1
|
Drnovsek J, Homan M, Zidar N, Smid LM. Pathogenesis and potential reversibility of intestinal metaplasia - a milestone in gastric carcinogenesis. Radiol Oncol 2024; 58:186-195. [PMID: 38643513 PMCID: PMC11165985 DOI: 10.2478/raon-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Non-cardia gastric cancer remains a major cause of cancer-related mortality worldwide, despite declining incidence rates in many industrialized countries. The development of intestinal-type gastric cancer occurs through a multistep process in which normal mucosa is sequentially transformed into hyperproliferative epithelium, followed by metaplastic processes leading to carcinogenesis. Chronic infection with Helicobacter pylori is the primary etiological agent that causes chronic inflammation of the gastric mucosa, induces atrophic gastritis, and can lead to intestinal metaplasia and dysplasia. Both intestinal metaplasia and dysplasia are precancerous lesions, in which gastric cancer is more likely to occur. Atrophic gastritis often improves after eradication of Helicobacter pylori; however, the occurrence of intestinal metaplasia has been traditionally regarded as "the point of no return" in the carcinogenesis sequence. Helicobacter pylori eradication heals non-atrophic chronic gastritis, may lead to regression of atrophic gastritis, and reduces the risk of gastric cancer in patients with these conditions. In this article, we discuss the pathogenesis, epigenomics, and reversibility of intestinal metaplasia and briefly touch upon potential treatment strategy. CONCLUSIONS Gastric intestinal metaplasia no longer appears to be an irreversible precancerous lesion. However, there are still many controversies regarding the improvement of intestinal metaplasia after Helicobacter pylori eradication.
Collapse
Affiliation(s)
- Jan Drnovsek
- Department of Gastroenterology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaz Homan
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Gastroenterology, Hepatology and Nutrition, University Children’s Hospital, Ljubljana, Slovenia
| | - Nina Zidar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lojze M Smid
- Department of Gastroenterology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Wu D, Zhao Z, Liu H, Fu K, Ji Y, Ji W, Li Y, Yan Q, Yang G. Escherichia coli Nissle 1917-driven microrobots for effective tumor targeted drug delivery and tumor regression. Acta Biomater 2023; 169:477-488. [PMID: 37532134 DOI: 10.1016/j.actbio.2023.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Potent tumor regression remains challenging due to the lack of effective targeted drug delivery into deep tumors as well as the reduced susceptibility of cancer cells to anticancer agents in hypoxic environments. Bacteria-driven drug-delivery systems are promising carriers in overcoming targeting and diffusion limits that are inaccessible for conventional antitumor drugs. In this study, probiotic facultative anaerobe Escherichia coli Nissle 1917 (EcN) was functionalized and formed self-propelled microrobots to actively deliver therapeutic drug and photosensitizer to the deep hypoxic regions of tumors. Doxorubicin (Dox) was firstly modified with cis-aconityl anhydride (CA) and terminal thiol-decorated hydrazone derivative (Hyd-SH) through dual pH-sensitive amide and imine bonds, respectively. The functionalized CA-Dox-Hyd-SH was further coordinated with photosensitizer gold nanorods (AuNRs) and then conjugated to the surface of EcN. The resulting microrobots (EcN-Dox-Au) inherited the mobility characteristics and bioactivity of native EcN. Upon the irradiation of NIR laser, the microrobots exhibited enhanced tumor accumulation and penetration into the deep hypoxia tumor site. Strikingly, after 21 days of treatment with EcN-Dox-Au formulations, complete tumor regression was achieved without relapse for at least 53 days. This self-propelled strategy utilizing bacteria-driven microrobots provides a promising paradigm for enhancing drug penetration and elevating chemosensitivity, resulting in a superior antitumor effect. STATEMENT OF SIGNIFICANCE: Self-propelled Escherichia coli Nissle 1917 (EcN) - mediated microrobots are functionalized to co-deliver therapeutic drugs and photosensitizers to the deep tumor site. Anti-tumor drug doxorubicin (Dox) was modified through dual pH-sensitive bonds on both terminals and then linked with EcN and photosensitizer gold nanorods (AuNRs) to realize tumor microenvironment acidic pH-responsive drug release. Upon irradiation with a NIR laser near the tumor site, AuNRs produced a photothermal effect which realized the superficial tumor thermal ablation and increased the permeability of the tumor cell membrane to facilitate the penetration of microrobots. Moreover, the deep penetration of microrobots also enhanced the susceptibility of the cancer cells to Dox, and realized the complete tumor regression in the established breast cancer-bearing mice without recurrence using a lower dose of drug regimen.
