and analysis software. The separated proteins were divided into three groups according to molecular weight for albumin, LMW and HMW proteins. The results were standardized per 1 m2 of body surface area and statistically analyzed. Neonatal proteinuria was demonstrated in healthy calves, mainly resulting from the high concentration of LMW proteins in the urine. Their percentages decreased significantly from 84.46% on the first day of calves’ life to 64.02% on day 7. At the same time, a statistically significant increase was observed in the proportion of albumin and high molecular weight proteins in urine total protein. Albumin percentage increased from 9.54% (on day 1) to almost 20% (on day 7), while the proportion of HMW proteins increased from 6.68% to 18.13%, respectively. The concentration of total protein in the urine of newborn calves amounted to 14.64 g/L and decreased statistically significantly during the first 72 h of postnatal life, stabilizing at the level of 3–4 g/L. The mean value of total protein excretion in the first week of life was 4.81 mg/min/m2 (i.e., 6.93 g/24 h/m2). The analysis of protein concentration in the urine and its excretion, as well as changes in urinary excretion of the tested protein fractions, indicated that neonatal proteinuria in healthy neonatal calves was tubular (i.e., main reason is the reduced absorption of proteins in nephrons). In addition, research showed that there was a rapid improvement in resorptive mechanisms in tubular cells. It should be assumed that the filtration barrier in the kidneys of these animals after birth is morphologically prepared to retain high molecular weight proteins. It seems that the increased permeability of the filtration barrier in the glomeruli does not necessarily indicate the immaturity of the kidneys, but may indicate the kidneys’ adaptation to excess protein removal from the body during feeding with high-protein food (colostrum), with an open intestinal barrier enabling protein absorption from the gastrointestinal tract to the blood.
Collapse
|
5
|
Sharma S, Smyth B. From Proteinuria to Fibrosis: An Update on Pathophysiology and Treatment Options. Kidney Blood Press Res 2021; 46:411-420. [PMID: 34130301 DOI: 10.1159/000516911] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Proteinuria is a key biomarker in nephrology. It is central to diagnosis and risk assessment and the primary target of many important therapies. Etiologies resulting in pathological proteinuria include congenital and acquired disorders, as well as both glomerular (immune/non-immune mediated) and tubular defects. SUMMARY Untreated proteinuria is strongly linked to progressive loss of kidney function and kidney failure. Excess protein reaching the renal tubules is ordinarily resorbed by the tubular epithelium. However, when these mechanisms are overwhelmed, a variety of inflammatory and fibrotic pathways are activated, causing both interstitial fibrosis and glomerulosclerosis. Nevertheless, the specific mechanisms underlying this are complex and remain incompletely understood. Recently, a number of treatments, in addition to angiotensin system blockade, have been shown to effectively slow the progression of proteinuric chronic kidney disease. However, additional therapies are clearly needed. Key message: This review provides an update on the pathophysiology of proteinuria, the pathways leading to fibrosis, and an overview of current and emerging therapies.
Collapse
Affiliation(s)
- Sonia Sharma
- Department of Pediatric Nephrology, Fortis Hospital, Shalimar-Bagh, New Delhi, India
| | - Brendan Smyth
- Department of Renal Medicine, St. George Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Gburek J, Konopska B, Gołąb K. Renal Handling of Albumin-From Early Findings to Current Concepts. Int J Mol Sci 2021; 22:ijms22115809. [PMID: 34071680 PMCID: PMC8199105 DOI: 10.3390/ijms22115809] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022] Open
Abstract
Albumin is the main protein of blood plasma, lymph, cerebrospinal and interstitial fluid. The protein participates in a variety of important biological functions, such as maintenance of proper colloidal osmotic pressure, transport of important metabolites and antioxidant action. Synthesis of albumin takes place mainly in the liver, and its catabolism occurs mostly in vascular endothelium of muscle, skin and liver, as well as in the kidney tubular epithelium. Long-lasting investigation in this area has delineated the principal route of its catabolism involving glomerular filtration, tubular endocytic uptake via the multiligand scavenger receptor tandem—megalin and cubilin-amnionless complex, as well as lysosomal degradation to amino acids. However, the research of the last few decades indicates that also additional mechanisms may operate in this process to some extent. Direct uptake of albumin in glomerular podocytes via receptor for crystallizable region of immunoglobulins (neonatal FC receptor) was demonstrated. Additionally, luminal recycling of short peptides into the bloodstream and/or back into tubular lumen or transcytosis of whole molecules was suggested. The article discusses the molecular aspects of these processes and presents the major findings and controversies arising in the light of the research concerning the last decade. Their better characterization is essential for further research into pathophysiology of proteinuric renal failure and development of effective therapeutic strategies.
Collapse
|
7
|
Obert LA, Elmore SA, Ennulat D, Frazier KS. A Review of Specific Biomarkers of Chronic Renal Injury and Their Potential Application in Nonclinical Safety Assessment Studies. Toxicol Pathol 2021; 49:996-1023. [PMID: 33576319 DOI: 10.1177/0192623320985045] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A host of novel renal biomarkers have been developed over the past few decades which have enhanced monitoring of renal disease and drug-induced kidney injury in both preclinical studies and in humans. Since chronic kidney disease (CKD) and acute kidney injury (AKI) share similar underlying mechanisms and the tubulointerstitial compartment has a functional role in the progression of CKD, urinary biomarkers of AKI may provide predictive information in chronic renal disease. Numerous studies have explored whether the recent AKI biomarkers could improve upon the standard clinical biomarkers, estimated glomerular filtration rate (eGFR), and urinary albumin to creatinine ratio, for predicting outcomes in CKD patients. This review is an introduction to alternative assays that can be utilized in chronic (>3 months duration) nonclinical safety studies to provide information on renal dysfunction and to demonstrate specific situations where these assays could be utilized in nonclinical drug development. Novel biomarkers such as symmetrical dimethyl arginine, dickkopf homolog 3, and cystatin C predict chronic renal injury in animals, act as surrogates for GFR, and may predict changes in GFR in patients over time, ultimately providing a bridge from preclinical to clinical renal monitoring.
Collapse
Affiliation(s)
- Leslie A Obert
- 549350GlaxoSmithKline (GSK), Nonclinical Safety, Collegeville, PA, USA
| | - Susan A Elmore
- Cellular and Molecular Pathology Branch, National Toxicology Program (NTP), 6857National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Daniela Ennulat
- 549350GlaxoSmithKline (GSK), Nonclinical Safety, Collegeville, PA, USA
| | | |
Collapse
|
8
|
Gudehithlu KP, Hart PD, Vernik J, Sethupathi P, Dunea G, Arruda JAL, Singh AK. Peptiduria: a potential early predictor of diabetic kidney disease. Clin Exp Nephrol 2018; 23:56-64. [PMID: 30066159 DOI: 10.1007/s10157-018-1620-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/07/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND To protect the kidney effectively with medication in type 2 diabetics, it is crucial to identify such at-risk patients early for treatment. We investigated whether peptiduria precedes proteinuria (the earliest urinary marker in our model), and thereby serve as an early predictor of diabetic nephropathy. METHODS A longitudinal study was performed in a rat model of diabetic nephropathy. Peptides, defined as degradation products of proteins of < 13 kD size, were quantified by a previously validated method using a combination of Lowry and Biorad protein assays. Peptides in urine were also confirmed by chromatographically separating low molecular weight fractions from urine and quantifying albumin fragments in these fractions by enzyme immunoassay. Also, the mechanism of peptiduria was addressed by measuring acid phosphatase, a marker of lysosomal activity, in urine and on kidney sections (histochemically). RESULTS In rats with diabetic nephropathy, proteinuria occurred after 12 weeks of diabetes, while peptiduria occurred as early as 2 weeks after diabetes. Peptiduria was confirmed by showing that the chromatographically separated low molecular weight fractions of urine containing albumin fragments is in proportion to the level of peptiduria. The time course of peptiduria paralleled the increase in urinary acid phosphatase suggesting that the mechanism of early peptiduria could be due to upregulation of lysosomal enzyme activity in the tubules. CONCLUSIONS Our results showing that peptiduria precedes proteinuria in diabetic nephropathy provide a compelling rationale to perform a prospective human clinical trial to investigate whether peptiduria can serve as an early predictor of diabetic nephropathy.
