1
|
Li XC, Wang CH, Leite APO, Zhuo JL. Intratubular, Intracellular, and Mitochondrial Angiotensin II/AT 1 (AT1a) Receptor/NHE3 Signaling Plays a Critical Role in Angiotensin II-Induced Hypertension and Kidney Injury. Front Physiol 2021; 12:702797. [PMID: 34408663 PMCID: PMC8364949 DOI: 10.3389/fphys.2021.702797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is well recognized to be the most important risk factor for cardiovascular diseases, stroke, and end-stage kidney failure. A quarter of the world’s adult populations and 46% of the US adults develop hypertension and currently require antihypertensive treatments. Only 50% of hypertensive patients are responsive to current antihypertensive drugs, whereas remaining patients may continue to develop cardiovascular, stroke, and kidney diseases. The mechanisms underlying the poorly controlled hypertension remain incompletely understood. Recently, we have focused our efforts to uncover additional renal mechanisms, pathways, and therapeutic targets of poorly controlled hypertension and target organ injury using novel animal models or innovative experimental approaches. Specifically, we studied and elucidated the important roles of intratubular, intracellular, and mitochondrial angiotensin II (Ang II) system in the development of Ang II-dependent hypertension. The objectives of this invited article are to review and discuss our recent findings that (a) circulating and intratubular Ang II is taken up by the proximal tubules via the (AT1) AT1a receptor-dependent mechanism, (b) intracellular administration of Ang II in proximal tubule cells or adenovirus-mediated overexpression of an intracellular Ang II fusion protein selectively in the mitochonria of the proximal tubules induces blood pressure responses, and (c) genetic deletion of AT1 (AT1a) receptors or the Na+/H+ exchanger 3 selectively in the proximal tubules decreases basal blood pressure and attenuates Ang II-induced hypertension. These studies provide a new perspective into the important roles of the intratubular, intracellular, and mitochondrial angiotensin II/AT1 (AT1a) receptor signaling in Ang II-dependent hypertensive kidney diseases.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Ana Paula Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| |
Collapse
|
2
|
Luminescence- and Fluorescence-Based Complementation Assays to Screen for GPCR Oligomerization: Current State of the Art. Int J Mol Sci 2019; 20:ijms20122958. [PMID: 31213021 PMCID: PMC6627893 DOI: 10.3390/ijms20122958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 01/22/2023] Open
Abstract
G protein-coupled receptors (GPCRs) have the propensity to form homo- and heterodimers. Dysfunction of these dimers has been associated with multiple diseases, e.g., pre-eclampsia, schizophrenia, and depression, among others. Over the past two decades, considerable efforts have been made towards the development of screening assays for studying these GPCR dimer complexes in living cells. As a first step, a robust in vitro assay in an overexpression system is essential to identify and characterize specific GPCR–GPCR interactions, followed by methodologies to demonstrate association at endogenous levels and eventually in vivo. This review focuses on protein complementation assays (PCAs) which have been utilized to study GPCR oligomerization. These approaches are typically fluorescence- and luminescence-based, making identification and localization of protein–protein interactions feasible. The GPCRs of interest are fused to complementary fluorescent or luminescent fragments that, upon GPCR di- or oligomerization, may reconstitute to a functional reporter, of which the activity can be measured. Various protein complementation assays have the disadvantage that the interaction between the reconstituted split fragments is irreversible, which can lead to false positive read-outs. Reversible systems offer several advantages, as they do not only allow to follow the kinetics of GPCR–GPCR interactions, but also allow evaluation of receptor complex modulation by ligands (either agonists or antagonists). Protein complementation assays may be used for high throughput screenings as well, which is highly relevant given the growing interest and effort to identify small molecule drugs that could potentially target disease-relevant dimers. In addition to providing an overview on how PCAs have allowed to gain better insights into GPCR–GPCR interactions, this review also aims at providing practical guidance on how to perform PCA-based assays.
