1
|
Iyer A, Humphries TLR, Owens EP, Zhao KN, Masci PP, Johnson DW, Nikolic-Paterson D, Gobe GC, Fairlie DP, Vesey DA. PAR2 Activation on Human Kidney Tubular Epithelial Cells Induces Tissue Factor Synthesis, That Enhances Blood Clotting. Front Physiol 2021; 12:615428. [PMID: 33776786 PMCID: PMC7987918 DOI: 10.3389/fphys.2021.615428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coagulation abnormalities and increased risk of atherothrombosis are common in patients with chronic kidney diseases (CKD). Mechanisms that alter renal hemostasis and lead to thrombotic events are not fully understood. Here we show that activation of protease activated receptor-2 (PAR2) on human kidney tubular epithelial cells (HTECs), induces tissue factor (TF) synthesis and secretion that enhances blood clotting. PAR-activating coagulation-associated protease (thrombin), as well as specific PAR2 activators (matriptase, trypsin, or synthetic agonist 2f-LIGRLO-NH2 (2F), induced TF synthesis and secretion that were potently inhibited by PAR2 antagonist, I-191. Thrombin-induced TF was also inhibited by a PAR1 antagonist, Vorapaxar. Peptide activators of PAR1, PAR3, and PAR4 failed to induce TF synthesis. Differential centrifugation of the 2F-conditoned medium sedimented the secreted TF, together with the exosome marker ALG-2 interacting protein X (ALIX), indicating that secreted TF was associated with extracellular vesicles. 2F-treated HTEC conditioned medium significantly enhanced blood clotting, which was prevented by pre-incubating this medium with an antibody for TF. In summary, activation of PAR2 on HTEC stimulates synthesis and secretion of TF that induces blood clotting, and this is attenuated by PAR2 antagonism. Thrombin-induced TF synthesis is at least partly mediated by PAR1 transactivation of PAR2. These findings reveal how underlying hemostatic imbalances might increase thrombosis risk and subsequent chronic fibrin deposition in the kidneys of patients with CKD and suggest PAR2 antagonism as a potential therapeutic strategy for intervening in CKD progression.
Collapse
Affiliation(s)
- Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Tyrone L. R. Humphries
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
| | - Evan P. Owens
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kong-Nan Zhao
- Centre for Venomics Research, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Paul P. Masci
- Centre for Venomics Research, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - David W. Johnson
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Nephrology, The University of Queensland at Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - David Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, VIC, Australia
| | - Glenda C. Gobe
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - David P. Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Faculty of Medicine at the Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Nephrology, The University of Queensland at Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
2
|
Detzner J, Krojnewski E, Pohlentz G, Steil D, Humpf HU, Mellmann A, Karch H, Müthing J. Shiga Toxin (Stx)-Binding Glycosphingolipids of Primary Human Renal Cortical Epithelial Cells (pHRCEpiCs) and Stx-Mediated Cytotoxicity. Toxins (Basel) 2021; 13:toxins13020139. [PMID: 33673393 PMCID: PMC7918848 DOI: 10.3390/toxins13020139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Human kidney epithelial cells are supposed to be directly involved in the pathogenesis of the hemolytic–uremic syndrome (HUS) caused by Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC). The characterization of the major and minor Stx-binding glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), respectively, of primary human renal cortical epithelial cells (pHRCEpiCs) revealed GSLs with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Using detergent-resistant membranes (DRMs) and non-DRMs, Gb3Cer and Gb4Cer prevailed in the DRM fractions, suggesting their association with microdomains in the liquid-ordered membrane phase. A preference of Gb3Cer and Gb4Cer endowed with C24:0 fatty acid accompanied by minor monounsaturated C24:1-harboring counterparts was observed in DRMs, whereas the C24:1 fatty acid increased in relation to the saturated equivalents in non-DRMs. A shift of the dominant phospholipid phosphatidylcholine with saturated fatty acids in the DRM to unsaturated species in the non-DRM fractions correlated with the GSL distribution. Cytotoxicity assays gave a moderate susceptibility of pHRCEpiCs to the Stx1a and Stx2a subtypes when compared to highly sensitive Vero-B4 cells. The results indicate that presence of Stx-binding GSLs per se and preferred occurrence in microdomains do not necessarily lead to a high cellular susceptibility towards Stx.