Collapse
Affiliation(s)
- Krishnamurthy P Gudehithlu
- Division of Nephrology, John H. Stroger, Jr. Hospital of Cook County (JSH), 1900 West Polk Street, Suite 643, Chicago, IL, 60612, USA.
| | - Peter D Hart
- Division of Nephrology, John H. Stroger, Jr. Hospital of Cook County (JSH), 1900 West Polk Street, Suite 643, Chicago, IL, 60612, USA.,Department of Internal Medicine, Rush University Medical College, Chicago, IL, USA.,The Hektoen Institute of Medicine, Chicago, IL, USA
| | - Jane Vernik
- Division of Nephrology, John H. Stroger, Jr. Hospital of Cook County (JSH), 1900 West Polk Street, Suite 643, Chicago, IL, 60612, USA.,Department of Internal Medicine, Rush University Medical College, Chicago, IL, USA
| | | | - George Dunea
- Division of Nephrology, John H. Stroger, Jr. Hospital of Cook County (JSH), 1900 West Polk Street, Suite 643, Chicago, IL, 60612, USA.,Section of Nephrology, University of Illinois at Chicago, Chicago, IL, USA.,The Hektoen Institute of Medicine, Chicago, IL, USA
| | - Jose A L Arruda
- Division of Nephrology, John H. Stroger, Jr. Hospital of Cook County (JSH), 1900 West Polk Street, Suite 643, Chicago, IL, 60612, USA.,Section of Nephrology, University of Illinois at Chicago, Chicago, IL, USA.,The Hektoen Institute of Medicine, Chicago, IL, USA
| | - Ashok K Singh
- Division of Nephrology, John H. Stroger, Jr. Hospital of Cook County (JSH), 1900 West Polk Street, Suite 643, Chicago, IL, 60612, USA.,Section of Nephrology, University of Illinois at Chicago, Chicago, IL, USA.,The Hektoen Institute of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Grove KJ, Lareau NM, Voziyan PA, Zeng F, Harris RC, Hudson BG, Caprioli RM. Imaging mass spectrometry reveals direct albumin fragmentation within the diabetic kidney. Kidney Int 2018; 94:292-302. [PMID: 29779708 DOI: 10.1016/j.kint.2018.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/26/2022]
Abstract
Albumin degradation in the renal tubules is impaired in diabetic nephropathy such that levels of the resulting albumin fragments increase with the degree of renal injury. However, the mechanism of albumin degradation is unknown. In particular, fragmentation of the endogenous native albumin has not been demonstrated in the kidney and the enzymes that may contribute to fragmentation have not been identified. To explore this we utilized matrix-assisted laser desorption/ionization imaging mass spectrometry for molecular profiling of specific renal regions without disturbing distinct tissue morphology. Changes in protein expression were measured in kidney sections of eNOS-/-db/db mice, a model of diabetic nephropathy, by high spatial resolution imaging allowing molecular localizations at the level of single glomeruli and tubules. Significant increases were found in the relative abundances of several albumin fragments in the kidney of the mice with diabetic nephropathy compared with control nondiabetic mice. The relative abundance of fragments detected correlated positively with the degree of nephropathy. Furthermore, specific albumin fragments accumulating in the lumen of diabetic renal tubules were identified and predicted the enzymatic action of cathepsin D based on cleavage specificity and in vitro digestions. Importantly, this was demonstrated directly in the renal tissue with the endogenous nonlabeled murine albumin. Thus, our results provide molecular insights into the mechanism of albumin degradation in diabetic nephropathy.
Collapse
Affiliation(s)
- Kerri J Grove
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nichole M Lareau
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul A Voziyan
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fenghua Zeng
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C Harris
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G Hudson
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Richard M Caprioli
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
10
|
Abstract
Cells lining the proximal tubule (PT) of the kidney are highly specialized for apical endocytosis of filtered proteins and small bioactive molecules from the glomerular ultrafiltrate to maintain essentially protein-free urine. Compromise of this pathway results in low molecular weight (LMW) proteinuria that can progress to end-stage kidney disease. This review describes our current understanding of the endocytic pathway and the multiligand receptors that mediate LMW protein uptake in PT cells, how these are regulated in response to physiologic cues, and the molecular basis of inherited diseases characterized by LMW proteinuria.
Collapse
Affiliation(s)
- Megan L Eshbach
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
11
|
Comper WD, Russo LM, Vuchkova J. Are filtered plasma proteins processed in the same way by the kidney? J Theor Biol 2016; 410:18-24. [PMID: 27647256 DOI: 10.1016/j.jtbi.2016.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/24/2016] [Accepted: 09/15/2016] [Indexed: 11/19/2022]
Abstract
In order to understand the mechanism of albuminuria we have explored how other plasma proteins are processed by the kidney as compared to inert molecules like Ficolls. When fractional clearances are plotted versus protein radius there is a remarkable parallelism between protein (molecular weight range 30-150kDa) clearance in healthy controls, in Dent's disease, in nephrotic states and the clearance of Ficolls. Although there are significant differences in the levels of fractional clearances in these states. Dent's disease results in a 2-fold increase in the fractional clearance of proteins as compared to healthy controls whereas in nephrotic states there is a further 3-fold increase in fractional clearance. Previous thinking that albumin uptake was controlled primarily by the megalin/cubilin receptor does not explain the albumin urinary excretion data and is therefore an incorrect concept. Protein clearance in nephrotic states approach the fractional clearance of inert Ficolls for a given radius. It therefore appears that there are two pathways processing these proteins. A low capacity pathway associated with megalin/cubilin that degrades filtered protein (that is inhibited in Dent's disease) and a high capacity pathway that retrieves the filtered protein and returns it to the blood supply (without retrieval nephrotic protein excretion will occur and this will account for hypoproteinemia). On the other hand low molecular weight proteins (<20kDa) are processed entirely differently by the kidney. They are not retrieved but are comprehensively degraded in the kidney with the degradation products predominantly returned to the blood supply.
Collapse
Affiliation(s)
- W D Comper
- SalAqua Diagnostics, New York and Kantum Diagnostics, NH, United States.
| | - L M Russo
- Systems Biology, Massachusetts General Hospital, Boston, United States
| | - J Vuchkova
- Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
12
|
Nolin AC, Mulhern RM, Panchenko MV, Pisarek-Horowitz A, Wang Z, Shirihai O, Borkan SC, Havasi A. Proteinuria causes dysfunctional autophagy in the proximal tubule. Am J Physiol Renal Physiol 2016; 311:F1271-F1279. [PMID: 27582098 DOI: 10.1152/ajprenal.00125.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/22/2016] [Indexed: 12/29/2022] Open
Abstract
Proteinuria is a major risk factor for chronic kidney disease progression. Furthermore, exposure of proximal tubular epithelial cells to excess albumin promotes tubular atrophy and fibrosis, key predictors of progressive organ dysfunction. However, the link between proteinuria and tubular damage is unclear. We propose that pathological albumin exposure impairs proximal tubular autophagy, an essential process for recycling damaged organelles and toxic intracellular macromolecules. In both mouse primary proximal tubule and immortalized human kidney cells, albumin exposure decreased the number of autophagosomes, visualized by the autophagosome-specific fluorescent markers monodansylcadaverine and GFP-LC3, respectively. Similarly, renal cortical tissue harvested from proteinuric mice contained reduced numbers of autophagosomes on electron micrographs, and immunoblots showed reduced steady-state LC3-II content. Albumin exposure decreased autophagic flux in vitro in a concentration-dependent manner as assessed by LC3-II accumulation rate in the presence of bafilomycin, an H+-ATPase inhibitor that prevents lysosomal LC3-II degradation. In addition, albumin treatment significantly increased the half-life of radiolabeled long-lived proteins, indicating that the primary mechanism of degradation, autophagy, is dysfunctional. In vitro, mammalian target of rapamycin (mTOR) activation, a potent autophagy inhibitor, suppressed autophagy as a result of intracellular amino acid accumulation from lysosomal albumin degradation. mTOR activation was demonstrated by the increased phosphorylation of its downstream target, S6K, with free amino acid or albumin exposure. We propose that excess albumin uptake and degradation inhibit proximal tubule autophagy via an mTOR-mediated mechanism and contribute to progressive tubular injury.
Collapse
Affiliation(s)
- Angela C Nolin
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Ryan M Mulhern
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Maria V Panchenko
- Department of Pathology, Boston University, Boston, Massachusetts; and
| | | | - Zhiyong Wang
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Orian Shirihai
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Steven C Borkan
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Andrea Havasi
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts;
| |
Collapse
|
13
|
Hogan MC, Lieske JC, Lienczewski CC, Nesbitt LL, Wickman LT, Heyer CM, Harris PC, Ward CJ, Sundsbak JL, Manganelli L, Ju W, Kopp JB, Nelson PJ, Adler SG, Reich HN, Holzmann LB, Kretzler M, Bitzer M. Strategy and rationale for urine collection protocols employed in the NEPTUNE study. BMC Nephrol 2015; 16:190. [PMID: 26577187 PMCID: PMC4650313 DOI: 10.1186/s12882-015-0185-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 11/06/2015] [Indexed: 02/04/2023] Open
Abstract
Background Glomerular diseases are potentially fatal, requiring aggressive interventions and close monitoring. Urine is a readily-accessible body fluid enriched in molecular signatures from the kidney and therefore particularly suited for routine clinical analysis as well as development of non-invasive biomarkers for glomerular diseases. Methods The Nephrotic Syndrome Study Network (NEPTUNE; ClinicalTrials.gov Identifier NCT01209000) is a North American multicenter collaborative consortium established to develop a translational research infrastructure for nephrotic syndrome. This includes standardized urine collections across all participating centers for the purpose of discovering non-invasive biomarkers for patients with nephrotic syndrome due to minimal change disease, focal segmental glomerulosclerosis, and membranous nephropathy. Here we describe the organization and methods of urine procurement and banking procedures in NEPTUNE. Results We discuss the rationale for urine collection and storage conditions, and demonstrate the performance of three experimental analytes (neutrophil gelatinase-associated lipocalin [NGAL], retinol binding globulin, and alpha-1 microglobulin) under these conditions with and without urine preservatives (thymol, toluene, and boric acid). We also demonstrate the quality of RNA and protein collected from the urine cellular pellet and exosomes. Conclusions The urine collection protocol in NEPTUNE allows robust detection of a wide range of proteins and RNAs from urine supernatant and pellets collected longitudinally from each patient over 5 years. Combined with the detailed clinical and histopathologic data, this provides a unique resource for exploration and validation of new or accepted markers of glomerular diseases. Trial registration ClinicalTrials.gov Identifier NCT01209000 Electronic supplementary material The online version of this article (doi:10.1186/s12882-015-0185-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie C Hogan
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - John C Lieske
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Chrysta C Lienczewski
- Department of Internal Medicine - Nephrology, University of Michigan Health System, Ann Arbor, MI, USA.