Collapse
|
3
|
Porzionato A, Stocco E, Guidolin D, Agnati L, Macchi V, De Caro R. Receptor-Receptor Interactions of G Protein-Coupled Receptors in the Carotid Body: A Working Hypothesis. Front Physiol 2018; 9:697. [PMID: 29930516 PMCID: PMC6000251 DOI: 10.3389/fphys.2018.00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
In the carotid body (CB), a wide series of neurotransmitters and neuromodulators have been identified. They are mainly produced and released by type I cells and act on many different ionotropic and metabotropic receptors located in afferent nerve fibers, type I and II cells. Most metabotropic receptors are G protein-coupled receptors (GPCRs). In other transfected or native cells, GPCRs have been demonstrated to establish physical receptor–receptor interactions (RRIs) with formation of homo/hetero-complexes (dimers or receptor mosaics) in a dynamic monomer/oligomer equilibrium. RRIs modulate ligand binding, signaling, and internalization of GPCR protomers and they are considered of relevance for physiology, pharmacology, and pathology of the nervous system. We hypothesize that RRI may also occur in the different structural elements of the CB (type I cells, type II cells, and afferent fibers), with potential implications in chemoreception, neuromodulation, and tissue plasticity. This ‘working hypothesis’ is supported by literature data reporting the contemporary expression, in type I cells, type II cells, or afferent terminals, of GPCRs which are able to physically interact with each other to form homo/hetero-complexes. Functional data about cross-talks in the CB between different neurotransmitters/neuromodulators also support the hypothesis. On the basis of the above findings, the most significant homo/hetero-complexes which could be postulated in the CB include receptors for dopamine, adenosine, ATP, opioids, histamine, serotonin, endothelin, galanin, GABA, cannabinoids, angiotensin, neurotensin, and melatonin. From a methodological point of view, future studies should demonstrate the colocalization in close proximity (less than 10 nm) of the above receptors, through biophysical (i.e., bioluminescence/fluorescence resonance energy transfer, protein-fragment complementation assay, total internal reflection fluorescence microscopy, fluorescence correlation spectroscopy and photoactivated localization microscopy, X-ray crystallography) or biochemical (co-immunoprecipitation, in situ proximity ligation assay) methods. Moreover, functional approaches will be able to show if ligand binding to one receptor produces changes in the biochemical characteristics (ligand recognition, decoding, and trafficking processes) of the other(s). Plasticity aspects would be also of interest, as development and environmental stimuli (chronic continuous or intermittent hypoxia) produce changes in the expression of certain receptors which could potentially invest the dynamic monomer/oligomer equilibrium of homo/hetero-complexes and the correlated functional implications.
Collapse
Affiliation(s)
| | - Elena Stocco
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Luigi Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Macchi
- Department of Neuroscience, University of Padua, Padua, Italy
| | | |
Collapse
|
4
|
Antihypertensive effect of etamicastat in dopamine D2 receptor-deficient mice. Hypertens Res 2018; 41:489-498. [PMID: 29654295 DOI: 10.1038/s41440-018-0041-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/23/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Abnormalities of the D2R gene (DRD2) play a role in the pathogenesis of human essential hypertension; variants of the DRD2 have been reported to be associated with hypertension. Disruption of Drd2 (D2-/-) in mice increases blood pressure. The hypertension of D2-/- mice has been related, in part, to increased sympathetic activity, renal oxidative stress, and renal endothelin B receptor (ETBR) expression. We tested in D2-/- mice the effect of etamicastat, a reversible peripheral inhibitor of dopamine-β-hydroxylase that reduces the biosynthesis of norepinephrine from dopamine and decreases sympathetic nerve activity. Blood pressure was measured in anesthetized D2-/- mice treated with etamicastat by gavage, (10 mg/kg), conscious D2-/- mice, and D2+/+ littermates, and mice with the D2R selectively silenced in the kidney, treated with etamicastat in the drinking water (10 mg/kg per day). Tissue and urinary catecholamines and renal expression of selected G protein-coupled receptors, enzymes related to the production of reactive oxygen species, and sodium transporters were also measured. Etamicastat decreased blood pressure both in anesthetized and conscious D2-/- mice and mice with renal-selective silencing of D2R to levels similar or close to those measured in D2+/+ littermates. Etamicastat decreased cardiac and renal norepinephrine and increased cardiac and urinary dopamine levels in D2-/- mice. It also normalized the increased renal protein expressions of ETBR, NADPH oxidase isoenzymes, and urinary 8-isoprostane, as well as renal NHE3 and NCC, and increased the renal expression of D1R but not D5R in D2-/- mice. In conclusion, etamicastat is effective in normalizing the increased blood pressure and some of the abnormal renal biochemical alterations of D2-/- mice.