Collapse
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zejing Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kaili Fu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaning Ji
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weili Ji
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yazhen Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinying Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
3
|
Saberi S, Esmaeili M, Saghiri R, Shekari F, Mohammadi M. Assessment of the mixed origin of the gastric epithelial extracellular vesicles in acellular transfer of Helicobacter pylori toxins and a systematic review. Microb Pathog 2023; 177:106024. [PMID: 36758823 DOI: 10.1016/j.micpath.2023.106024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND H. pylori are generally considered as extracellular organisms, with exclusive colonization of the gastric milieu. Yet, several extra gastric manifestations are associated with this infection. The aim of the present study was to investigate the feasibility of toxin transfer by extracellular vesicles, from bacterial and epithelial origins. METHODS Tox-positive H. pylori and its two cagA and vacA mutant strains were used to produce bacterial vesicles (BVs) and to infect AGS cells. The produced BVs and the infected cell vesicles (ICVs) were collected by ultracentrifugation and evaluated by western blotting, DLS and electron microscopy. These two sets of vesicles were applied to a second set of recipient AGS cells, in which the acellular transfer of toxins, IL-8 production and downstream morphologic changes were assessed, by western blotting, ELISA and light microscopy, respectively. RESULTS The BVs were positive for H. pylori membrane markers (BabA and UreB), VacA and CagA toxins, except for from the corresponding mutant strains. The ICVs were larger in size and positive for bacterial markers, as well as epithelial markers of CD9, LGR5, but negative for nuclear (Ki76) or cytoplasmic (β-actin) markers. Bacteria-independent transfer of CagA and VacA into the recipient cells occurred upon treatment of cells with BVs and ICVs, followed by cellular vacuolation and elongation. IL-8 production was induced in recipient AGS cells, treated with BVs (1279.4 ± 19.79 pg/106 cells), early (8 h, 1171.4 ± 11.31 pg/106 cells) and late (48 h, 965.4 ± 36.77 pg/106 cells) ICVs (P < 0.0001). CONCLUSION Our data indicates that ICVs, with mixed bacterial and epithelial constituents, similar to BVs, are capable of transferring bacterial toxins into the recipient cells, inducing IL-8 production and subsequent morphologic changes, in an acellular manner.
Collapse
Affiliation(s)
- Samaneh Saberi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Helicobacter pylori and Gastric Cancer: Pathogenetic Mechanisms. Int J Mol Sci 2023; 24:ijms24032895. [PMID: 36769214 PMCID: PMC9917787 DOI: 10.3390/ijms24032895] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the sixth most commonly diagnosed cancer and the fourth leading cause of cancer death worldwide. Helicobacter pylori (H. pylori) is one of the main risk factors for this type of neoplasia. Carcinogenetic mechanisms associated with H. pylori are based, on the one hand, on the onset of chronic inflammation and, on the other hand, on bacterial-specific virulence factors that can damage the DNA of gastric epithelial cells and promote genomic instability. Here, we review and discuss the major pathogenetic mechanisms by which H. pylori infection contributes to the onset and development of gastric cancer.
Collapse
|
5
|
Yang R, Li J, Wang J, Wang Y, Ma F, Zhai R, Li P. Kaempferol inhibits the growth of Helicobacter pylori in a manner distinct from antibiotics. J Food Biochem 2022; 46:e14210. [PMID: 35484877 DOI: 10.1111/jfbc.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
Helicobacter pylori is associated with gastric disorders. In this study, the anti-H. pylori capacity of natural products from "Winter Red" crabapple flowers were evaluated, including flavonoids, organic acids, terpenoids, and phenolic acids. Among these products, kaempferol showed the highest antibacterial capacity. Structure-activity relationship assays indicated that all hydroxyls contributed to the antibacterial capacity of kaempferol, with the most important being hydroxyls in the A-ring. Kaempferol had comparable anti-H. pylori capacities to clarithromycin and amoxicillin. Both kaempferol and the two antibiotics might damage the cell membrane of H. pylori. However, the RNA-sequence assay demonstrated that their antibacterial mechanisms were different. The ATP-binding cassette transporters, flagellar assembly, and fatty acid metabolism were the major pathways in H. pylori cells responding to kaempferol treatment. We suggest that crabapple containing abundant kaempferol may benefit humans by inhibiting gastric H. pylori. PRACTICAL APPLICATIONS: The anti-Helicobacter pylori capacity of natural products including flavonoids, organic acids, terpenoids, and phenolic acids from "Winter Red" crabapple flowers were evaluated in the present study. Among these products, kaempferol showed the highest antibacterial capacity. More importantly, kaempferol had comparable anti-H. pylori capacities to clarithromycin and amoxicillin, but in a manner distinct from the antibiotics. We suggest that crabapple flowers containing abundant kaempferol may be processed into various products for the patients who have gastric disorders caused by H. pylori. Or the extracted kaempferol from crabapples or other plants could be tested for the clinical treatment of gastric H. pylori.