| | - Lisa L Nesbitt
- Cardiovascular Research, Mayo Clinic, Rochester, MN, USA.
| | - Larysa T Wickman
- Pediatric Nephrology, University of Michigan, Ann Arbor, MI, USA.
| | - Christina M Heyer
- Nephrology and Hypertension Research, Mayo Clinic, Rochester, MN, USA.
| | - Peter C Harris
- Nephrology and Hypertension Research, Mayo Clinic, Rochester, MN, USA.
| | - Christopher J Ward
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Jamie L Sundsbak
- Nephrology and Hypertension Research, Mayo Clinic, Rochester, MN, USA.
| | | | - Wenjun Ju
- Department of Internal Medicine - Nephrology, University of Michigan Health System, Ann Arbor, MI, USA.
| | - Jeffrey B Kopp
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Peter J Nelson
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, WA, USA.
| | - Sharon G Adler
- Division of Nephrology and Hypertension, Harbor-UCLA Medical Center, Torrance, CA, USA.
| | - Heather N Reich
- Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada.
| | - Lawrence B Holzmann
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthias Kretzler
- Department of Internal Medicine - Nephrology, University of Michigan Health System, Ann Arbor, MI, USA.
| | - Markus Bitzer
- Department of Internal Medicine - Nephrology, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Vuchkova J, Comper WD. Inhibition of the metabolic degradation of filtered albumin is a major determinant of albuminuria. PLoS One 2015; 10:e0127853. [PMID: 26010895 PMCID: PMC4444184 DOI: 10.1371/journal.pone.0127853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/20/2015] [Indexed: 02/03/2023] Open
Abstract
Inhibition of the degradation of filtered albumin has been proposed as a widespread, benign form of albuminuria. There have however been recent reports that radiolabeled albumin fragments in urine are not exclusively generated by the kidney and that in albuminuric states albumin fragment excretion is not inhibited. In order to resolve this controversy we have examined the fate of various radiolabeled low molecular weight protein degradation products (LMWDPs) introduced into the circulation in rats. The influence of puromycin aminonucleoside nephrosis on the processing and excretion of LMWDPs is also examined. The status and destinies of radiolabeled LMWDPs in the circulation are complex. A major finding is that LMWDPs are rapidly eliminated from the circulation (>97% in 2 h) but only small quantities (<4%) are excreted in urine. Small (<4%) but significant amounts of LMWDPs may have prolonged elimination (>24 h) due to binding to high molecular weight components in the circulation. If LMWDPs of albumin seen in the urine are produced by extra renal degradation it would require the degradation to far exceed the known catabolic rate of albumin. Alternatively, if an estimate of the role of extra renal degradation is made from the limit of detection of LMWDPs in plasma, then extra renal degradation would only contribute <1% of the total excretion of LMWDPs of albumin. We confirm that the degradation process for albumin is specifically associated with filtered albumin and this is inhibited in albuminuric states. This inhibition is also the primary determinant of the massive change in intact albuminuria in nephrotic states.
Collapse
Affiliation(s)
- Julijana Vuchkova
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Wayne D. Comper
- SalAqua Diagnostics Inc., Suite 258, 888c 8 Ave, New York, New York, 10019, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kondakova IV, Spirina LV, Koval VD, Shashova EE, Choinzonov EL, Ivanova EV, Kolomiets LA, Chernyshova AL, Slonimskaya EM, Usynin EA, Afanas’ev SG. Chymotrypsin-like activity and subunit composition of proteasomes in human cancers. Mol Biol 2014. [DOI: 10.1134/s002689331403011x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Yang X, Hu L, Ye M, Zou H. Analysis of the human urine endogenous peptides by nanoparticle extraction and mass spectrometry identification. Anal Chim Acta 2014; 829:40-7. [DOI: 10.1016/j.aca.2014.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/13/2014] [Accepted: 04/21/2014] [Indexed: 02/04/2023]
|
17
|
Dickson LE, Wagner MC, Sandoval RM, Molitoris BA. The proximal tubule and albuminuria: really! J Am Soc Nephrol 2014; 25:443-53. [PMID: 24408874 DOI: 10.1681/asn.2013090950] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent data highlight the role of the proximal tubule (PT) in reabsorbing, processing, and transcytosing urinary albumin from the glomerular filtrate. Innovative techniques and approaches have provided exciting insights into these processes, and numerous investigators have shown that selective PT cell defects lead to significant albuminuria, even reaching nephrotic range in animal models. Thus, the mechanisms of albumin reabsorption and transcytosis are undergoing intense study. Working in concert with megalin and cubilin, a nonselective multireceptor complex that predominantly directs proteins for lysosomal degradation, the neonatal Fc receptor (FcRn) located at the brush border of the apical membrane has been implicated as the "receptor" mediating albumin transcytosis. The FcRn pathway facilitates reabsorption and mediates transcytosis by its pH-dependent binding affinity in endosomal compartments. This also allows for selective albumin sorting within the PT cell. This reclamation pathway minimizes urinary losses and catabolism of albumin, thus prolonging its serum half-life. It may also serve as a molecular sorter to preserve and reclaim normal albumin while allowing "altered" albumin to be catabolized via lysosomal pathways. Here, we critically review the data supporting this novel mechanism.
Collapse
Affiliation(s)
- Landon E Dickson
- Indiana University School of Medicine, The Roudebush Veterans Affairs Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | | | | | | |
Collapse
|
18
|
Mattila PE, Raghavan V, Rbaibi Y, Baty CJ, Weisz OA. Rab11a-positive compartments in proximal tubule cells sort fluid-phase and membrane cargo. Am J Physiol Cell Physiol 2013; 306:C441-9. [PMID: 24153428 DOI: 10.1152/ajpcell.00236.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proximal tubule (PT) reabsorbs the majority of sodium, bicarbonate, and chloride ions, phosphate, glucose, water, and plasma proteins from the glomerular filtrate. Despite the critical importance of endocytosis for PT cell (PTC) function, the organization of the endocytic pathway in these cells remains poorly understood. We have used immunofluorescence and live-cell imaging to dissect the itinerary of apically internalized fluid and membrane cargo in polarized primary cultures of PTCs isolated from mouse kidney cortex. Cells from the S1 segment could be distinguished from those from more distal PT segments by their robust uptake of albumin and comparatively low expression of γ-glutamyltranspeptidase. Rab11a in these cells is localized to variously sized spherical compartments that resemble the apical vacuoles observed by electron microscopy analysis of PTCs in vivo. These Rab11a-positive structures are highly dynamic and receive membrane and fluid-phase cargo. In contrast, fluid-phase cargoes are largely excluded from Rab11a-positive compartments in immortalized kidney cell lines. The unusual morphology and sorting capacity of Rab11a compartments in primary PTCs may reflect a unique specialization of these cells to accommodate the functional demands of handling a high endocytic load.
Collapse
Affiliation(s)
- Polly E Mattila
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | | | | | | | | |
Collapse
|
19
|
Russo LM, Srivatsan S, Seaman M, Suleiman H, Shaw AS, Comper WD. Albuminuria associated with CD2AP knockout mice is primarily due to dysfunction of the renal degradation pathway processing of filtered albumin. FEBS Lett 2013; 587:3738-41. [PMID: 24140342 DOI: 10.1016/j.febslet.2013.09.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 01/15/2023]
Abstract
Here we address the assumption that the massive intact albuminuria accompanying mutations of structural components of the slit diaphragm is due to changes in glomerular permeability. The increase in intact albumin excretion rate in Cd2ap knockout mice by >100-fold was not accompanied by equivalent changes in urine flow rate, glomerular filtration rate or increases in dextran plasma clearance rate, which demonstrates that changes in glomerular permeability alone could not account for the increase in intact albumin excretion. The albuminuria could be accounted for by inhibition of the tubule degradation pathway associated with degrading filtered albumin. There are remarkable similarities between these results and all types of podocytopathies in acquired and toxin-induced renal disease, and nephrotic states seen in mice with podocyte mutations.