Collapse
Affiliation(s)
- Johanna Detzner
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Elisabeth Krojnewski
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Gottfried Pohlentz
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Daniel Steil
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, D-48149 Münster, Germany;
| | - Alexander Mellmann
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Helge Karch
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Johannes Müthing
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
- Correspondence:
| |
Collapse
|
3
|
Warr AR, Kuehl CJ, Waldor MK. Shiga toxin remodels the intestinal epithelial transcriptional response to Enterohemorrhagic Escherichia coli. PLoS Pathog 2021; 17:e1009290. [PMID: 33529199 PMCID: PMC7880444 DOI: 10.1371/journal.ppat.1009290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/12/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that causes diarrheal disease and the potentially lethal hemolytic uremic syndrome. We used an infant rabbit model of EHEC infection that recapitulates many aspects of human intestinal disease to comprehensively assess colonic transcriptional responses to this pathogen. Cellular compartment-specific RNA-sequencing of intestinal tissue from animals infected with EHEC strains containing or lacking Shiga toxins (Stx) revealed that EHEC infection elicits a robust response that is dramatically shaped by Stx, particularly in epithelial cells. Many of the differences in the transcriptional responses elicited by these strains were in genes involved in immune signaling pathways, such as IL23A, and coagulation, including F3, the gene encoding Tissue Factor. RNA FISH confirmed that these elevated transcripts were found almost exclusively in epithelial cells. Collectively, these findings suggest that Stx potently remodels the host innate immune response to EHEC. Enterohemorrhagic Escherichia coli (EHEC) is a potentially lethal foodborne pathogen. During infection, EHEC releases a potent toxin, Shiga toxin (Stx), into the intestine, but there is limited knowledge of how this toxin shapes the host response to infection. We used an infant rabbit model of infection that closely mimics human disease to profile intestinal transcriptomic responses to EHEC infection. Comparisons of the transcriptional responses to infection by strains containing or lacking Stx revealed that this toxin markedly remodels how the epithelial cell compartment responds to infection. Our findings suggest that Stx shapes the intestinal innate immune response to EHEC and provide insight into the complex host-pathogen dialogue that underlies disease.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carole J. Kuehl
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
Detzner J, Gloerfeld C, Pohlentz G, Legros N, Humpf HU, Mellmann A, Karch H, Müthing J. Structural Insights into Escherichia coli Shiga Toxin (Stx) Glycosphingolipid Receptors of Porcine Renal Epithelial Cells and Inhibition of Stx-Mediated Cellular Injury Using Neoglycolipid-Spiked Glycovesicles. Microorganisms 2019; 7:microorganisms7110582. [PMID: 31752441 PMCID: PMC6920957 DOI: 10.3390/microorganisms7110582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin (Stx) producing Escherichia coli (STEC) cause the edema disease in pigs by releasing the swine-pathogenic Stx2e subtype as the key virulence factor. Stx2e targets endothelial cells of animal organs including the kidney harboring the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer). Since the involvement of renal epithelial cells in the edema disease is unknown, in this study, we analyzed the porcine kidney epithelial cell lines, LLC-PK1 and PK-15, regarding the presence of Stx-binding GSLs, their sensitivity towards Stx2e, and the inhibitory potential of Gb3- and Gb4-neoglycolipids, carrying phosphatidylethanolamine (PE) as the lipid anchor, towards Stx2e. Immunochemical and mass spectrometric analysis revealed various Gb3Cer and Gb4Cer lipoforms as the dominant Stx-binding GSLs in both LLC-PK1 and PK-15 cells. A dihexosylceramide with proposed Galα1-4Gal-sequence (Gal2Cer) was detected in PK-15 cells, whereas LLC-PK1 cells lacked this compound. Both cell lines were susceptible towards Stx2e with LLC-PK1 representing an extremely Stx2e-sensitive cell line. Gb3-PE and Gb4-PE applied as glycovesicles significantly reduced the cytotoxic activity of Stx2e towards LLC-PK1 cells, whereas only Gb4-PE exhibited some protection against Stx2e for PK-15 cells. This is the first report identifying Stx2e receptors of porcine kidney epithelial cells and providing first data on their Stx2e-mediated damage suggesting possible involvement in the edema disease.
Collapse
Affiliation(s)
- Johanna Detzner
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Caroline Gloerfeld
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Nadine Legros
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, University of Münster, 48149 Münster, Germany;
| | - Alexander Mellmann
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Helge Karch
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
- Correspondence: ; Tel.: +49-(0)251-8355192
| |
Collapse
|
5
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
6
|
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a highly pathogenic bacterial strain capable of causing watery or bloody diarrhea, the latter termed hemorrhagic colitis, and hemolytic-uremic syndrome (HUS). HUS is defined as the simultaneous development of non-immune hemolytic anemia, thrombocytopenia, and acute renal failure. The mechanism by which EHEC bacteria colonize and cause severe colitis, followed by renal failure with activated blood cells, as well as neurological symptoms, involves the interaction of bacterial virulence factors and specific pathogen-associated molecular patterns with host cells as well as the host response. The innate immune host response comprises the release of antimicrobial peptides as well as cytokines and chemokines in addition to activation and/or injury to leukocytes, platelets, and erythrocytes and activation of the complement system. Some of the bacterial interactions with the host may be protective in nature, but, when excessive, contribute to extensive tissue injury, inflammation, and thrombosis, effects that may worsen the clinical outcome of EHEC infection. This article describes aspects of the host response occurring during EHEC infection and their effects on specific organs.