Collapse
|
5
|
Abstract
The renal tubular epithelial cells produce more endothelin-1 (ET-1) than any other cell type in the body. Moving down the nephron, the amount of ET-1 produced appears fairly consistent until reaching the inner medullary collecting duct, which produces at least 10 times more ET-1 than any other segment. ET-1 inhibits Na(+) transport in all parts of the nephron through activation of the ETB receptor, and, to a minor extent, the ETA receptor. These effects are most prominent in the collecting duct where ETB-receptor activation inhibits activity of the epithelial Na(+) channel. Effects in other parts of the nephron include inhibition of Na(+)/H(+) exchange in the proximal tubule and the Na(+), K(+), 2Cl(-) co-transporter in the thick ascending limb. In general, the renal epithelial ET-1 system is an integral part of the body's response to a high salt intake to maintain homeostasis and normal blood pressure. Loss of ETB-receptor function results in salt-sensitive hypertension. The role of renal ET-1 and how it affects Na(+) and water transport throughout the nephron is reviewed.
Collapse
Affiliation(s)
- Joshua S Speed
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Brandon M Fox
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jermaine G Johnston
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
6
|
Rademacher J, Kill A, Mattat K, Dragun D, Siegert E, Günther J, Riemekasten G. Monocytic Angiotensin and Endothelin Receptor Imbalance Modulate Secretion of the Profibrotic Chemokine Ligand 18. J Rheumatol 2016; 43:587-91. [DOI: 10.3899/jrheum.150474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
Abstract
Objective.To assess monocytic expression and ratio of angiotensin and endothelin receptors in systemic sclerosis (SSc) and their functional relevance.Methods.Receptor expression was measured by flow cytometry. Chemokine ligand 18 (CCL18) concentration in supernatants of peripheral blood mononuclear cells stimulated with immunoglobulin G was measured by ELISA.Results.Monocytes of patients with SSc presented an increased angiotensin II Type 1 receptor (AT1R)/AT2R ratio compared with those of healthy donors. Patients with lung fibrosis and patients with high modified Rodnan skin score showed a reduced endothelin 1 Type A receptor (ETAR)/ETBR ratio. High AT1R/AT2R, but low ETAR/ETBR ratios corresponded to higher CCL18 secretion.Conclusion.Altered angiotensin and endothelin receptor ratios observed in SSc influence autoantibody-mediated effects such as secretion of profibrotic CCL18.
Collapse
|
7
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
8
|
Abstract
The RAS (renin–angiotensin system) plays a role not only in the cardiovascular system, including blood pressure regulation, but also in the central nervous system. AngII (angiotensin II) binds two major receptors: the AT1 receptor (AngII type 1 receptor) and AT2 receptor (AngII type 2 receptor). It has been recognized that AT2 receptor activation not only opposes AT1 receptor actions, but also has unique effects beyond inhibitory cross-talk with AT1 receptor signalling. Novel pathways beyond the classical actions of RAS, the ACE (angiotensin-converting enzyme)/AngII/AT1 receptor axis, have been highlighted: the ACE2/Ang-(1–7) [angiotensin-(1–7)]/Mas receptor axis as a new opposing axis against the ACE/AngII/AT1 receptor axis, novel AngII-receptor-interacting proteins and various AngII-receptor-activation mechanisms including dimer formation. ATRAP (AT1-receptor-associated protein) and ATIP (AT2-receptor-interacting protein) are well-characterized AngII-receptor-associated proteins. These proteins could regulate the functions of AngII receptors and thereby influence various pathophysiological states. Moreover, the possible cross-talk between PPAR (peroxisome-proliferator-activated receptor)-γ and AngII receptor subtypes is an intriguing issue to be addressed in order to understand the roles of RAS in the metabolic syndrome, and interestingly some ARBs (AT1-receptor blockers) have been reported to have an AT1-receptor-blocking action with a partial PPAR-γ agonistic effect. These emerging concepts concerning the regulation of AngII receptors are discussed in the present review.
Collapse
|
9
|
Zhang Y, Jose PA, Zeng C. Regulation of sodium transport in the proximal tubule by endothelin. CONTRIBUTIONS TO NEPHROLOGY 2011; 172:63-75. [PMID: 21893989 DOI: 10.1159/000328684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human essential hypertension and rodent genetic hypertension are associated with increased sodium transport in the renal proximal tubule and medullary thick ascending limb of Henle. The proximal tubule, which secretes endothelin (ET), expresses the ET(B) receptor. Low (nM) concentrations of ET, via the ET(B) receptor, inhibit sodium and water transport and ATP-driven drug secretion in the proximal tubule. In contrast, very low (pM) and high nM concentrations of ET increase renal proximal sodium transport, but the receptor involved remains to be determined. The natriuretic effect of ET(B) receptor stimulation is impaired in spontaneously hypertensive rats, due in part to a defective interaction with D(3) dopamine and angiotensin II type 1 receptors. Impaired ET(B) receptor function in the renal proximal tubule may be important in the pathogenesis of genetic hypertension.