Collapse
Affiliation(s)
- Leileata M Russo
- SalAqua Inc, Suite 277, 331 W 57th St, New York, NY 10019, United States
| | | | | | | | | | | |
Collapse
|
20
|
Tenten V, Menzel S, Kunter U, Sicking EM, van Roeyen CRC, Sanden SK, Kaldenbach M, Boor P, Fuss A, Uhlig S, Lanzmich R, Willemsen B, Dijkman H, Grepl M, Wild K, Kriz W, Smeets B, Floege J, Moeller MJ. Albumin is recycled from the primary urine by tubular transcytosis. J Am Soc Nephrol 2013; 24:1966-80. [PMID: 23970123 DOI: 10.1681/asn.2013010018] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Under physiologic conditions, significant amounts of plasma protein pass the renal filter and are reabsorbed by proximal tubular cells, but it is not clear whether the endocytosed protein, particularly albumin, is degraded in lysosomes or returned to the circulatory system intact. To resolve this question, a transgenic mouse with podocyte-specific expression of doxycycline-inducible tagged murine albumin was developed. To assess potential glomerular backfiltration, two types of albumin with different charges were expressed. On administration of doxycycline, podocytes expressed either of the two types of transgenic albumin, which were secreted into the primary filtrate and reabsorbed by proximal tubular cells, resulting in serum accumulation. Renal transplantation experiments confirmed that extrarenal transcription of transgenic albumin was unlikely to account for these results. Genetic deletion of the neonatal Fc receptor (FcRn), which rescues albumin and IgG from lysosomal degradation, abolished transcytosis of both types of transgenic albumin and IgG in proximal tubular cells. In summary, we provide evidence of a transcytosis within the kidney tubular system that protects albumin and IgG from lysosomal degradation, allowing these proteins to be recycled intact.
Collapse
|
21
|
Shahni R, Czajka A, Mankoo BS, Guvenel AK, King AJ, Malik AN. Nop-7-associated 2 (NSA2), a candidate gene for diabetic nephropathy, is involved in the TGFβ1 pathway. Int J Biochem Cell Biol 2012; 45:626-35. [PMID: 23220173 DOI: 10.1016/j.biocel.2012.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/28/2012] [Accepted: 11/28/2012] [Indexed: 01/29/2023]
Abstract
We recently showed that Nop-7-associated 2 (NSA2) originally described in yeast as a nuclear protein involved in ribosomal biogenesis, is a hyperglycemia induced gene involved in diabetic nephropathy [Shahni et al., Elevated levels of renal and circulating Nop-7-associated 2 (NSA2) in rat and mouse models of diabetes, in mesangial cells in vitro and in patients with diabetic nephropathy. Diabetologia 2012;55(March(3)):825-34]. However the function of NSA2 in the cell remains unknown. In the current paper we investigate the possible mechanisms for the involvement of NSA2 in diabetic nephropathy by testing the hypothesis that NSA2 expression is linked to the TGFβ1 pathway. Both TGFβ1 and NSA2 mRNAs were significantly up-regulated in cultured renal mesangial cells in response to high glucose, in mouse kidneys during hyperglycemia, and in developing kidneys of mouse embryos during mesenchymal to epithelial transition. Surprisingly, the previously described nuclear NSA2 protein was predominantly located in the cytosol of cultured renal cells. Exogenous TGFβ1 could elevate NSA2 mRNA/protein levels in cultured mesangial cells and could also affect the cellular localization of NSA2, causing the predominantly cytosolic NSA2 protein to rapidly translocate to the nucleus. Increased NSA2 nuclear staining was seen in diabetic mouse kidneys compared to control kidneys. Knock-down of NSA2 expression using RNA interference resulted in significantly decreased TGFβ1 mRNA/protein, almost abolished TGFβ1 activity, and resulted in significantly reduced mRNA levels of the TGFβ1 downstream gene fibronectin. Our data suggest that NSA2 is acting upstream of the TGFβ1 pathway and that NSA2 is needed for TGFβ1 expression and transcriptional activity. In summary, NSA2, which increases in diabetic nephropathy, may be involved in the actions of TGFβ1 and contribute to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Rojeen Shahni
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, School of Medicine, King's College London, Hodgkin Building, London Bridge, London SE1 1UL, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Christensen EI, Birn H, Storm T, Weyer K, Nielsen R. Endocytic Receptors in the Renal Proximal Tubule. Physiology (Bethesda) 2012; 27:223-36. [DOI: 10.1152/physiol.00022.2012] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein reabsorption is a predominant feature of the renal proximal tubule. Animal studies show that the ability to rescue plasma proteins relies on the endocytic receptors megalin and cubilin. Recently, studies of patients with syndromes caused by dysfunctional receptors have supported the importance of these for protein clearance of human ultrafiltrate. This review focuses on the molecular biology and physiology of the receptors and their involvement in renal pathological conditions.
Collapse
Affiliation(s)
- Erik I. Christensen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Henrik Birn
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Tina Storm
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Oh KJ, Park JS, Norwitz ER, Kim SM, Kim BJ, Park CW, Jun JK, Syn HC. Proteomic biomarkers in second trimester amniotic fluid that identify women who are destined to develop preeclampsia. Reprod Sci 2012; 19:694-703. [PMID: 22534327 DOI: 10.1177/1933719112438441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study investigated whether proteomic analysis of amniotic fluid (AF) in the early second trimester can be used to predict the development of preeclampsia. METHODS Amniotic fluid samples were collected at the time of genetic amniocentesis (15-19 weeks of gestation) from women who subsequently developed preeclampsia and from gestational age-matched normotensive controls (n = 10 for each). Amniotic fluid samples were subjected to proteomic analysis using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, sodium dodecyl sulfate polyacrylamide gel coupled with in-gel tryptic digestion, electrospray ionization tandem mass spectrometry (MS/MS), immunodepletion assays, and enzyme-linke immunosorbent assay. RESULTS Five proteomic biomarkers were identified, which were differentially expressed in women who subsequently developed preeclampsia compared with those women who did not; four of these peaks were significantly upregulated (mass-to-charge ratio of 9080 [P = .006], 14 045 [P = .010], 14 345 [P = .049], and 28 087 [P = .006]) and one was significantly downregulated (mass-to-charge ratio of 4679 [P = .014]) in women who subsequently developed preeclampsia. Using electrospray ionization MS/MS and immunodepletion assays, two protein peaks were identified as albumin fragment and apolipoprotein A-I. CONCLUSIONS Using proteomic technology, this study identified protein biomarkers that are differentially expressed in the early second trimester AF from women who subsequently develop preeclampsia compared with women who remained normotensive. Early identification of women at risk of developing preeclampsia will allow clinicians to better optimize maternal and perinatal outcomes.
Collapse
Affiliation(s)
- Kyung Joon Oh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fuchs TC, Hewitt P. Preclinical perspective of urinary biomarkers for the detection of nephrotoxicity: what we know and what we need to know. Biomark Med 2012; 5:763-79. [PMID: 22103611 DOI: 10.2217/bmm.11.86] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The assessment of kidney damage is a challenge and must incorporate assessment of the functional capacity of the kidney, as well as a comprehensive understanding of the kidney's role. Multiple parameters have been used for many years to measure renal functionality to assess renal damage. It is astonishing that, beside histopathology, the most common traditional parameters are serum based. However, urine is also used to obtain additional information regarding the health status of the kidneys. Since 2008, several novel urinary protein biomarkers have been qualified by the US FDA and the European Medicines Agency in conjunction with the Predictive Safety Testing Consortium in a specially developed qualification process. Subsequently, the Pharmaceuticals and Medical Devices Agency accepted the qualification of these seven urinary biomarkers. This review will give an overview of the state-of-the-art detection based on urinary biomarkers, which will enhance toxicological research in the future. In addition, the qualification process that leads to acceptance of these biomarkers will be described because of its uniqueness and importance for the field of biomarker research.
Collapse
|
25
|
Fissell WH. Illuminating the Glomerular Filtration Barrier, Two Photons at a Time. J Am Soc Nephrol 2012; 23:373-5. [DOI: 10.1681/asn.2012010067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
26
|
Donadio C, Tognotti D, Donadio E. Albumin modification and fragmentation in renal disease. Clin Chim Acta 2012; 413:391-5. [DOI: 10.1016/j.cca.2011.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 01/16/2023]
|
27
|
Weyer K, Nielsen R, Christensen EI, Birn H. Generation of urinary albumin fragments does not require proximal tubular uptake. J Am Soc Nephrol 2012; 23:591-6. [PMID: 22282591 DOI: 10.1681/asn.2011101034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Urinary albumin excretion is an important diagnostic and prognostic marker of renal function. Both animal and human urine contain large amounts of albumin fragments, but whether these fragments originate from renal tubular degradation of filtered albumin is unknown. Here, we used mice with kidneys lacking megalin and cubilin, the coreceptors that mediate proximal tubular endocytosis of albumin, to determine whether proximal tubular degradation of albumin forms the detectable urinary albumin fragments. After intravenous administration of (125)I-labeled mouse albumin to knockout and control mice, we examined kidney uptake of albumin and urinary excretion of both intact albumin and its fragments using size exclusion chromatography. In control mice, all labeled albumin eluted as albumin fragments in the urine. In megalin/cubilin-deficient mice, we observed decreased uptake and degradation of albumin and increased urinary excretion of intact albumin; we did not, however, detect a decrease in the excretion of albumin fragments. These results show that the generation of urinary albumin fragments occurs independently of renal tubular uptake and degradation of albumin, suggesting that the pathophysiological implications of changes in urinary albumin fragments require reevaluation.