Collapse
|
7
|
Meiring M, Allers W, Le Roux E. Tissue factor: A potent stimulator of Von Willebrand factor synthesis by human umbilical vein endothelial cells. Int J Med Sci 2016; 13:759-764. [PMID: 27766025 PMCID: PMC5069411 DOI: 10.7150/ijms.15688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/15/2016] [Indexed: 11/05/2022] Open
Abstract
Inflammation and dysfunction of endothelial cells are thought to be triggers for the secretion of Von Willebrand factor. The aim of this study was to examine the effects of the inflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-α) and the coagulation factors, tissue factor and thrombin on the release and cleavage potential of ultra-large von Willebrand factor (ULVWF) and its cleavage protease by cultured human umbilical vein endothelial cells (HUVEC). HUVEC were treated with IL-6, IL-8, and TNF-α, tissue factor (TF) and thrombin, and combinations thereof for 24 hours under static conditions. The cells were then exposed to shear stress after which the VWF-propeptide levels and the VWF cleavage protease, ADAMTS13 content were measured. All treatments and their combinations, excluding IL-6, significantly stimulated the secretion of VWF from HUVEC. The VWF secretion from the HUVEC was stimulated most by the combination of TF with TNF-α. Slightly lower levels of ADAMTS13 secretion were found with all treatments. This may explain the thrombogenicity of patients with inflammation where extremely high VWF levels and slightly lower ADAMTS13 levels are present.
Collapse
Affiliation(s)
- Muriel Meiring
- Department of Haematology and Cell Biology, University of the Free State Bloemfontein, South Africa
| | - W Allers
- Department of Haematology and Cell Biology, University of the Free State Bloemfontein, South Africa
| | - E Le Roux
- Department of Haematology and Cell Biology, University of the Free State Bloemfontein, South Africa
| |
Collapse
|
8
|
Effects of Shiga toxin type 2 on a bioengineered three-dimensional model of human renal tissue. Infect Immun 2014; 83:28-38. [PMID: 25312954 DOI: 10.1128/iai.02143-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxins (Stx) are a family of cytotoxic proteins that can cause hemolytic-uremic syndrome (HUS), a thrombotic microangiopathy, following infections by Shiga toxin-producing Escherichia coli (STEC). Renal failure is a key feature of HUS and a major cause of childhood renal failure worldwide. There are currently no specific therapies for STEC-associated HUS, and the mechanism of Stx-induced renal injury is not well understood primarily due to a lack of fully representative animal models and an inability to monitor disease progression on a molecular or cellular level in humans at early stages. Three-dimensional (3D) tissue models have been shown to be more in vivo-like in their phenotype and physiology than 2D cultures for numerous disease models, including cancer and polycystic kidney disease. It is unknown whether exposure of a 3D renal tissue model to Stx will yield a more in vivo-like response than 2D cell culture. In this study, we characterized Stx2-mediated cytotoxicity in a bioengineered 3D human renal tissue model previously shown to be a predictor of drug-induced nephrotoxicity and compared its response to Stx2 exposure in 2D cell culture. Our results demonstrate that although many mechanistic aspects of cytotoxicity were similar between 3D and 2D, treatment of the 3D tissues with Stx resulted in an elevated secretion of the kidney injury marker 1 (Kim-1) and the cytokine interleukin-8 compared to the 2D cell cultures. This study represents the first application of 3D tissues for the study of Stx-mediated kidney injury.
Collapse
|
9
|
Shiga Toxin/Verocytotoxin-Producing
Escherichia coli
Infections: Practical Clinical Perspectives. Microbiol Spectr 2014; 2:EHEC-0025-2014. [DOI: 10.1128/microbiolspec.ehec-0025-2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
ABSTRACT
Escherichia coli
strains that produce Shiga toxins/verotoxins are rare, but important, causes of human disease. They are responsible for a spectrum of illnesses that range from the asymptomatic to the life-threatening hemolytic-uremic syndrome; diseases caused by
E. coli
belonging to serotype O157:H7 are exceptionally severe. Each illness has a fairly predictable trajectory, and good clinical practice at one phase can be inappropriate at other phases. Early recognition, rapid and definitive microbiology, and strategic selection of tests increase the likelihood of good outcomes. The best management of these infections consists of avoiding antibiotics, antimotility agents, and narcotics and implementing aggressive intravenous volume expansion, especially in the early phases of illness.
Collapse
|
10
|
He P, Zhang D, Li H, Yang X, Li D, Zhai Y, Ma L, Feng G. Hepatitis B virus X protein modulates apoptosis in human renal proximal tubular epithelial cells by activating the JAK2/STAT3 signaling pathway. Int J Mol Med 2013; 31:1017-29. [PMID: 23483208 PMCID: PMC3658604 DOI: 10.3892/ijmm.2013.1295] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/15/2013] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus X protein (HBx) is a multifunctional protein, and it activates multiple signal transduction pathways in multiple types of cells and regulates the process of cell apoptosis. In the present study, we mainly investigated the correlation between HBx and renal tubular epithelial cell apoptosis in hepatitis B virus-associated glomerulonephritis (HBVGN) and the possible signaling mechanism. Cell apoptosis in nephridial tissues of patients with HBVGN were determined by the TUNEL method. HBx, p-STAT3 and STAT3 levels in nephridial tissues were determined by immunohistochemical assay, and a correlation analysis between HBx expression levels and apoptosis index in nephridial tissues was conducted. The activation of the JAK2/STAT3 signaling pathway in HK-2 cells and the expression of the apoptosis-related proteins Bax and Bcl-2 were determined by western blot analysis following transfection with the HBx eukaryotic expression vector. Cellular proliferation activity was determined by the CCK-8 method, and cell apoptosis was determined with HO33342 staining using transmission electron microscopy and Annexin V/PI double staining flow cytometry. The results revealed that the apoptosis index in nephridial tissues of patients with HBVGN was significantly higher when compared to that of the control group, and p-STAT3 expression levels in HBVGN nephridial tissues were significantly increased. In the control group, no HBx expression was observed in the nephridial tissues, whereas HBx expression was found in the nephridial tissues of 86% of the patients with HBVGN. The HBx expression levels had a linear correlation with the apoptosis index in the nephridial tissues. After target gene HBx infection, expression levels of both p-JAK2 and p-STAT3 in human proximal HK-2 cells were significantly increased, and the Bax/Bcl-2 ratio was also significantly increased. At the same time, cellular proliferation of HK-2 cells was significantly inhibited, and the rate of apoptosis was increased. After incubation with AG490, the JAK2/STAT3 signaling pathway was partially blocked, which caused a decrease in the Bax/Bcl-2 ratio and reduced cell apoptosis caused by HBx. In conclusion, HBx upregulates the Bax/Bcl-2 ratio by activating the JAK2/STAT3 signaling pathway to cause renal tubular epithelial cell apoptosis, and it is possibly involved in the pathogenic mechanism of nephridial tissue damage caused by HBV.