Collapse
Affiliation(s)
- Ruijia Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiajia Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jingru Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yufan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Rui Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Garabatos N, Santamaria P. Gut Microbial Antigenic Mimicry in Autoimmunity. Front Immunol 2022; 13:873607. [PMID: 35572569 PMCID: PMC9094498 DOI: 10.3389/fimmu.2022.873607] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota plays a major role in the developmental biology and homeostasis of cells belonging to the adaptive and innate arms of the immune system. Alterations in its composition, which are known to be regulated by both genetic and environmental factors, can either promote or suppress the pathogenic processes underlying the development of various autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, systemic lupus erythematosus, type 1 diabetes and rheumatoid arthritis, to just name a few. Cross-recognition of gut microbial antigens by autoreactive T cells as well as gut microbe-driven alterations in the activation and homeostasis of effector and regulatory T cells have been implicated in this process. Here, we summarize our current understanding of the positive and negative associations between alterations in the composition of the gut microbiota and the development of various autoimmune disorders, with a special emphasis on antigenic mimicry.
Collapse
Affiliation(s)
- Nahir Garabatos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Julia McFarlane Diabetes Research Centre (JMDRC), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Yang F, Zhang J, Wang S, Sun Z, Zhou J, Li F, Liu Y, Ding L, Liu Y, Chi W, Liu T, He Y, Xiang P, Bao Z, Olszewski MA, Zhao H, Zhang Y. Genomic population structure of Helicobacter pylori Shanghai isolates and identification of genomic features uniquely linked with pathogenicity. Virulence 2021; 12:1258-1270. [PMID: 33904371 PMCID: PMC8081043 DOI: 10.1080/21505594.2021.1920762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Severe Helicobacter pylori-linked gastric disorders are especially prevalent in the East Asia region. The ability of H. pylori to cause different clinical outcomes is thought to be associated with unique sets of its genetic features. However, only few genetic features have been definitively linked to specific gastrointestinal pathologies. Genome heterogeneity of clinical H. pylori strains from patients with four different gastric disorders was studied to explore the population structure and molecular genomic features and their association with pathogenicity. Population analysis showed that 92.9% of the Shanghai H. pylori isolates were clustered in the East Asia group. Among 2,866 genes detected in all genomes, 1,146 genes formed the core genome, whereas 209 unique genes were detected in individual disease groups. The unique genes of peptic ulcer and gastric cancer groups represented the inorganic ion transport and metabolism function gene clusters. Sixteen virulence genes were detected with statistically different detection rates among the four disease groups. Furthermore, 127 clustered regularly interspaced short palindromic repeats were found with significantly different rates in the four disease groups. A total of 337 putative genomic islands were identified, and three genomic islands were individually found in more than 10% of strains. The genomic islands included several metabolism-associated genes and many genes with unknown function. In total, 88 sequence types were detected among the 112 Shanghai H. pylori isolates. Our study provides an essential milestone in the mapping of specific genomic features and their functions to identify factors needed to induce specific gastric disorders in H. pylori.
Collapse
Affiliation(s)
- Feng Yang
- Department of Laboratory Medicine, Research Center on Aging and Medicine, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Jinghao Zhang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Su Wang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhaoyang Sun
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Jun Zhou
- Department of Endoscopy, Huadong Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Endoscopy, Huadong Hospital, Fudan University, Shanghai, China
| | - Yue Liu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Li Ding
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Yixin Liu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Wenjing Chi
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, And Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, USA
| | - Ping Xiang
- Department of Endoscopy, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhijun Bao
- Department of Laboratory Medicine, Research Center on Aging and Medicine, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Gastroenterology, Gerontology Institute of Shanghai, Huadong Hospital, Fudan University, Shanghai, China
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan and Research Service, VA Ann Arbor Healthcare System, Ann Arbor, USA
| | - Hu Zhao