Collapse
Affiliation(s)
- Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | | | | | | |
Collapse
|
28
|
Ferrell N, Ricci KB, Groszek J, Marmerstein JT, Fissell WH. Albumin handling by renal tubular epithelial cells in a microfluidic bioreactor. Biotechnol Bioeng 2011; 109:797-803. [PMID: 22012446 DOI: 10.1002/bit.24339] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/28/2011] [Accepted: 10/04/2011] [Indexed: 11/11/2022]
Abstract
Epithelial cells in the proximal tubule of the kidney reclaim and metabolize protein from the glomerular filtrate. Proteinuria, an overabundance of protein in the urine, affects tubular cell function and is a major factor in the progression of chronic kidney disease. By developing experimental systems to study tubular protein handling in a setting that simulates some of the environmental conditions of the kidney tubule in vivo, we can better understand how microenviromental conditions affect cellular protein handling to determine if these conditions are relevant in disease. To this end, we used two in vitro microfluidic models to evaluate albumin handling by renal proximal tubule cells. For the first system, cells were grown in a microfluidic channel and perfused with physiological levels of shear stress to evaluate the effect of mechanical stress on protein uptake. In the second system, a porous membrane was used to separate an apical and basolateral compartment to evaluate the fate of protein following cellular metabolism. Opossum kidney (OK) epithelial cells were exposed to fluorescently labeled albumin, and cellular uptake was determined by measuring the fluorescence of cell lysates. Confocal fluorescence microscopy was used to compare uptake in cells grown under flow and static conditions. Albumin processed by the cells was examined by size exclusion chromatography (SEC) and SDS-PAGE. Results showed that cellular uptake and/or degradation was significantly increased in cells exposed to flow compared to static conditions. This was confirmed by confocal microscopy. Size exclusion chromatography and SDS-PAGE showed that albumin was broken down into small molecular weight fragments and excreted by the cells. No trace of intact albumin was detectable by either SEC or SDS-PAGE. These results indicate that fluid shear stress is an important factor mediating cellular protein handling, and the microfluidic bioreactor provides a novel tool to investigate this process.
Collapse
Affiliation(s)
- Nicholas Ferrell
- Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave. ND 20, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
29
|
Bellei E, Cuoghi A, Monari E, Bergamini S, Fantoni LI, Zappaterra M, Guerzoni S, Bazzocchi A, Tomasi A, Pini LA. Proteomic analysis of urine in medication-overuse headache patients: possible relation with renal damages. J Headache Pain 2011; 13:45-52. [PMID: 21997203 PMCID: PMC3253154 DOI: 10.1007/s10194-011-0390-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/27/2011] [Indexed: 11/26/2022] Open
Abstract
Medication-overuse headache (MOH) is a chronic disorder associated with overuse of analgesic drugs, triptans, non-steroidal anti-inflammatory drugs (NSAIDs) or other acute headache compounds. Various epidemiologic investigations proved that different drug types could cause nephrotoxicity, particularly in chronic patients. The aim of the present work was to analyze, by a proteomic approach, the urinary protein profiles of MOH patients focusing on daily use of NSAIDs, mixtures and triptans that could reasonably be related to potential renal damage. We selected 43 MOH patients overusing triptans (n = 18), NSAIDs (n = 11), and mixtures (n = 14), for 2–30 years with a mean daily analgesic intake of 1.5 ± 0.9 doses, and a control group composed of 16 healthy volunteers. Urine proteins were analyzed by mono-dimensional gel electrophoresis and identified by mass spectrometry analysis. Comparing the proteomic profiles of patients and controls, we found a significantly different protein expression, especially in the NSAIDs group, in which seven proteins resulted over-secreted from kidney (OR = 49, 95% CI 2.53–948.67 vs. controls; OR = 11.6, 95% CI 0.92–147.57 vs. triptans and mixtures groups). Six of these proteins (uromodulin, α-1-microglobulin, zinc-α-2-glycoprotein, cystatin C, Ig-kappa-chain, and inter-α-trypsin heavy chain H4) were strongly correlated with various forms of kidney disorders. Otherwise, in mixtures and in triptans abusers, only three proteins were potentially associated to pathological conditions (OR = 4.2, 95% CI 0.33–53.12, vs. controls). In conclusion, this preliminary proteomic study allowed us to define the urinary protein pattern of MOH patients that is related to the abused drug. According with the obtained results, we believe that the risk of nephrotoxicity should be considered particularly in MOH patients who abuse of NSAIDs.
Collapse
Affiliation(s)
- Elisa Bellei
- Medical Faculty, Department of Laboratory, Pathological Anatomy and Forensic Medicine, University Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41100, Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Toth P, Koller A, Pusch G, Bosnyak E, Szapary L, Komoly S, Marko L, Nagy J, Wittmann I. Microalbuminuria, indicated by total versus immunoreactive urinary albumins, in acute ischemic stroke patients. J Stroke Cerebrovasc Dis 2010; 20:510-6. [PMID: 20813547 DOI: 10.1016/j.jstrokecerebrovasdis.2010.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/03/2010] [Accepted: 03/09/2010] [Indexed: 12/12/2022] Open
Abstract
Microalbuminuria, assessed by measuring immunoreactive albumin, is common in patients with cerebrovascular disease and is associated with increased risk of stroke. Total urinary albumin (t-uAlb) comprises both immunoreactive albumin (ir-uAlb) and nonimmunoreactive albumin (nir-uAlb). We hypothesized that t-uAlb is a more sensitive indicator of microalbuminuria than ir-uAlb, and that measurement of t-uAlb will increase the prevalence of microalbuminuria in ischemic stroke patients compared with measurement of ir-uAlb and will show a stronger correlation with the severity of stroke and oxidative stress. In urine samples from 98 patients with ischemic stroke, the albumin-to-creatinine ratios t-uAlb/uCreat and ir-uAlb/uCreat were measured by high-performance liquid chromatography (HPLC) and immunoturbidimetry (IT), and the nir-uAlb/uCreat ratio was calculated. Urinary ortho-tyrosine (o-Tyr/uCreat), an indicator of oxidative stress, was measured by HPLC. The severity of stroke was scored based on the National Institutes of Health Stroke Scale (NIHSS). The prevalence of microalbuminuria detected by HPLC was significantly higher than that detetcted by IT (66.3 vs 36.7%). Although all forms of albumin showed significant correlation with stroke severity (t-uAlb: r = 0.24, P < .05 ir-uAlb: r = 0.25, P < .05 nir-uAlb: r = 0.29, P < .05), only nir-uAlb was found to be an independent predictor of stroke severity (B = 0.20, β = 0.35, P < .05). In addition, t-uAlb/uCreat and nir-uAlb/uCreat had a significant correlation with o-Tyr/uCreat (r = 0.336, P < .05 and r = 0.358, P < .05 respectively), whereas ir-uAlb/uCreat did not (r = 0.22, P > .05). Our data suggest that in acute ischemic stroke patients, t-uAlb is a more sensitive indicator of microalbuminuria than the presently used ir-uAlb. Future studies should aim to elucidate the underlying mechanisms for the relationship among urinary albumins and cerebrovascular diseases and the role of urinary albumins in risk stratification for stroke.
Collapse
Affiliation(s)
- Peter Toth
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Prakash M, Shetty JK, Dash S, Barik BK, Sarkar A, Prabhu R. Determination of urinary peptides in patients with proteinuria. Indian J Nephrol 2010; 18:150-4. [PMID: 20142926 PMCID: PMC2813534 DOI: 10.4103/0971-4065.45289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although considered useful in the diagnosis and prognosis of renal diseases, proteinuria can only be detected after significant renal paranchymal changes. There is considerable interest in the estimation of urinary peptides as an early marker of renal disease. In the current study, we have estimated urinary peptides in patients with different grades of proteinuria. Twenty-four hour urine samples were collected from 138 subjects and classified into three groups based on the urine protein excreted: group I (normoproteinuria, 0–150 mg/day, n = 37), group II (microproteinuria, 150–300 mg/day, n = 31), and group III (macroproteinuria, > 300 mg/day, n = 70). Urine proteins were determined using Bradford's method and urinary peptide levels were determined by subtracting Bradford's value from the Lowry value of the same sample. There was a significant decrease in the levels of urinary peptides in group III compared to group I (P < 0.01), however, there was no difference in peptides between groups I and II. The percentage of urinary peptides was decreased in both groups II and III compared to group I (P < 0.01), and there was a significant difference in % urinary peptide content in group II compared to group III (P < 0.01). On correlation, % urinary peptides correlated negatively with urinary proteins/g creatinine (r = - 0.782, P < 0.01) and positively with urinary peptides/g creatinine (r = 0.238, P < 0.01). Our data suggest that there is a marked decrease in urinary peptide levels with an increase in proteinuria. This may suggest impaired tubular protein reabsorption and degradation capacity of renal tubules.
Collapse
Affiliation(s)
- M Prakash
- Department of Biochemistry, Kasturba Medical College, Manipal, Karnataka, India
| | | | | | | | | | | |
Collapse
|
32
|
Hellin JL, Bech-Serra JJ, Moctezuma EL, Chocron S, Santin S, Madrid A, Vilalta R, Canals F, Torra R, Meseguer A, Nieto JL. Very Low-Molecular-Mass Fragments of Albumin in the Plasma of Patients With Focal Segmental Glomerulosclerosis. Am J Kidney Dis 2009; 54:871-80. [DOI: 10.1053/j.ajkd.2009.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 07/23/2009] [Indexed: 11/11/2022]
|
33
|
Abstract
Chronic kidney disease may be stimulated by many different etiologies, but its progression involves a common, yet complex, series of events that lead to the replacement of normal tissue with scar. These events include altered physiology within the kidney leading to abnormal hemodynamics, chronic hypoxia, inflammation, cellular dysfunction, and activation of fibrogenic biochemical pathways. The end result is the replacement of normal structures with extracellular matrix. Treatments presently are focused on delaying or preventing such progression, and are largely nonspecific. In pediatrics, such therapy is complicated further by pathophysiological issues that render children a unique population.