Collapse
Affiliation(s)
- Ping He
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The kidneys are the major organs affected in diarrhea-associated hemolytic uremic syndrome (D(+)HUS). The pathophysiology of renal disease in D(+)HUS is largely the result of the interaction between bacterial virulence factors such as Shiga toxin and lipopolysaccharide and host cells in the kidney and in the blood circulation. This chapter describes in detail the current knowledge of how these bacterial toxins may lead to kidney disease and renal failure. The toxin receptors expressed by specific blood and resident renal cell types are also discussed as are the actions of the toxins on these cells.
Collapse
|
12
|
Lentz EK, Leyva-Illades D, Lee MS, Cherla RP, Tesh VL. Differential response of the human renal proximal tubular epithelial cell line HK-2 to Shiga toxin types 1 and 2. Infect Immun 2011; 79:3527-40. [PMID: 21708996 PMCID: PMC3165488 DOI: 10.1128/iai.05139-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/04/2011] [Indexed: 11/20/2022] Open
Abstract
Shiga toxins (Stxs) are expressed by the enteric pathogens Shigella dysenteriae serotype 1 and certain serotypes of Escherichia coli. Stx-producing bacteria cause bloody diarrhea with the potential to progress to acute renal failure. Stxs are potent protein synthesis inhibitors and are the primary virulence factors responsible for renal damage that may follow diarrheal disease. We explored the use of the immortalized human proximal tubule epithelial cell line HK-2 as an in vitro model of Stx-induced renal damage. We showed that these cells express abundant membrane Gb(3) and are differentially susceptible to the cytotoxic action of Stxs, being more sensitive to Shiga toxin type 1 (Stx1) than to Stx2. At early time points (24 h), HK-2 cells were significantly more sensitive to Stxs than Vero cells; however, by 72 h, Vero cell monolayers were completely destroyed while some HK-2 cells survived toxin challenge, suggesting that a subpopulation of HK-2 cells are relatively toxin resistant. Fluorescently labeled Stx1 B subunits localized to both lysosomal and endoplasmic reticulum (ER) compartments in HK-2 cells, suggesting that differences in intracellular trafficking may play a role in susceptibility to Stx-mediated cytotoxicity. Although proinflammatory cytokines were not upregulated by toxin challenge, Stx2 selectively induced the expression of two chemokines, macrophage inflammatory protein-1α (MIP-1α) and MIP-1β. Stx1 and Stx2 differentially activated components of the ER stress response in HK-2 cells. Finally, we demonstrated significant poly(ADP-ribose) polymerase (PARP) cleavage after exposure to Stx1 or Stx2. However, procaspase 3 cleavage was undetectable, suggesting that HK-2 cells may undergo apoptosis in response to Stxs in a caspase 3-independent manner.