Collapse
|
10
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
11
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
12
|
Zhang Y, Fu C, Ren H, He D, Wang X, Asico LD, Jose PA, Zeng C. Impaired stimulatory effect of ETB receptor on D₃ receptor in immortalized renal proximal tubule cells of spontaneously hypertensive rats. Kidney Blood Press Res 2011; 34:75-82. [PMID: 21228598 DOI: 10.1159/000323135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/23/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Activation of renal D₃ receptor induces natriuresis and diuresis in Wistar-Kyoto (WKY) rats; in the presence of ETB receptor antagonist, the natriuretic effect of D₃ receptor in WKY rats is reduced. We hypothesize that ETB receptor activation may regulate D₃ receptor expression in renal proximal tubule (RPT) cells from WKY rats, which is impaired in RPT cells from spontaneously hypertensive rats (SHRs). METHODS D₃ receptor expression was determined by immunoblotting; the D₃/ETB receptor linkage was checked by coimmunoprecipitation; Na(+)-K(+)-ATPase activity was determined as the rate of inorganic phosphate released in the presence or absence of ouabain. RESULTS In RPT cells from WKY rats, the ETB receptor agonist BQ3020 increased D₃ receptor protein. In contrast, in RPT cells from SHRs, BQ3020 did not increase D₃ receptor. There was coimmunoprecipitation between D₃ and ETB receptors in RPT cells from WKY and SHRs. Activation of ETB receptor increased D₃/ETB coimmunoprecipitation in RPT cells from WKY rats, but not from SHRs. The basal levels of D₃/ETB receptor coimmunoprecipitation were greater in RPT cells from WKY rats than in those from SHRs. Stimulation of D₃ receptor inhibited Na(+)-K(+)-ATPase activity, which was augmented by the pretreatment with the ETB receptor agonist BQ3020 in WKY RPT cells, but not in SHR RPT cells. CONCLUSION ETB receptors regulate and physically interact with D₃ receptors differently in WKY rats and SHRs. The impaired natriuretic effect in SHRs may be, in part, related to impaired ETB and D₃ receptor interactions.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Neuhofer W, Pittrow D. Endothelin receptor selectivity in chronic kidney disease: rationale and review of recent evidence. Eur J Clin Invest 2009; 39 Suppl 2:50-67. [PMID: 19335747 DOI: 10.1111/j.1365-2362.2009.02121.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelin (ET) is a potent vasoconstrictory peptide with proinflammatory and profibrotic properties that exerts its biological effects through two pharmacologically distinct receptor subtypes, namely ET(A) and ET(B). In addition to its substantial contribution to normal renal function, a large body of evidence suggests that derangement of the renal ET system is involved in the initiation and progression of chronic kidney disease (CKD) in diabetes, hypertension and glomerulonephritis. Thus, the use of ET receptor antagonists (ERAs) may offer potential novel treatment strategies in CKD. Recent literature on the role of the renal ET system in the healthy kidney was reviewed. In addition, an unbiased PubMed search was performed for studies published during the last 5 years that addressed the effects of ERAs in CKD. A particular objective was to extract information regarding whether selective or nonselective ERAs may have therapeutic potential in humans. ET-1 acts primarily as an autocrine or paracrine factor in the kidney. In normal physiology, ET-1 promotes diuresis and natriuresis by local production and action through ET(B) receptors in the renal medulla. In pathology, ET-1 mediates vasoconstriction, mesangial-cell proliferation, extracellular matrix production and inflammation, effects that are primarily conveyed by ET(A) receptors. Results obtained in animal models and in humans with the use of ERAs in CKD are encouraging; nevertheless, it is still under debate which receptor subtype should be targeted. According to most studies, selective inhibition of ET(A) receptors appears superior compared with nonselective ERAs because this approach does not interfere with the natriuretic, antihypertensive and ET clearance effects of ET(B) receptors. Although preliminary data in humans are promising, the potential role of ERAs in patients with CKD and the question of which receptor subtype should be targeted can only be clarified in randomized clinical trials.