- Department of Laboratory Medicine, Research Center on Aging and Medicine, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Research Center on Aging and Medicine, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Teng Y, Xie W, Tao X, Liu N, Yu Y, Huang Y, Xu D, Fan Y. Infection-provoked psoriasis: Induced or aggravated (Review). Exp Ther Med 2021; 21:567. [PMID: 33850539 PMCID: PMC8027725 DOI: 10.3892/etm.2021.9999] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a common chronic, immune-mediated, inflammatory skin disorder, with a reported prevalence of 0.0-2.1% among children and 0.91-8.50% among adults, worldwide. Psoriasis is induced by several environmental factors, including infection, alcohol consumption, drugs, trauma, acute withdrawal of systemic or potent topical corticosteroids, body mass index and endocrine disorders. Increasing evidence suggest that a variety of microorganisms play key roles in the induction and exacerbation of psoriasis. Pathogens, such as streptococci and staphylococci are considered causal factors, presumably via superantigen activation of skin-seeking T cells. In addition, fungal pathogens, such as Candida and Malassezia, and viral agents, such as human immunodeficiency virus, hepatitis C virus infection and human papillomavirus, are also closely associated with psoriasis. Recently, several types of pathogens, such as Helicobacter pylori infection, Zika virus and scabies, have been reported to potentially trigger psoriasis. The present review discusses the underlying molecular mechanisms by which these infections influence psoriasis to provide a better understanding of the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Yan Teng
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaohua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Na Liu
- Department of Dermatology, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yong Yu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Youming Huang
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Danfeng Xu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yibin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
9
|
Do AD, Chang CC, Su CH, Hsu YM. Lactobacillus rhamnosus JB3 inhibits Helicobacter pylori infection through multiple molecular actions. Helicobacter 2021; 26:e12806. [PMID: 33843101 DOI: 10.1111/hel.12806] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eradication of Helicobacter pylori infection is the most direct and effective way for preventing gastric cancer. Lactic acid bacteria are considered as alternative therapeutic agents against H. pylori infection. METHODS Effects of Lactobacillus rhamnosus JB3 (LR-JB3) on the virulence gene expression of H. pylori and infection-induced cellular responses of AGS cells were investigated by co-cultivating infected AGS cells with different multiplicity of infections (MOIs) of LR-JB3. RESULTS LR-JB3, specifically at a MOI of 25, suppressed the association ability of H. pylori and its induced IL-8 levels, as well as the mRNA levels of vacA, sabA, and fucT of H. pylori, infection-induced Lewis (Le)x antigen and Toll-like receptor 4 (TLR4) expressions in AGS cells. However, the apoptosis mediated by infection was inhibited by LR-JB3 in a dose-dependent manner. In addition, autoinducer (AI)-2 was observed to have increased the association ability and fucT expression of H. pylori, and Lex antigen and TLR4 expression of AGS cells. Interestingly, an unknown bioactive cue was hypothesized to have been secreted from LR-JB3 at a MOI of 25 to act as an antagonist of AI-2. CONCLUSIONS LR-JB3 possesses various means to interfere with H. pylori pathogenesis and infection-induced cellular responses of AGS cells to fight against infection.
Collapse
Affiliation(s)
- Anh Duy Do
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chun-Chi Chang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chiu-Hsian Su
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Yang K, Kao C, Su MS, Wang S, Chen Y, Hu S, Chen J, Teng C, Tsai P, Wu J. Glycosyltransferase Jhp0106 (PseE) contributes to flagellin maturation in Helicobacter pylori. Helicobacter 2021; 26:e12787. [PMID: 33586844 PMCID: PMC7988653 DOI: 10.1111/hel.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Flagella-mediated motility is both a crucial virulence determinant of Helicobacter pylori and a factor associated with gastrointestinal diseases. Flagellar formation requires flagellins to be glycosylated with pseudaminic acid (Pse), a process that has been extensively studied. However, the transfer of Pse to flagellins remains poorly understood. Therefore, the aim of this study is to characterize a putative glycosyltransferase jhp0106 in flagellar formation. MATERIALS AND METHODS Western blotting and chemical deglycosylation were performed to examine FlaA glycosylation. Protein structural analyses were executed to identify the active site residues of Jhp0106, while the Jhp0106-FlaA interaction was examined using a bacterial two-hybrid assay. Lastly, site-directed mutants with mutated active site residues in the jhp0106 gene were generated and investigated using a motility assay, Western blotting, cDNA-qPCR analysis, and electron microscopic examination. RESULTS Loss of flagellar formation in the Δjhp0106 mutant was confirmed to be associated with non-glycosylated FlaA. Furthermore, three active site residues of Jhp0106 (S350, F376, and E415) were identified within a potential substrate-binding region. The interaction between FlaA and Jhp0106, Jhp0106::S350A, Jhp0106::F376A, or Jhp0106::E415A was determined to be significant. As well, the substitution of S350A, F376A, or E415A in the site-directed Δjhp0106 mutants resulted in impaired motility, deficient FlaA glycosylation, and lacking flagella. However, these phenotypic changes were regardless of flaA expression, implying an indefinite proteolytic degradation of FlaA occurred. CONCLUSIONS This study demonstrated that Jhp0106 (PseE) binds to FlaA mediating FlaA glycosylation and flagellar formation. Our discovery of PseE has revealed a new glycosyltransferase family responsible for flagellin glycosylation in pathogens.