Collapse
Affiliation(s)
- Erin K. Lentz
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| | - Dinorah Leyva-Illades
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| | - Moo-Seung Lee
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| | - Rama P. Cherla
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| | - Vernon L. Tesh
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| |
Collapse
|
13
|
Lee MS, Cherla RP, Jenson MH, Leyva-Illades D, Martinez-Moczygemba M, Tesh VL. Shiga toxins induce autophagy leading to differential signalling pathways in toxin-sensitive and toxin-resistant human cells. Cell Microbiol 2011; 13:1479-96. [PMID: 21722286 DOI: 10.1111/j.1462-5822.2011.01634.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterial virulence factors Shiga toxins (Stxs) are expressed by Shigella dysenteriae serotype 1 and certain Escherichia coli strains. Stxs are protein synthesis inhibitors and induce apoptosis in many cell types. Stxs induce apoptosis via prolonged endoplasmic reticulum stress signalling to activate both extrinsic and intrinsic pathways in human myeloid cells. Studies have shown that autophagy, a lysosome-dependent catabolic process, may be associated with activation of pro-survival or death processes. It is currently unknown if autophagy contributes to apoptosis or protects cells from Stxs. To study cellular responses to Stxs, we intoxicated toxin-sensitive cells (THP-1 and HK-2 cells), and toxin-resistant cells (primary human monocyte-derived macrophages) and examined toxin intracellular trafficking and autophagosome formation. Stxs translocated to different cell compartments in toxin-resistant versus toxin-sensitive cells. Confocal microscopy revealed autophagosome formation in both toxin-resistant and toxin-sensitive cells. Proteolytic cleavage of Atg5 and Beclin-1 plays pivotal roles in switching non-cytotoxic autophagy to cell death signalling. We detected cleaved forms of Atg5 and Beclin-1 in Stx-treated toxin-sensitive cells, while cleaved caspases, calpains, Atg5 and Beclin-1 were not detected in toxin-resistant primary human monocytes and macrophages. These findings suggest that toxin sensitivity correlates with caspase and calpain activation, leading to Atg5 and Beclin-1 cleavage.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Shiga toxin-producing Escherichia coli is a contaminant of food and water that in humans causes a diarrheal prodrome followed by more severe disease of the kidneys and an array of symptoms of the central nervous system. The systemic disease is a complex referred to as diarrhea-associated hemolytic uremic syndrome (D+HUS). D+HUS is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. This review focuses on the renal aspects of D+HUS. Current knowledge of this renal disease is derived from a combination of human samples, animal models of D+HUS, and interaction of Shiga toxin with isolated renal cell types. Shiga toxin is a multi-subunit protein complex that binds to a glycosphingolipid receptor, Gb3, on select eukaryotic cell types. Location of Gb3 in the kidney is predictive of the sites of action of Shiga toxin. However, the toxin is cytotoxic to some, but not all cell types that express Gb3. It also can cause apoptosis or generate an inflammatory response in some cells. Together, this myriad of results is responsible for D+HUS disease.
Collapse
Affiliation(s)
- Tom G Obrig
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, 685 W. Baltimore St., HSF I Suite 380, Baltimore, MD 21201, USA; ; Tel.: +1-410-706-6917
| |
Collapse
|
15
|
Bae JS, Kim IS, Rezaie AR. Thrombin down-regulates the TGF-beta-mediated synthesis of collagen and fibronectin by human proximal tubule epithelial cells through the EPCR-dependent activation of PAR-1. J Cell Physiol 2010; 225:233-9. [PMID: 20506163 DOI: 10.1002/jcp.22249] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human proximal tubule (HK-2) cells are commonly used as cellular models to understand the mechanism by which inflammatory mediators cause renal injury. It has been observed that thrombin stimulates the expression of TGF-beta, extracellular matrix (ECM) proteins and proinflammatory cytokines by HK-2 cells. These in vitro responses correlate well with the pathology of glomerular and tubular diseases observed in acute renal injury. HK-2 cells express PAR-1 and the thrombin activation of this receptor has been reported to up-regulate the TGF-beta-mediated expression of ECM proteins, suggesting a possible pathogenic role for PAR-1 signaling by thrombin in acute renal injury. On the other hand, several recent studies have indicated that activated protein C plays a renoprotective role, thus inhibiting the inflammatory responses and attenuating renal injury, presumably by activating the same cell surface receptor. In this study, we show that HK-2 cells express endothelial protein C receptor (EPCR) and that the occupancy of this receptor by protein C switches the signaling specificity of thrombin so that the activation of PAR-1 by thrombin inhibits the TNF-alpha-mediated synthesis of IL-6 and IL-8 and down-regulates the TGF-beta-mediated expression of ECM proteins. These results suggest a possible protective role for EPCR in acute kidney injury.
Collapse
Affiliation(s)
- Jong-Sup Bae
- Department of Herbal Pharmaceutical Engineering, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsangbuk-do, Republic of Korea.
| | | | | |
Collapse
|
16
|
Hong L, Zhang J, Min J, Lu J, Li F, Li H, Guo S, Li Q. A role for MHBst167/HBx in hepatitis B virus-induced renal tubular cell apoptosis. Nephrol Dial Transplant 2010; 25:2125-33. [DOI: 10.1093/ndt/gfp737] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
17
|
Manea M, Tati R, Karlsson J, Békássy ZD, Karpman D. Biologically active ADAMTS13 is expressed in renal tubular epithelial cells. Pediatr Nephrol 2010; 25:87-96. [PMID: 19644711 DOI: 10.1007/s00467-009-1262-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/24/2022]
Abstract
ADAMTS13 mRNA, which encodes the von Willebrand factor-cleaving protease, has been detected in a variety of tissues, including the kidney. The aim of our study was to characterize tubular expression and bioactivity of ADAMTS13. ADAMTS13 mRNA was detected in cultured primary human renal tubular epithelial cells (HRTEC) and in A498 cells, a human renal carcinoma cell line, by real-time PCR. Protein was detected using immunofluorescence and immunoblotting. Immunoblots demonstrated that the protein was secreted. The protease was proteolytically active in both cell lysates and cleaved the FRETS–VWF73 substrate. ADAMTS13 was demonstrated in situ in the renal cortex by immunohistochemistry. Protease was detected in both the proximal and distal renal tubules in normal renal tissue (n=3) as well as in patients with tubular disorders (n=3). Immunoblotting revealed that ADAMTS13 was present in the urine of patients with tubulopathy (n=5) but not in normal urine. ADAMTS13 in urine had a molecular size similar to that in plasma, which indicates that the protease originates in the tubuli because such large proteins do not normally pass the glomerular filter. In conclusion, human renal tubular epithelial cells synthesize biologically active ADAMTS13 which may, after release from tubuli, regulate hemostasis in the local microenvironment.