Collapse
|
34
|
Kentsis A, Monigatti F, Dorff K, Campagne F, Bachur R, Steen H. Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteomics Clin Appl 2009; 3:1052-1061. [PMID: 21127740 DOI: 10.1002/prca.200900008] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Knowledge of the biologically relevant components of human tissues has enabled the invention of numerous clinically useful diagnostic tests, as well as non-invasive ways of monitoring disease and its response to treatment. Recent use of advanced MS-based proteomics revealed that the composition of human urine is more complex than anticipated. Here, we extend the current characterization of the human urinary proteome by extensively fractionating urine using ultra-centrifugation, gel electrophoresis, ion exchange and reverse-phase chromatography, effectively reducing mixture complexity while minimizing loss of material. By using high-accuracy mass measurements of the linear ion trap-Orbitrap mass spectrometer and LC-MS/MS of peptides generated from such extensively fractionated specimens, we identified 2362 proteins in routinely collected individual urine specimens, including more than 1000 proteins not described in previous studies. Many of these are biomedically significant molecules, including glomerularly filtered cytokines and shed cell surface molecules, as well as renally and urogenitally produced transporters and structural proteins. Annotation of the identified proteome reveals distinct patterns of enrichment, consistent with previously described specific physiologic mechanisms, including 336 proteins that appear to be expressed by a variety of distal organs and glomerularly filtered from serum. Comparison of the proteomes identified from 12 individual specimens revealed a subset of generally invariant proteins, as well as individually variable ones, suggesting that our approach may be used to study individual differences in age, physiologic state and clinical condition. Consistent with this, annotation of the identified proteome by using machine learning and text mining exposed possible associations with 27 common and more than 500 rare human diseases, establishing a widely useful resource for the study of human pathophysiology and biomarker discovery.
Collapse
Affiliation(s)
- Alex Kentsis
- Department of Medicine, Children's Hospital Boston and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Tanner GA, Rippe C, Shao Y, Evan AP, Williams JC. Glomerular permeability to macromolecules in the Necturus kidney. Am J Physiol Renal Physiol 2009; 296:F1269-78. [PMID: 19339627 DOI: 10.1152/ajprenal.00371.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many aspects of the glomerular filtration of macromolecules remain controversial, including the location of the major filtration barrier, the effects of electrical charge, and the reason the filtration barrier does not clog. We examined these issues in anesthetized Necturus maculosus, using fluorescently labeled probes and a two-photon microscope. With the high resolution of this system and the extraordinary width ( approximately 3.5 mum) of the glomerular basement membrane (GBM) in this salamander, we were able to visualize fluorescent molecules in the GBM in vivo. GBM/plasma concentration ratios for myoglobin, ovalbumin, and serum albumin did not differ from that of inulin, indicating that the GBM does not discriminate among these molecules. The GBM/plasma concentration ratios for fluoresceinated dextran 500 and 2,000 kDa were significantly below that of inulin. Glomerular sieving coefficients (GSCs) for various macromolecules decreased as molecular mass increased, and the GSCs for bovine or human serum albumin were extremely low. The effect of electrical charge on filterability of a macromolecule was also examined. The GSCs for native (anionic) and neutral human serum albumin were not significantly different, nor did GSCs for anionic and neutral dextran 40 kDa differ, indicating that charge has no detectable effect on filterability of these macromolecules. These studies indicate that the main filtration barrier to albumin is the podocyte slit diaphragm. Electron microscopic studies revealed many cell processes within the GBM. Macromolecules that penetrated the GBM were taken up by mesangial cells and endothelial cells, suggesting that these cells help to prevent clogging of the filter.
Collapse
Affiliation(s)
- George A Tanner
- Department of Cellular and Integrative Physiology, Indiana Univ. School of Medicine, 635 Barnhill Dr., MS 332, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
36
|
Nakayama A, Sakatsume M, Kasama T, Kawara T, Gejyo F, Isobe M, Sato K, Shiba K. Molecular heterogeneity of urinary albumin in glomerulonephritis: Comparison of cardiovascular disease with albuminuria. Clin Chim Acta 2009; 402:94-101. [DOI: 10.1016/j.cca.2008.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
|
37
|
Tanner GA. Glomerular sieving coefficient of serum albumin in the rat: a two-photon microscopy study. Am J Physiol Renal Physiol 2009; 296:F1258-65. [PMID: 19211688 DOI: 10.1152/ajprenal.90638.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies of the sieving of serum albumin in the rat kidney using a two-photon microscope suggested that the glomerular sieving coefficient (GSC) of albumin is 0.034, much higher than earlier micropuncture determinations. In the present study, we critically evaluated the use of the two-photon microscope to measure the GSC of albumin in the Munich-Wistar rat in vivo. The albumin GSC averaged 0.004 (SD 0.004), n = 34 glomeruli, when determined with a Zeiss two-photon microscope system and 0.002 (SD 0.002), n = 5, when determined with an Olympus two-photon microscope system. These values are close to the lower limit of detection of GSC, which we estimate to be approximately 0.001-0.003. We identified several factors that were likely responsible for the higher albumin GSCs reported earlier using two-photon microscopy. These include animal conditions (i.e., low glomerular filtration rate) and failure to recognize the role of out-of-focus fluorescence in contaminating the fluorescence signal from the urinary space of Bowman's capsule. We observed that hypothermia plus dehydration or a low blood pressure led to an increased albumin GSC. High levels of illumination (high laser outputs) resulted in a falsely elevated albumin GSC. Use of external, instead of internal, photodetectors resulted in an exaggerated albumin GSC because of greater collection of out-of-focus fluorescence. In conclusion, the albumin concentration in the glomerular filtrate of the normal rat, determined by two-photon microscopy, is exceedingly low (5-10 mg/dl).
Collapse
Affiliation(s)
- George A Tanner
- Department of Cellular and Integrative Physiology, Indiana Univ. School of Medicine, 635 Barnhill Drive, MS 332, Indianapolis, IN 46202, USA.
| |
Collapse
|
38
|
Macconi D, Chiabrando C, Schiarea S, Aiello S, Cassis L, Gagliardini E, Noris M, Buelli S, Zoja C, Corna D, Mele C, Fanelli R, Remuzzi G, Benigni A. Proteasomal processing of albumin by renal dendritic cells generates antigenic peptides. J Am Soc Nephrol 2008; 20:123-30. [PMID: 19092126 DOI: 10.1681/asn.2007111233] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The role of dendritic cells (DC) that accumulate in the renal parenchyma of non-immune-mediated proteinuric nephropathies is not well understood. Under certain circumstances, DC capture immunologically ignored antigens, including self-antigens, and present them within MHC class I, initiating an autoimmune response. We studied whether DC could generate antigenic peptides from the self-protein albumin. Exposure of rat proximal tubular cells to autologous albumin resulted in its proteolytic cleavage to form an N-terminal 24-amino acid peptide (ALB1-24). This peptide was further processed by the DC proteasome into antigenic peptides that had binding motifs for MHC class I and were capable of activating syngeneic CD8+ T cells. In vivo, the rat five-sixths nephrectomy model allowed the localization and activation of renal DC. Accumulation of DC in the renal parenchyma peaked 1 wk after surgery and decreased at 4 wk, concomitant with their appearance in the renal draining lymph nodes. DC from renal lymph nodes, loaded with ALB1-24, activated syngeneic CD8+ T cells in primary culture. The response of CD8+ T cells of five-sixths nephrectomized rats was amplified with secondary stimulation. In contrast, DC from renal lymph nodes of five-sixths nephrectomized rats treated with the proteasomal inhibitor bortezomib lost their capacity to stimulate CD8+ T cells in primary and secondary cultures. These data suggest that albumin can be a source of potentially antigenic peptides upon renal injury and that renal DC play a role in processing self-proteins through a proteasome-dependent pathway.
Collapse
Affiliation(s)
- Daniela Macconi
- Mario Negri Institute for Pharmacological Research, Via Gavazzeni 11, 24125 Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The classic mechanism to explain albumin excretion in diabetes has been permeability defects in the glomerular filter. However, a new concept has emerged that albuminuria can be explained by the two major pathways the proximal tubular cell uses to process filtered albumin. Specifically, albumin permeability through the glomerular filter is only governed by size selectivity. Most of the filtered albumin is retrieved by the proximal tubular cell and returned to the peritubular blood supply. Albuminuria in the nephrotic range would arise from retrieval pathway dysfunction. The small quantities of filtered albumin that are not retrieved undergo obligatory lysosomal degradation before urinary excretion as small peptide fragments. This pathway is sensitive to metabolic factors responsible for hypertrophy and fibrosis, particularly molecules such as angiotensin II and transforming growth factor-beta1, whose production is stimulated by hyperglycemic environments. Dysfunction in this degradation pathway may lead to albuminuria below the nephrotic range.