Collapse
Affiliation(s)
- Kai‐Yuan Yang
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Cheng‐Yen Kao
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan,Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Marcia Shu‐Wei Su
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Shuying Wang
- Department of Microbiology and ImmunologyCollege of MedicineNational Cheng‐Kung UniversityTainanTaiwan
| | - Yueh‐Lin Chen
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Shiau‐Ting Hu
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Jenn‐Wei Chen
- Department of Microbiology and ImmunologyCollege of MedicineNational Cheng‐Kung UniversityTainanTaiwan
| | - Ching‐Hao Teng
- Institute of Molecular MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Pei‐Jane Tsai
- Department of Medical Laboratory Science and BiotechnologyCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Jiunn‐Jong Wu
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| |
Collapse
|
11
|
Gonzalez Moreno C, Torres Luque A, Oliszewski R, Rosa RJ, Otero MC. Characterization of native Escherichia coli populations from bovine vagina of healthy heifers and cows with postpartum uterine disease. PLoS One 2020; 15:e0228294. [PMID: 32479536 PMCID: PMC7263596 DOI: 10.1371/journal.pone.0228294] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Even though Escherichia coli are common bacteria of the bovine vaginal microbiota, they represent an important pathogen that causes diseases in the reproductive tract and subfertility. However, the actual endometrial virulence profile of E. coli is poorly understood. The present study aims to characterize the phylogenetic structure and virulence potential of native vaginal populations of E. coli from healthy heifers (H), and cows with postpartum uterine diseases (PUD), such as metritis/endometritis (MT) or repeat breeder cows (RB). To this end, the virulence repertoire of 97 E. coli isolates was genotypically and phenotypically assessed. Most of them were assigned to phylogenetic group A (74%), followed by B1 (17%) and D (9%); RB strains were significantly (p < 0.05) more represented by B1. Seven of the 15 evaluated virulence genes (VFG) were detected and the most prevalent were fimH (87%), agn43 (41%) and csgA (35%); while traT (27%), fyuA (11%), hlyA (5%) and kpsMT II (5%) were observed in a lower proportion. Particularly, fyuA was significantly higher (p < 0.05) in MT cows whereas csgA showed the same behavior in PUD animals (p < 0.05). When comparing H and PUD strains, these last ones were associated to positive expression of biofilm, fimbriae curli/cellulose and motility; yet RB strains did not show motility. Vaginal B1 E. coli populations, that possess VFG (fyuA and csgA) as well as the expression of motility, curli fimbriae/cellulose and biofilm, may represent risk factors for endometrial disorders; specifically, those that also, have kpsMT II may have a pathogenic potential for causing the RB syndrome. Future research focusing on the detection of these strains in the vaginal microbiota of cows with postpartum uterine diseases should be done since the control of their presence in vagina could reduce the risk that they access the uterus during the postpartum period.
Collapse
Affiliation(s)
- Candelaria Gonzalez Moreno
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
- Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, El Manantial, Tucumán, Argentina
| | - Andrea Torres Luque
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
- Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Tucumán, Argentina
| | - Rubén Oliszewski
- Laboratorio de Calidad de Lácteos (LaCaLac), Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), El Manantial, Tucumán, Argentina
| | - Ramiro J. Rosa
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, El Manantial, Tucumán, Argentina
| | - María C. Otero
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
- Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Tucumán, Argentina
- * E-mail:
| |
Collapse
|
12
|
Wang CH, Hsieh YH, Powers ZM, Kao CY. Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. Int J Mol Sci 2020; 21:E1061. [PMID: 32033477 PMCID: PMC7037027 DOI: 10.3390/ijms21031061] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotics are one of the greatest medical advances of the 20th century, however, they are quickly becoming useless due to antibiotic resistance that has been augmented by poor antibiotic stewardship and a void in novel antibiotic discovery. Few novel classes of antibiotics have been discovered since 1960, and the pipeline of antibiotics under development is limited. We therefore are heading for a post-antibiotic era in which common infections become untreatable and once again deadly. There is thus an emergent need for both novel classes of antibiotics and novel approaches to treatment, including the repurposing of existing drugs or preclinical compounds and expanded implementation of combination therapies. In this review, we highlight to utilize alternative drug targets/therapies such as combinational therapy, anti-regulator, anti-signal transduction, anti-virulence, anti-toxin, engineered bacteriophages, and microbiome, to defeat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Zachary M. Powers
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
13
|
Ansari S, Yamaoka Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins (Basel) 2019; 11:E677. [PMID: 31752394 PMCID: PMC6891454 DOI: 10.3390/toxins11110677] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori colonizes the gastric epithelial cells of at least half of the world's population, and it is the strongest risk factor for developing gastric complications like chronic gastritis, ulcer diseases, and gastric cancer. To successfully colonize and establish a persistent infection, the bacteria must overcome harsh gastric conditions. H. pylori has a well-developed mechanism by which it can survive in a very acidic niche. Despite bacterial factors, gastric environmental factors and host genetic constituents together play a co-operative role for gastric pathogenicity. The virulence factors include bacterial colonization factors BabA, SabA, OipA, and HopQ, and the virulence factors necessary for gastric pathogenicity include the effector proteins like CagA, VacA, HtrA, and the outer membrane vesicles. Bacterial factors are considered more important. Here, we summarize the recent information to better understand several bacterial virulence factors and their role in the pathogenic mechanism.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur 44200, Chitwan, Nepal;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Global Oita Medical Advanced Research Center for Health, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030, USA
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabaru, Sabah 88400, Malaysia
| |
Collapse
|
14
|
Polymorphism in Toll-Like Receptors and Helicobacter Pylori Motility in Autoimmune Atrophic Gastritis and Gastric Cancer. Cancers (Basel) 2019; 11:cancers11050648. [PMID: 31083432 PMCID: PMC6562993 DOI: 10.3390/cancers11050648] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
Autoimmune atrophic gastritis (AAG) is associated with an increased risk of certain types of gastric cancer (GC). Helicobacter pylori (H. pylori) infection may have a role in the induction and/or maintenance of AAG and GC. Toll-like receptors (TLR) are essential for H. pylori recognition and subsequent innate and adaptive immunity responses. This study therefore aimed to characterize TLR polymorphisms, and features of bacterial flagellin A in samples from patients with AAG (n = 67), GC (n = 114) and healthy donors (HD; n = 97). TLR5 rs5744174 C/C genotype was associated with GC, lower IgG anti H. pylori response and a higher H. pylori flagellin A abundance and motility. In a subset of patients with AAG, H. pylori strains showed a reduction of the flagellin A abundance and a moderate motility compared with strains from GC patients, a prerequisite for active colonization of the deeper layers of the mucosa, host immune response and inflammation. TLR9 rs5743836 T allele showed an association with serum gastrin G17. In conclusion, our study suggests that alterations of flaA protein, moderate motility in H. pylori and two polymorphisms in TLR5 and TLR9 may favor the onset of AAG and GC, at least in a subset of patients. These findings corroborate the function of pathogen–host cell interactions and responses, likely influencing the pathogenetic process.