Collapse
Affiliation(s)
- Minola Manea
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | | | | | | | | |
Collapse
|
18
|
Palermo MS, Exeni RA, Fernández GC. Hemolytic uremic syndrome: pathogenesis and update of interventions. Expert Rev Anti Infect Ther 2009; 7:697-707. [PMID: 19681698 DOI: 10.1586/eri.09.49] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The typical form of hemolytic uremic syndrome (HUS) is the major complication of Shiga toxin-producing Escherichia coli infections. HUS is a critical health problem in Argentina since it is the main cause of acute renal failure in children and the second cause of chronic renal failure, accounting for 20% of renal transplants in children and adolescents in Argentina. Despite extensive research in the field, the mainstay of treatment for patients with HUS is supportive therapy, and there are no specific therapies preventing or ameliorating the disease course. In this review, we present the current knowledge about pathogenic mechanisms and discuss traditional and innovative therapeutic approaches, with special focus in Argentinean contribution. The hope that a better understanding of transmission dynamics and pathogenesis of this disease will produce better therapies to prevent the acute mortality and the long-term morbidity of HUS is the driving force for intensified research.
Collapse
Affiliation(s)
- Marina S Palermo
- Lab Inmunologia, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina P. de Melo 3081 (C1425AUM), Ciudad de Buenos Aires, Argentina.
| | | | | |
Collapse
|
19
|
Zhang SL, Chen YW, Tran S, Liu F, Nestoridi E, Hébert MJ, Ingelfinger JR. Pax-2 and N-myc regulate epithelial cell proliferation and apoptosis in a positive autocrine feedback loop. Pediatr Nephrol 2007; 22:813-24. [PMID: 17357786 DOI: 10.1007/s00467-007-0444-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 01/22/2023]
Abstract
Both paired homeo box-2 (Pax-2) and N-myc genes play pivotal roles in renal morphogenesis via their effects on cell proliferation and differentiation, but whether and how they interact have not been addressed. In the present study, we investigated such a potential interaction using embryonic renal cells in vitro. Mouse embryonic mesenchymal (MK4) cells stably transfected with Pax-2 cDNA in sense (+) or antisense (-) orientation were used for experiments. Pax-2 promoter activity was monitored by luciferase assay. Reactive oxygen species (ROS) generation, cell proliferation, and cell apoptosis were evaluated. We found that Pax-2 and N-myc gene expression were upregulated and downregulated in Pax-2 (+) and Pax-2 (-) stable transformants, respectively. ROS generation and apoptosis were significantly reduced both in Pax-2 (+) transformants compared with Pax-2 (-) transformants and in naïve MK4 cells cultured in either normal- (5 mM) or high-glucose (25 mM) medium. Transient transfection of N-myc cDNA into Pax-2 (-) stable transformants restored Pax-2 gene expression and prevented ROS generation induced by high glucose. Our data demonstrate that Pax-2 gene overexpression prevents hyperglycemia-induced apoptosis, and N-myc appears to provide a positive autocrine feedback on Pax-2 gene expression in embryonic mesenchymal cells.
Collapse
Affiliation(s)
- Shao-Ling Zhang
- University of Montréal, Centre hospitalier de l'Université de Montréal (CHUM)- Hôtel-Dieu, 3850 Saint Urbain Street, Montréal, Québec, H2W 1T7, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Nangaku M, Nishi H, Fujita T. Pathogenesis and prognosis of thrombotic microangiopathy. Clin Exp Nephrol 2007; 11:107-114. [PMID: 17593509 DOI: 10.1007/s10157-007-0466-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 02/01/2007] [Indexed: 12/25/2022]
Abstract
Thrombotic microangiopathy (TMA) is a clinicopathological syndrome characterized by thrombosis formation in the microvasculature of various organs. Included in the broad category of TMA are the hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). Typical HUS is caused by Escherichia coli O157:H7, which produces the Shiga-like toxins; Stx-1 and Stx-2. In addition to damaging endothelial cells via the inhibition of protein synthesis, Shiga-like toxins also activate endothelial cells to produce inflammatory mediators, amplifying the prothrombogenic state. Although most patients with typical HUS recover renal functions, recent analysis has shown that typical HUS is not a benign disease in the long term. Genetic abnormalities of complement regulatory proteins predispose patients to atypical HUS. Mutations in factor H, membrane cofactor protein, and factor I are known to be associated with atypical HUS. Atypical HUS forms have a poor outcome and show recurrent and progressive courses. Autoimmune IgG inhibitors of a disintegrin and metalloprotease, with thrombospodin-1-like domains (ADAMTS) 13 and mutations of the ADAMTS13 gene lead to the development of TTP. Without treatment, TTP is associated with a very high mortality rate. As it is for atypical HUS, plasma exchange is currently the most feasible treatment for TTP. Etiological diagnosis at the bedside and the development of disease-specific therapeutic modalities will enable us to optimize the management of patients with TMA and improve their prognosis in the future.