Collapse
Affiliation(s)
- Wayne D Comper
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|
40
|
Buhimschi IA, Zhao G, Funai EF, Harris N, Sasson IE, Bernstein IM, Saade GR, Buhimschi CS. Proteomic profiling of urine identifies specific fragments of SERPINA1 and albumin as biomarkers of preeclampsia. Am J Obstet Gynecol 2008; 199:551.e1-16. [PMID: 18984079 DOI: 10.1016/j.ajog.2008.07.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 04/12/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The cause of preeclampsia remains unknown and the diagnosis can be uncertain. We used proteomic-based analysis of urine to improve disease classification and extend the pathophysiologic understanding of preeclampsia. STUDY DESIGN Urine samples from 284 women were analyzed by surface-enhanced laser desorption/ionization. In the exploratory phase, 59 samples were used to extract the proteomic fingerprint characteristic of severe preeclampsia requiring mandated delivery and to develop a diagnostic algorithm. In the challenge phase, we sought to prospectively validate the algorithm in 225 women screened for a variety of high- and low-risk conditions, including preeclampsia. Of these, 19 women were followed longitudinally throughout pregnancy. The presence of biomarkers was interpreted relative to clinical classification, need for delivery, and other urine laboratory measures (ratios of protein to creatinine and soluble fms-like tyrosine kinase-1 to placental growth factor). In the translational phase, biomarker identification by tandem mass spectrometry and validation experiments in urine, serum, and placenta were used to identify, quantify, and localize the biomarkers or related proteins. RESULTS We report that women with preeclampsia appear to present a unique urine proteomic fingerprint that predicts preeclampsia in need of mandated delivery with highest accuracy. This characteristic proteomic profile also has the ability to distinguish preeclampsia from other hypertensive or proteinuric disorders in pregnancy. Pregnant women followed longitudinally who developed preeclampsia displayed abnormal urinary profiles more than 10 weeks before clinical manifestation. Tandem mass spectrometry and de novo sequencing identified the biomarkers as nonrandom cleavage products of SERPINA1 and albumin. Of these, the 21 amino acid C-terminus fragment of SERPINA1 was highly associated with severe forms of preeclampsia requiring early delivery. In preeclampsia, increased and aberrant SERPINA1 immunoreactivity was found in urine, serum, and placenta, in which it localized predominantly to placental villi and placental vascular spaces adherent to the endothelium. In addition, significant perivascular deposits of misfolded SERPINA1 aggregates were exclusively identified in preeclamptic placentae. CONCLUSION Proteomics-based characterization of urine in preeclampsia identified a proteomic fingerprint composed of SERPINA1 and albumin fragments, which can accurately diagnose preeclampsia and shows promise to discriminate it from other hypertensive proteinuric diseases. These findings provide insight into a novel pathophysiological mechanism of preeclampsia related to SERPINA1 misfolding, which may offer new therapeutic opportunities in the future.
Collapse
|
41
|
Birmingham DJ, Rovin BH, Shidham G, Bissell M, Nagaraja HN, Hebert LA. Relationship between albuminuria and total proteinuria in systemic lupus erythematosus nephritis: diagnostic and therapeutic implications. Clin J Am Soc Nephrol 2008; 3:1028-33. [PMID: 18450925 PMCID: PMC2440287 DOI: 10.2215/cjn.04761107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 04/04/2008] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Albuminuria is regarded a sensitive measure of progression of glomerular disease. This study was undertaken in patients who had systemic lupus erythematosus glomerulonephritis (n = 57) and were followed in the Ohio SLE Study to determine whether measuring albuminuria offered clinical advantages over that of total proteinuria. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Twenty-four-hour urine collections (n = 127) were obtained at baseline and annually for measurement of microalbumin, total protein, and creatinine. RESULTS There was a strong linear relationship between microalbumin-creatinine and protein-creatinine ratios over the entire range of protein-creatinine ratios; however, in the protein-creatinine ratio range 0.0 to 0.3, as the protein-creatinine ratio increased, the microalbumin-protein ratio increased much more than the protein-creatinine ratio. Also, the greater the protein-creatinine ratio, the greater was the evidence for nonselective proteinuria (protein-creatinine ratio--microalbumin-creatinine ratio). CONCLUSIONS For the diagnosis of proteinuria renal flare, measuring albuminuria offers no advantage over measuring total proteinuria because changes in protein-creatinine and microalbumin-creatinine ratios are highly correlated over the designated ranges for systemic lupus erythematosus glomerulonephritis proteinuric flares. In those with normal-range proteinuria, subsequent changes in microalbumin-protein ratio might be a better forecaster of renal flare than changes in protein-creatinine or microalbumin-creatinine ratio. High protein-creatinine ratios are associated with evidence of nonselective proteinuria, which may increase the nephrotoxicity of proteinuria. Thus, using high-threshold criteria for systemic lupus erythematosus flare (allowing greater proteinuria increase before flare is declared) may expose the kidney to greater nephrotoxicity than using the low-threshold criteria for systemic lupus erythematosus flare.
Collapse
Affiliation(s)
- Daniel J Birmingham
- Department of Internal Medicine, Ohio State University Medical Center, Columbus, OH 43210-1250, USA
| | | | | | | | | | | |
Collapse
|
42
|
Comper WD, Hilliard LM, Nikolic-Paterson DJ, Russo LM. Disease-dependent mechanisms of albuminuria. Am J Physiol Renal Physiol 2008; 295:F1589-600. [PMID: 18579704 DOI: 10.1152/ajprenal.00142.2008] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanism of albuminuria is perhaps one of the most complex yet important questions in renal physiology today. Recent studies have directly demonstrated that the normal glomerulus filters substantial amounts of albumin and that charge selectivity plays little or no role in preventing this process. This filtered albumin is then processed by proximal tubular cells by two distinct pathways; dysfunction in either one of these pathways gives rise to discrete forms of albuminuria. Most of the filtered albumin is returned to the peritubular blood supply by a retrieval pathway. Albuminuria in the nephrotic range would arise from retrieval pathway dysfunction. The small quantities of filtered albumin that are not retrieved undergo obligatory lysosomal degradation before urinary excretion as small peptide fragments. This degradation pathway is sensitive to metabolic factors responsible for hypertrophy and fibrosis, particularly molecules such as angiotensin II and transforming growth factor-beta1, whose production is stimulated by hyperglycemic and hypertensive environments. Dysfunction in this degradation pathway leads to albuminuria below the nephrotic range. These new insights into albumin filtration and processing argue for a reassessment of the role of podocytes and the slit diaphragm as major direct determinants governing albuminuria, provide information on how glomerular morphology and "tubular" albuminuria may be interrelated, and offer a new rationale for drug development.
Collapse
Affiliation(s)
- Wayne D Comper
- Dept. of Biochemistry and Molecular Biology, Monash Univ., Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
43
|
Jefferson JA, Shankland SJ, Pichler RH. Proteinuria in diabetic kidney disease: a mechanistic viewpoint. Kidney Int 2008; 74:22-36. [PMID: 18418356 DOI: 10.1038/ki.2008.128] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Proteinuria is the hallmark of diabetic kidney disease (DKD) and is an independent risk factor for both renal disease progression, and cardiovascular disease. Although the characteristic pathological changes in DKD include thickening of the glomerular basement membrane and mesangial expansion, these changes per se do not readily explain how patients develop proteinuria. Recent advances in podocyte and glomerular endothelial cell biology have shifted our focus to also include these cells of the glomerular filtration barrier in the development of proteinuria in DKD. This review describes the pathophysiological mechanisms at a cellular level which explain why patients with DKD develop proteinuria.
Collapse
Affiliation(s)
- J A Jefferson
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
44
|
Lukacs-Kornek V, Burgdorf S, Diehl L, Specht S, Kornek M, Kurts C. The kidney-renal lymph node-system contributes to cross-tolerance against innocuous circulating antigen. THE JOURNAL OF IMMUNOLOGY 2008; 180:706-15. [PMID: 18178808 DOI: 10.4049/jimmunol.180.2.706] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Soluble Ags devoid of inflammatory stimuli, derived for example from self-serum or food proteins, induce T cell tolerance, predominantly in the spleen. In this study, we describe an additional role of the kidney-renal LN (rLN) system in tolerogenic presentation of circulating soluble Ags. Protein below albumin molecular mass constitutively passed the kidney glomerular filter and was concentrated in the tubular compartment. Enriched filterable Ag was endocytosed by kidney dendritic cells (kDCs). Simultaneously, it was transported cell independently within 2 min to DCs resident in rLNs. These DC phenotypically differed from kDCs carrying filterable Ag, and used a distinct mechanism, mannose receptor-mediated endocytosis, to internalize Ag. They activated specific CD8+ T cells, which subsequently proliferated without producing effector cytokines or developing cytotoxic activity, showed a curtailed lifespan and signs of apoptosis. Such T cell tolerization was independent of steady-state migratory kDC, because it occurred also when nephrectomy was performed soon after Ag injection. These findings demonstrate that the kidney dispatches concentrated blood-borne Ags to the rLNs, where they are captured by resident DCs, resulting in CD8+ T cell cross-tolerance. This mechanism may contribute to avoiding immunity against innocuous circulating protein Ags below albumin size.