Collapse
Affiliation(s)
- W Neuhofer
- Department of Internal Medicine, University of Munich, Munich, Germany.
| | | |
Collapse
|
14
|
Lyngsø C, Erikstrup N, Hansen JL. Functional interactions between 7TM receptors in the renin-angiotensin system--dimerization or crosstalk? Mol Cell Endocrinol 2009; 302:203-12. [PMID: 18930783 DOI: 10.1016/j.mce.2008.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 12/15/2022]
Abstract
The Renin-Angiotensin System (RAS) is important for the regulation of cardiovascular physiology, where it controls blood pressure, and salt- and water homeostasis. Dysregulation of RAS can lead to severe diseases including hypertension, diabetic nephropathy, and cardiac arrhythmia, and -failure. The importance of the RAS is clearly emphasised by the widespread use of drugs targeting this system in clinical practice. These include, renin inhibitors, angiotensin II receptor type I blockers, and inhibitors of the angiotensin converting enzyme. Some of the important effectors within the system are 7 transmembrane (7TM) receptors (or G-protein-coupled receptors) such as the angiotensin II Receptors type I and II (AT1R and AT2R) and the MAS-oncogene receptor. Several findings indicate that the 7TM receptors can form both homo- and heterodimers, or higher orders of oligomers. Furthermore, dimerization may be important for receptor function, and in the development of cardiovascular diseases. This is very significant, since "dimers" may provide pharmacologists with novel targets for improved drug therapy. However, we know that 7TM receptors can mediate signals as monomeric units, and so far it has been very difficult to establish if our observations reflect actual well-defined dimerization or merely reflect close proximity between the receptors and/or various types of functional interaction. In this review, we will present and critically discuss the current data on 7TM receptor dimerization with a clear focus on the RAS, and delineate future challenges within the field.
Collapse
Affiliation(s)
- Christina Lyngsø
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
15
|
|
16
|
Iwanami J, Mogi M, Iwai M, Horiuchi M. Inhibition of the renin-angiotensin system and target organ protection. Hypertens Res 2009; 32:229-37. [PMID: 19262496 DOI: 10.1038/hr.2009.5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The renin-angiotensin system (RAS) is involved in the pathological mechanisms of target organ damage, as well as in the induction of hypertension. RAS inhibition by angiotensin converting enzyme (ACE) inhibitors and angiotensin (Ang) II receptor blockers can prevent tissue damage by inhibition of Ang II type 1 receptor signaling. A beneficial effect of RAS inhibition on the heart, vasculature and kidney in cardiovascular disease has been reported. However, RAS inhibition can also prevent fibroproliferative diseases and damage of other tissues, such as brain, adipose tissue and muscle, because local RAS has an important role in tissue damage compared with circulating RAS. Moreover, other players, such as Ang II type 2 receptor signaling, aldosterone and ACE2 have been highlighted. Furthermore, there has also been a focus on the emerging concept of regulation of RAS, such as receptor-interacting proteins and receptor modifications, in the new discovery of therapeutic agents for tissue protection. The RAS has a pivotal role in various target organ damage, with complicated mechanisms; therefore, blockade of RAS may be therapeutically effective in preventing organ damage, as well as in having an antihypertensive effect.
Collapse
Affiliation(s)
- Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | | | | | | |
Collapse
|
17
|
Boesen EI. Endothelin ETB receptor heterodimerization: beyond the ETA receptor. Kidney Int 2008; 74:693-4. [DOI: 10.1038/ki.2008.324] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Mogi M, Iwai M, Horiuchi M. Emerging Concepts of Regulation of Angiotensin II Receptors. Arterioscler Thromb Vasc Biol 2007; 27:2532-9. [PMID: 17717300 DOI: 10.1161/atvbaha.107.144154] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin (Ang) II exerts its important physiological functions through 2 distinct receptor subtypes, type 1 (AT
1
) and type 2 (AT
2
) receptors. Recently, new evidence has accumulated showing the existence of several novel receptor interacting proteins and various angiotensin II receptor activation mechanisms beyond the classical actions of receptors for Ang II. These associated proteins could contribute not only to Ang II receptors’ functions, but also to influencing pathophysiological states. Receptor dimerization of Ang II receptors such as homodimer, heterodimer, and complex formation with other G protein-coupled receptors has also been focused on as a new mechanism of their activation or inactivation. Moreover, ligand-independent receptor activation systems such as mechanical stretch for the AT
1