Collapse
Affiliation(s)
- Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiro Fujita
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
21
|
Keepers TR, Gross LK, Obrig TG. Monocyte chemoattractant protein 1, macrophage inflammatory protein 1 alpha, and RANTES recruit macrophages to the kidney in a mouse model of hemolytic-uremic syndrome. Infect Immun 2007; 75:1229-36. [PMID: 17220320 PMCID: PMC1828550 DOI: 10.1128/iai.01663-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The macrophage has previously been implicated in contributing to the renal inflammation associated with hemolytic-uremic syndrome (HUS). However, there is currently no in vivo model detailing the contribution of the renal macrophage to the kidney disease associated with HUS. Therefore, renal macrophage recruitment and inhibition of infiltrating renal macrophages were evaluated in an established HUS mouse model. Macrophage recruitment to the kidney was evident by immunohistochemistry 2 h after administration of purified Stx2 and peaked at 48 h postinjection. Mice administered a combination of Stx2 and lipopolysaccharide (LPS) showed increased macrophage recruitment to the kidney compared to mice treated with Stx2 or LPS alone. Monocyte chemoattractants were induced in the kidney, including monocyte chemoattractant protein 1 (MCP-1/CCL2), macrophage inflammatory protein 1alpha (MIP-1alpha/CCL3), and RANTES (CCL5), in a pattern that was coincident with macrophage infiltration as indicated by immunohistochemistry, protein, and RNA analyses. MCP-1 was the most abundant chemokine, MIP-1alpha was the least abundant, and RANTES levels were intermediate. Mice treated with MCP-1, MIP-1alpha, and RANTES neutralizing antibodies had a significant decrease in Stx2 plus LPS-induced macrophage accumulation in the kidney, indicating that these chemokines are required for macrophage recruitment. Furthermore, mice exposed to these three neutralizing antibodies had decreased fibrin deposition in their kidneys, implying that macrophages contribute to the renal damage associated with HUS.
Collapse
Affiliation(s)
- Tiffany R Keepers
- Division of Nephrology, University of Virginia, Box 800133, 1 Lane Road OMS 5815, Charlottesville, VA 22903, USA
| | | | | |
Collapse
|
22
|
Lwaleed BA, Vayro S, Racusen LC, Cooper AJ. Tissue factor expression by a human kidney proximal tubular cell line in vitro: a model relevant to urinary tissue factor secretion in disease? J Clin Pathol 2006; 60:762-7. [PMID: 17158639 PMCID: PMC1995797 DOI: 10.1136/jcp.2006.039636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIM To study baseline and stimulated tissue factor (TF) production from a normal, albeit immortalised, human kidney proximal tubular cell line (HKC-5), in order to establish a model for investigating the role of inflammatory mediators in the increased urinary TF (uTF) seen in inflammatory and neoplastic disease. METHODS TF procoagulant activity, expression and secretion in HKC-5 cells were investigated using TF activity and antigen assays, fluorescence confocal microscopy and immunocytochemistry. TF expression in the HKC-5 cells was also studied using reverse transcription (RT)-PCR and its synthesis was suppressed using antisense oligodeoxynucleotide (ODN), directed against human TF mRNA. Cells were stimulated, after serum deprivation, with bacterial lipopolysaccharide (LPS), an agonist known to enhance TF expression in monocytes. They were also subject to serum starvation. RESULTS Analysis by RT-PCR showed TF production by stimulated and actively metabolising HKC-5 cells. Antisense ODN treatment resulted in approximately 50% suppression of TF synthesis compared to a mismatch ODN. The amount of TF produced by the HKC-5 cells was time dependent and coincides with a decrease in the intracellular TF levels. LPS up-regulated TF production in HKC-5 cells. Reducing fetal calf serum concentrations in the culture medium decreased TF production and secretion. CONCLUSION Stimulated TF synthesis and secretion in vitro by HKC-5 cells is consistent with the hypothesis that uTF is produced by tubular cells influenced by mediators of disease states and provides a model for further mechanistic investigations.
Collapse
Affiliation(s)
- Bashir A Lwaleed
- Department of Urology, Southampton University Hospitals, Southampton, UK.
| | | | | | | |
Collapse
|
23
|
Trachtman H, Christen E, Cnaan A, Patrick J, Mai V, Mishra J, Jain A, Bullington N, Devarajan P. Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr Nephrol 2006; 21:989-94. [PMID: 16773412 DOI: 10.1007/s00467-006-0146-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/01/2006] [Accepted: 03/01/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Diarrhea-associated hemolytic uremic syndrome (D+HUS) causes acute renal failure. Neutrophil gelatinase-associated lipocalcin (NGAL) is an early indicator of kidney injury. OBJECTIVE To determine if urinary NGAL excretion is a biomarker of severe renal injury and predicts the need for dialysis in D+HUS. METHODS Patients were randomly selected from among participants in the SYNSORB Pk trial. Urine samples were collected daily if available during the first week of hospitalization. NGAL levels were determined by ELISA. RESULTS 34 children, age 5.9+/-3.9 yr, were studied; ten (29%) required dialysis. Patients were categorized based on urinary NGAL concentration within five days of hospitalization - <200 ng/ml and >or=200 ng/ml. Twenty patients (58%) had increased urinary NGAL excretion. The severity of D+HUS at enrollment was similar in the two groups. However, children with increased urinary NGAL levels had higher peak BUN and creatinine concentrations (P<0.01) and required dialysis more often, 9/20 versus 1/14 (P=0.024) compared to children with normal excretion. CONCLUSION The majority of patients with D+HUS have renal tubular epithelial injury, as evidenced by elevated urinary NGAL excretion. Urinary NGAL levels below 200 ng/ml within five days of hospitalization may be an adjunctive marker that defines less severe renal involvement.