Collapse
|
15
|
Bonsor DA, Sundberg EJ. Roles of Adhesion to Epithelial Cells in Gastric Colonization by Helicobacter pylori. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:57-75. [PMID: 31016628 DOI: 10.1007/5584_2019_359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori adherence to host epithelial cells is essential for its survival against the harsh conditions of the stomach and for successful colonization. Adherence of H. pylori is achieved through several related families of outer membrane proteins and proteins of a type IV secretion system (T4SS), which bridge H. pylori to host cells through protein-protein and other protein-ligand interactions. Local environmental conditions such as cell type, available host cell surface proteins and/or ligands, as well as responses by the host immune system force H. pylori to alter expression of these proteins to adapt quickly to the local environment in order to colonize and survive. Some of these host-pathogen interactions appear to function in a "catch-and-release" manner, regulated by reversible binding at varying pH and allowing H. pylori to detach itself from cells or debris sloughed off the gastric epithelial lining in order to return for subsequent productive interactions. Other interactions between bacterial adhesin proteins and host adhesion molecules, however, appear to function as a committed step in certain pathogenic processes, such as translocation of the CagA oncoprotein through the H. pylori T4SS and into host gastric epithelial cells. Understanding these adhesion interactions is critical for devising new therapeutic strategies, as they are responsible for the earliest stage of infection and its maintenance. This review will discuss the expression and regulation of several outer membrane proteins and CagL, how they engage their known host cell protein/ligand targets, and their effects on clinical outcome.
Collapse
Affiliation(s)
- Daniel A Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
16
|
Lin WH, Tseng CC, Wu AB, Chang YT, Kuo TH, Chao JY, Wang MC, Wu JJ. Clinical and microbiological characteristics of peritoneal dialysis-related peritonitis caused by Escherichia coli in southern Taiwan. Eur J Clin Microbiol Infect Dis 2018; 37:1699-1707. [PMID: 29931659 DOI: 10.1007/s10096-018-3302-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Peritonitis is a serious complication and major cause of treatment failure in patients undergoing peritoneal dialysis (PD). Escherichia coli is the major pathogen in extraintestinal Gram-negative infections, including PD-related peritonitis. The outcomes of E. coli peritonitis in PD varied from relatively favorable outcomes to a higher incidence of treatment failure. The aim of this study was to investigate the impact of bacterial virulence and host characteristics on the outcomes of PD-related peritonitis caused by E. coli. From January 2000 to June 2016, a total of 47 episodes of monomicrobial and 10 episodes of polymicrobial E. coli PD-related peritonitis, as well as 89 episodes of monomicrobial Gram-positive (56 Staphylococcus spp. and 33 Streptococcus spp.) PD-related peritonitis cases, were retrospectively enrolled. Clinical features, E. coli bacterial virulence, and outcomes were analyzed. Compared to Streptococcus spp. peritonitis, E. coli peritonitis had a higher peritoneal catheter removal rate (38 versus 12%; P = 0.0115). Compared to the monomicrobial group, patients in polymicrobial group were older and had higher peritoneal catheter removal rate (80 versus 38%; P = 0.0324). Treatment failure of E. coli peritonitis was associated with more polymicrobial peritonitis and immunocompromised comorbidity, longer duration of PD therapy, and more antimicrobial resistance. E. coli isolates with more iron-related genes had higher prevalence of phylogenetic group B2 and papG II, iha, ompT, and usp genes. This study demonstrates the important roles of clinical and bacterial characteristics in the outcomes of monomicrobial and polymicrobial E. coli PD-related peritonitis.