Collapse
Affiliation(s)
- Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, Friedrich-Wilhelms-Universität, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The recognition and detection of proteinuria has been acknowledged as an important clinical marker of renal disease since 1827 when Richard Bright published his landmark medical case reports. In more recent times, the broader community of clinicians has come to share the enthusiasm of nephrologists in recognizing the importance of protein excretion, not only as a marker of current renal disease but also as a predictor of long-term renal and cardiovascular morbidity and mortality. It is important that methods for detecting and measuring proteinuria are accurate, and this is particularly relevant to diseases that are defined by the detection of proteinuria, such as pre-eclampsia. This review will first discuss current knowledge of protein handling by the normal kidney, then the changes in normal and hypertensive pregnancy, and finally, how recent advances in our understanding of proteinuria may affect our future management of hypertensive pregnancies.
Collapse
Affiliation(s)
- Jane L Holt
- Renal Department, St George Hospital, and Medical Faculty, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
46
|
Suzuki M, Ross GF, Wiers K, Nelson S, Bennett M, Passo MH, Devarajan P, Brunner HI. Identification of a urinary proteomic signature for lupus nephritis in children. Pediatr Nephrol 2007; 22:2047-57. [PMID: 17901988 DOI: 10.1007/s00467-007-0608-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/06/2007] [Accepted: 07/12/2007] [Indexed: 10/22/2022]
Abstract
The quest for reliable biomarkers of systemic lupus erythematosus (SLE) nephritis is an area of intense contemporary research. In this study, surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) technology was used for urinary proteomic profiling of patients with SLE nephritis. Clinical, laboratory, and kidney biopsy data from pediatric patients with SLE (n = 32) were analyzed. Children with juvenile idiopathic arthritis (n = 11) served as controls. SELDI-TOF-MS was performed using ProteinChips with different chromatographic surfaces. The resulting spectra were analyzed with Bio-Rad Biomarker Wizard software. A consistent urinary proteomic signature for SLE nephritis was found, comprising eight biomarker proteins with peaks at m/z of 2.7, 22, 23, 44, 56, 79, 100, and 133 kDa. The peak intensities of these biomarkers were significantly greater in patients with SLE nephritis compared with controls and SLE patients without nephritis. These biomarkers were strongly correlated with renal disease activity and moderately with renal damage. For the diagnosis of active nephritis, the area under the receiver operating characteristic curve was > or =0.90 for 22, 23, 44, 79, and 100 kDa biomarkers. Thus, SELDI-TOF-MS has identified a urine proteomic signature strongly associated with SLE renal involvement and active SLE nephritis.
Collapse
Affiliation(s)
- Michiko Suzuki
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ozdemir AM, Hopfer U, Rosca MV, Fan XJ, Monnier VM, Weiss MF. Effects of advanced glycation end product modification on proximal tubule epithelial cell processing of albumin. Am J Nephrol 2007; 28:14-24. [PMID: 17890854 DOI: 10.1159/000108757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 08/05/2007] [Indexed: 01/11/2023]
Abstract
AIM The goal of this work is to understand the cellular effects of advanced glycation end product (AGE)-modified protein on renal proximal tubule cells. BACKGROUND A major function of the proximal tubule is to reabsorb and process filtered proteins. Diabetes is characterized by increased quantities of tissue and circulating proteins modified by AGEs. Therefore in diabetes, plasma proteins filtered at the glomerulus and presented to the renal proximal tubule are likely to be highly modified by AGEs. METHODS The model system was electrically resistant polarized renal proximal tubular epithelial cells in monolayer culture. The model proteins comprise a well-characterized AGE, methylglyoxal-modified bovine serum albumin (MGO-BSA), and unmodified BSA. RESULTS Renal proximal tubular cells handle MGO-BSA and native BSA in markedly disparate ways, including differences in: (1) kinetics of binding, uptake, and intracellular accumulation, (2) processing and fragmentation, and (3) patterns of electrical conductance paralleling temporal changes in binding, uptake and processing. CONCLUSION These differences support the idea that abnormal protein processing by the renal tubule can be caused by abnormal proteins, thereby forging a conceptual link between the pathogenic role of AGEs and early changes in tubular function that can lead to hypertrophy and nephropathy in diabetes.
Collapse
Affiliation(s)
- Aylin M Ozdemir
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
48
|
Pollock CA, Poronnik P. Albumin transport and processing by the proximal tubule: physiology and pathophysiology. Curr Opin Nephrol Hypertens 2007; 16:359-64. [PMID: 17565279 DOI: 10.1097/mnh.0b013e3281eb9059] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Significant epidemiological and clinical trial evidence supports the association between increased urinary albumin excretion, cardiovascular events and renal failure. An increase in albumin excretion has traditionally been considered to reflect a 'glomerular' leak of protein; however, it is now recognized that significant tubular reabsorption of albumin occurs under physiological conditions that may be modified by genetic determinants, systemic disease and drug therapies. RECENT FINDINGS The endocytosis of albumin by the proximal tubule is a highly regulated process depending on protein-protein interactions between several membrane proteins and scaffolding and regulatory molecules. The elucidation of these interactions is an ongoing research focus. There is also mounting evidence for a transcytotic pathway for retrieval of albumin from the tubular filtrate. The molecular basis for the role of albuminuria in both interstitial renal disease and cardiovascular pathology continues to be defined. The clinical implications of albuminuria due to a glomerular leak vs. reduced tubular reabsorption of albumin are, however, now under consideration. In particular, the prognostic implication of microalbuminuria induced by the more potent 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors is under study. SUMMARY The currently defined mechanisms underpinning the tubular reabsorption of albumin, how these are modified by pathology and pharmacology, and the clinical implications are the subject of this review.
Collapse
Affiliation(s)
- Carol A Pollock
- Department of Medicine, University of Sydney, Kolling Institute, Royal North Shore Hospital, New South Wales, Australia.
| | | |
Collapse
|
49
|
Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D, Molitoris BA, Comper WD. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int 2007; 71:504-13. [PMID: 17228368 DOI: 10.1038/sj.ki.5002041] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of albuminuria remains controversial owing to difficulties in quantifying the actual amount of albumin filtered by the kidney. Here we use fluorescently labeled albumin, together with the powerful technique of intravital 2-photon microscopy to show that renal albumin filtration in non-proteinuric rats is approximately 50 times greater than previously measured and is followed by rapid endocytosis into proximal tubule cells (PTCs). The endocytosed albumin appears to undergo transcytosis in large vesicles (500 nm in diameter), identified by immunogold staining of endogenous albumin by electron microscopy, to the basolateral membrane where the albumin is disgorged back to the peritubular blood supply. In nephrotic rats, the rate of uptake of albumin by the proximal tubule (PT) is decreased. This is consistent with reduced expression of clathrin, megalin, and vacuolar H(+)-ATPase A subunit, proteins that are critical components of the PT endocytotic machinery. These findings strongly support the paradigm-shifting concept that the glomerular filter normally leaks albumin at nephrotic levels. Albuminuria does not occur as this filtered albumin load is avidly bound and retrieved by PTCs. Dysfunction of this retrieval pathway leads to albuminuria. Thus, restoration of the defective endocytotic and processing function of PT epithelial cells might represent an effective strategy to limit urinary albumin loss, at least in some types of nephrotic syndrome.
Collapse
Affiliation(s)
- L M Russo
- Program in Membrane Biology, Renal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kemperman RFJ, Horvatovich PL, Hoekman B, Reijmers TH, Muskiet FAJ, Bischoff R. Comparative Urine Analysis by Liquid Chromatography−Mass Spectrometry and Multivariate Statistics: Method Development, Evaluation, and Application to Proteinuria. J Proteome Res 2006; 6:194-206. [PMID: 17203964 DOI: 10.1021/pr060362r] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a platform for the comparative profiling of urine using reversed-phase liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical data analysis. Urinary compounds were separated by gradient elution and subsequently detected by electrospray Ion-Trap MS. The lower limit of detection (5.7-21 nmol/L), within-day (2.9-19%) and between-day (4.8-19%) analytical variation of peak areas, linearity (R2: 0.918-0.999), and standard deviation for retention time (<0.52 min) of the method were assessed by means of addition of seven 3-8 amino acid peptides (0-500 nmol/L). Relating the amount of injected urine to the area under the curve (AUC) of the chromatographic trace at 214 nm better reduced the coefficient of variation (CV) of the AUC of the total ion chromatogram (CV = 10.1%) than relating it to creatinine (CV = 38.4%). LC-MS data were processed, and the common peak matrix was analyzed by principal component analysis (PCA) after supervised classification by the nearest shrunken centroid algorithm. The feasibility of the method to discriminate urine samples of differing compositions was evaluated by (i) addition of seven peptides at nanomolar concentrations to blank urine samples of different origin and (ii) a study of urine from kidney patients with and without proteinuria. (i) The added peptides were ranked as highly discriminatory peaks despite significant biological variation. (ii) Ninety-two peaks were selected best discriminating proteinuric from nonproteinuric samples, of which 6 were more intense in the majority of the proteinuric samples. Two of these 6 peaks were identified as albumin-derived peptides, which is in accordance with the early rise of albumin during glomerular proteinuria. Interestingly, other albumin-derived peptides were nondiscriminatory indicating preferential proteolysis at some cleavage sites.
Collapse
Affiliation(s)
- Ramses F J Kemperman
- Department of Analytical Biochemistry, University Centre for Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|