Collapse
Affiliation(s)
- Howard Trachtman
- Department of Pediatrics (Division of Nephrology), Schneider Children's Hospital of the North Shore-Long Island Jewish Medical Center, New Hyde Park, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Deng CL, Song XW, Liang HJ, Feng C, Sheng YJ, Wang MY. Chronic hepatitis B serum promotes apoptotic damage in human renal tubular cells. World J Gastroenterol 2006; 12:1752-6. [PMID: 16586546 PMCID: PMC4124352 DOI: 10.3748/wjg.v12.i11.1752] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of the serum of patients with chronic hepatitis B (CHB) on apoptosis of renal tubular epithelial cells in vitro and to study the role of hepatitis B virus (HBV) and transforming growth factor-β1 (TGF-β1) in the pathogenesis of hepatitis B virus associated glomerulonephritis (HBV-GN).
METHODS: The levels of serum TGF-β1 were measured by specific enzyme linked immunosorbent assay (ELISA) and HBV DNA was tested by polymerase chain reaction (PCR) in 44 patients with CHB ,and 20 healthy persons as the control. The normal human kidney proximal tubular cell (HK-2) was cultured together with the sera of healthy persons, CHB patients with HBV-DNA negative(20 cases) and HBV-DNA positive (24 cases) for up to 72 h. Apoptosis and Fas expression of the HK-2 were detected by flow cytometer.
RESULTS: The apoptosis rate and Fas expression of HK-2 cells were significantly higher in HBV DNA positive serum group 19.01±5.85% and 17.58±8.35%, HBV DNA negative serum group 8.12±2.80% and 6.96 ± 2.76% than those in control group 4.25±0.65% and 2.33 ±1.09%, respectively (P < 0.01). The apoptosis rate and Fas expression of HK-2 in HBV DNA positive serum group was significantly higher than those in HBV DNA negative serum (P < 0.01). Apoptosis rate of HK-2 cells in HBV DNA positive serum group was positively correlated with the level of HBV-DNA (r = 0.657). The level of serum TGF-β1 in CHB group was 163.05 ± 91.35 µg/L, significantly higher as compared with 81.40 ± 40.75 µg/L in the control group (P < 0.01).
CONCLUSION: The serum of patients with chronic hepatitis B promotes apoptotic damage in human renal tubular cells by triggering a pathway of Fas up-regulation. HBV and TGF-β1 may play important roles in the mechanism of hepatitis B virus associated glomerulonephritis.
Collapse
Affiliation(s)
- Cun-Liang Deng
- Department of Infectious Diseases, Affiliated Hospital of Luzhou Medical College, Luzhou 646000, Sichuan Province, China.
| | | | | | | | | | | |
Collapse
|
25
|
Nolasco LH, Turner NA, Bernardo A, Tao Z, Cleary TG, Dong JF, Moake JL. Hemolytic uremic syndrome-associated Shiga toxins promote endothelial-cell secretion and impair ADAMTS13 cleavage of unusually large von Willebrand factor multimers. Blood 2005; 106:4199-209. [PMID: 16131569 PMCID: PMC1895236 DOI: 10.1182/blood-2005-05-2111] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin 1 (Stx-1) and Stx-2 produced by enterohemorrhagic Escherichia coli cause the diarrhea-associated hemolytic uremic syndrome (HUS). This type of HUS is characterized by obstruction of the glomeruli and renal microvasculature by platelet-fibrin thrombi, acute renal failure, thrombocytopenia, microvascular hemolytic anemia, and plasma levels of von Willebrand factor (VWF)-cleaving protease (ADAMTS13) activity that are within a broad normal range. We investigated the mechanism of initial platelet accumulation on Stx-stimulated endothelial cells. Stx-1 or Stx-2 (1-10 nM) stimulated the rapid secretion of unusually large (UL) VWF multimeric strings from human umbilical vein endothelial cells (HUVECs) or human glomerular microvascular endothelial cells (GMVECs). Perfused normal human platelets immediately adhered to the secreted ULVWF multimeric strings. Nanomolar concentrations (1-10 nM) of the Shiga toxins were as effective in inducing the formation of ULVWF-platelet strings as millimolar concentrations (0.1-20 mM) of histamine. The rate of ULVWF-platelet string cleavage by plasma or recombinant ADAMTS13 was delayed by 3 to 10 minutes (or longer) in the presence of 10 nM Stx-1 or Stx-2 compared with 20 mM histamine. Stx-induced formation of ULVWF strings, and impairment of ULVWF-platelet string cleavage by ADAMTS13, may promote initial platelet adhesion above glomerular endothelial cells. These processes may contribute to the evolution of glomerular occlusion by platelet and fibrin thrombi in diarrhea-associated HUS.
Collapse
Affiliation(s)
- Leticia H Nolasco
- Hematology Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|