Collapse
Affiliation(s)
- Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - An-Bang Wu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yu-Tzu Chang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Te-Hui Kuo
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Jo-Yen Chao
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan. .,Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, No. 155, Section 2, Li-Nong Street, Taipei, 11221, Taiwan.
| |
Collapse
|
17
|
Zheng J, Yuan X, Cheng G, Jiao S, Feng C, Zhao X, Yin H, Du Y, Liu H. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice. Carbohydr Polym 2018; 190:77-86. [PMID: 29628262 DOI: 10.1016/j.carbpol.2018.02.058] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/20/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
The aim of this study is to investigate the effect of chitosan oligosaccharides (COS) on type 2 diabetes mellitus. Wild type C57BL/6J mice or diabetic db/db mice were treated with vehicle or COS for three months. COS treatment significantly decreased the blood glucose (P < 0.01) and reversed the insulin resistance (P < 0.05) in db/db mice, which was accompanied by suppressing the inflammation mediators (P < 0.05), down-regulating the lipogenesis (P < 0.01) and inhibiting the adipocyte differentiation (P < 0.05) in white adipose tissue. Additionally, COS treatment inhibited the reduction of occludin (P < 0.01) and relieved the gut dysbiosis in diabetic mice by promoting Akkermansia (P < 0.01) and suppressing Helicobacter (P < 0.05). Spearman's correlation analysis indicates that the COS-modulated bacteria are positively correlated with inflammation, hyperglycemia and dyslipidemia. The functional profiling based on the microbiota composition implicated that COS treatment may regulate the metabolic pathways of gut microbiota. In summary, COS treatment remarkably improved the glucose metabolism and reshaped the unbalanced gut microbiota of diabetic mice. Our study provided the evidence for application of COS to the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Junping Zheng
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xubing Yuan
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Cui Feng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaoming Zhao
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, PR China.
| |
Collapse
|
18
|
Kato S, Osaki T, Kamiya S, Zhang XS, Blaser MJ. Helicobacter pylori sabA gene is associated with iron deficiency anemia in childhood and adolescence. PLoS One 2017; 12:e0184046. [PMID: 28854239 PMCID: PMC5576686 DOI: 10.1371/journal.pone.0184046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
Background Gastric Helicobacter pylori colonization leads to iron deficiency anemia (IDA), especially in children and adolescents. However the pathogenesis is poorly understood. Objective We sought to identify specific H. pylori genes involved in IDA development, by comparing bacterial genome-wide expression profiling in patients affected or not. Methods H. pylori were isolated from four children with IDA and four from matched controls without IDA. Based on these isolates, cDNA microarrays under iron-replete or depleted conditions were systematically performed to compare gene expression profiles at the whole genome level. Real-time reverse-transcription (RT-) PCR and protein assays were performed for further assessing the profile differentiation of the identified H. pylori IDA-associated genes. Results We identified 29 and 11 genes with significantly higher or lower expression in the IDA isolates compared to non-IDA isolates, respectively. Especially notable were higher expression of sabA gene encoding sialic acid-binding adhesin in the IDA isolates, which was confirmed by real-time RT-PCR study. Moreover, iron-depletion in vitro led to up-regulation of fecA1 and frpB1 genes and down-regulation of pfr, as predicted. Known iron-regulated genes such as fur, pfr, fecA, and feoB did not significantly differ between both groups. The IDA isolates had significantly higher expression of vacuolating cytotoxin gene vacA than non-IDA isolates, consistent with the results of VacA protein assays. There were no significant differences in bacterial growth value between IDA and non-IDA isolates. Conclusions It is likely that H. pylori carrying high expression of sabA causes IDA, especially in children and adolescents who have increased daily iron demand. In addition, it is possible that several host-interactive genes, including vacA, may play a synergistic role for sabA in IDA development.
Collapse
Affiliation(s)
- Seiichi Kato
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Japan
- * E-mail:
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Japan
| | - Xue-Song Zhang
- Departments of Medicine and Microbiology, New York University School of Medicine, New York, NY, United States of America
| | - Martin J. Blaser
- Departments of Medicine and Microbiology, New York University School of Medicine, New York, NY, United States of America
| |
Collapse
|
19
|
Lee AY, Kao CY, Wang YK, Lin SY, Lai TY, Sheu BS, Lo CJ, Wu JJ. Inactivation of ferric uptake regulator (Fur) attenuates Helicobacter pylori J99 motility by disturbing the flagellar motor switch and autoinducer-2 production. Helicobacter 2017; 22. [PMID: 28402041 DOI: 10.1111/hel.12388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Flagellar motility of Helicobacter pylori has been shown to be important for the bacteria to establish initial colonization. The ferric uptake regulator (Fur) is a global regulator that has been identified in H. pylori which is involved in the processes of iron uptake and establishing colonization. However, the role of Fur in H. pylori motility is still unclear. MATERIALS AND METHODS Motility of the wild-type, fur mutant, and fur revertant J99 were determined by a soft-agar motility assay and direct video observation. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. Single bacterial motility and flagellar switching were observed by phase-contrast microscopy. Autoinducer-2 (AI-2) production in bacterial culture supernatant was analyzed by a bioluminescence assay. RESULTS The fur mutant showed impaired motility in the soft-agar assay compared with the wild-type J99 and fur revertant. The numbers and lengths of flagellar filaments on the fur mutant cells were similar to those of the wild-type and revertant cells. Phenotypic characterization showed similar swimming speed but reduction in switching rate in the fur mutant. The AI-2 production of the fur mutant was dramatically reduced compared with wild-type J99 in log-phase culture medium. CONCLUSIONS These results indicate that Fur positively modulates H. pylori J99 motility through interfering with bacterial flagellar switching.