receptor have also been revealed. These emerging concepts of regulation of Ang II receptors and a new insight into future drug discovery are discussed in this review.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Angiotensin II/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Animals
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Autoantibodies/metabolism
- Dimerization
- Drug Inverse Agonism
- GTP-Binding Proteins/metabolism
- Humans
- Hypertension/drug therapy
- Hypertension/metabolism
- Kruppel-Like Transcription Factors/metabolism
- Ligands
- Membrane Transport Proteins/metabolism
- Multiprotein Complexes/metabolism
- Protein Conformation
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/immunology
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/chemistry
- Receptor, Angiotensin, Type 2/metabolism
- Signal Transduction/drug effects
- Tumor Suppressor Proteins/metabolism
- Ubiquitin-Conjugating Enzymes/metabolism
Collapse
Affiliation(s)
- Masaki Mogi
- FAHA, Professor and Chairman, Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295, Japan
| | | | | |
Collapse
|
19
|
Zeng C, Hopfer U, Asico LD, Eisner GM, Felder RA, Jose PA. Altered AT
1
Receptor Regulation of ETB Receptors in Renal Proximal Tubule Cells of Spontaneously Hypertensive Rats. Hypertension 2005; 46:926-31. [PMID: 16144989 DOI: 10.1161/01.hyp.0000174595.41637.13] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The renin-angiotensin and endothelin systems regulate blood pressure, in part, by affecting renal tubular sodium transport. In rodents, ETB receptors decrease proximal tubular reabsorption, whereas AT
1
receptors produce the opposite effect. We hypothesize that ETB and AT
1
receptors interact at the receptor level, and that the interaction is altered in spontaneously hypertensive rats (SHRs). In immortalized renal proximal tubule (RPT) cells from Wistar-Kyoto (WKY) rats, angiotensin II, via AT
1
receptors, increased ETB receptor protein in a time- and concentration-dependent manner. In contrast, in SHR RPT cells, angiotensin II (10
−8
M/24 hours) had no effect on ETB receptor protein. AT
1
/ETB receptors colocalized and co-immunoprecipitated in both rat strains but long-term angiotensin II (10
−8
M/24 hours) treatment increased AT
1
/ETB co-immunoprecipitation in WKY but not in SHR cells. Short-term angiotensin II (10
−8
M/15 minutes) treatment decreased ETB receptor phosphorylation in both WKY and SHR cells, and increased ETB receptors in RPT cell surface membranes of RPT cells in WKY but not SHRs. Basal cell surface membrane ETB receptor expression was also higher in WKY than in SHRs. We conclude that AT
1
receptors regulate ETB receptors by receptor interaction and modulation of receptor expression. The altered AT
1
receptor regulation of ETB receptors in SHRs may play a role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.
| | | | | | | | | | | |
Collapse
|
20
|
Zeng C, Wang Z, Hopfer U, Asico LD, Eisner GM, Felder RA, Jose PA. Rat strain effects of AT1 receptor activation on D1 dopamine receptors in immortalized renal proximal tubule cells. Hypertension 2005; 46:799-805. [PMID: 16172423 DOI: 10.1161/01.hyp.0000184251.01159.72] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The dopaminergic and renin-angiotensin systems regulate blood pressure, in part, by affecting sodium transport in renal proximal tubules (RPTs). We have reported that activation of a D1-like receptor decreases AT1 receptor expression in the mouse kidney and in immortalized RPT cells from Wistar-Kyoto (WKY) rats. The current studies were designed to test the hypothesis that activation of the AT1 receptor can also regulate the D1 receptor in RPT cells, and this regulation is aberrant in spontaneously hypertensive rats (SHRs). Long-term (24 hours) stimulation of RPT cells with angiotensin II, via AT1 receptors increased total cellular D1 receptor protein in a time- and concentration-dependent manner in WKY but not in SHR cells. Short-term stimulation (15 minutes) with angiotensin II did not affect total cellular D1 receptor protein in either rat strain. However, in the short-term experiments, angiotensin II decreased cell surface membrane D1 receptor protein in WKY but not in SHR cells. D1 and AT1 receptors colocalized (confocal microscopy) and their coimmunoprecipitation was greater in WKY than in SHRs. However, AT1/D1 receptor coimmunoprecipitation was decreased by angiotensin II (10(-8) M/24 hours) to a similar extent in WKY (-22+/-8%) and SHRs (-22+/-12%). In summary, these studies show that AT1 and D1 receptors interact differently in RPT cells from WKY and SHRs. It is possible that an angiotensin II-mediated increase in D1 receptors and dissociation of AT1 from D1 receptors serve to counter regulate the long-term action of angiotensin II in WKY rats; different effects are seen in SHRs.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.
| | | | | | | | | | | | | |
Collapse
|