Collapse
Affiliation(s)
- Ai-Yun Lee
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yen Kao
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yao-Kuan Wang
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan
| | - Ssu-Yuan Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan
| | - Tze-Ying Lai
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, Tainan Hospital, Ministry of Health & Welfare, Taiwan
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
20
|
Gu H. Role of Flagella in the Pathogenesis of Helicobacter pylori. Curr Microbiol 2017; 74:863-869. [PMID: 28444418 PMCID: PMC5447363 DOI: 10.1007/s00284-017-1256-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Abstract
This review aimed to investigate the role of Helicobacter pylori flagella on the pathogenicity of this bacterium in humans. Helicobacter pylori is a flagellated pathogen that colonizes the human gastroduodenal mucosa and produces inflammation, and is responsible for gastrointestinal disease. Its pathogenesis is attributed to colonization and virulence factors. The primary function of H. pylori flagella is to provide motility. We believe that H. pylori flagella play an important role in the colonization of the gastrointestinal mucosa. Therefore, we reviewed previous studies on flagellar morphology and motility in order to explore the relationship between H. pylori flagella and pathogenicity. Further investigation is required to confirm the association between flagella and pathogenicity in H. pylori.
Collapse
Affiliation(s)
- Haiying Gu
- Medical School, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
21
|
Kao CY, Chen JW, Wang S, Sheu BS, Wu JJ. The Helicobacter pylori J99 jhp0106 Gene, under the Control of the CsrA/RpoN Regulatory System, Modulates Flagella Formation and Motility. Front Microbiol 2017; 8:483. [PMID: 28400753 PMCID: PMC5368276 DOI: 10.3389/fmicb.2017.00483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
CsrA has been shown to positively control the expression of flagella-related genes, including flaA and flaB, through regulating expression of an alternative sigma factor RpoN in Helicobacter pylori J99. Here, we aimed to characterize the CsrA regulatory system by comparative transcriptomic analysis carried out with RNA-seq on strain J99 and a csrA mutant. Fifty-three genes in the csrA mutant were found to be differentially expressed compared with the wild-type. Among CsrA-regulated genes, jhp0106, with unclear function, was found located downstream of flaB in the J99 genome. We hypothesized that flaB-jhp0106 is in an operon under the control of RpoN binding to the flaB promoter. The RT-qPCR results showed the expression of jhp0106 was decreased 76 and 92% in the csrA and rpoN mutants, respectively, compared to the wild-type. Moreover, mutations of the RpoN binding site in the flaB promoter region resulted in decreased expression of flaB and jhp0106 and deficient motility. Three-dimensional structure modeling results suggested that Jhp0106 was a glycosyltransferase. The role of jhp0106 in H. pylori was further investigated by constructing the jhp0106 mutant and revertant strains. A soft-agar motility assay and transmission electron microscope were used to determine the motility and flagellar structure of examined strains, and the results showed the loss of motility and flagellar structure in jhp0106 mutant J99. In conclusion, we found jhp0106, under the control of the CsrA/RpoN regulatory system, plays a critical role in H. pylori flagella formation.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University Taipei, Taiwan
| | - Jenn-Wei Chen
- Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Shuying Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung UniversityTainan, Taiwan; Department of Internal Medicine, Tainan Hospital, Ministry of Health & WelfareTainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University Taipei, Taiwan
| |
Collapse
|
22
|
Chen YL, Mo XQ, Huang GR, Huang YQ, Xiao J, Zhao LJ, Wei HY, Liang Q. Gene polymorphisms of pathogenic Helicobacter pylori in patients with different types of gastrointestinal diseases. World J Gastroenterol 2016; 22:9718-9726. [PMID: 27956795 PMCID: PMC5124976 DOI: 10.3748/wjg.v22.i44.9718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/17/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a kind of chronic infectious pathogen which can cause chronic gastritis, peptic ulcer, gastric cancer and other diseases. The genetic structure of the pathogenic genes of H. pylori varies largely, which contributes to the differences in virulence among various strains, and in clinical symptoms. Virulence genes of H. pylori can be categorized into three main classes: those related to adhesion and colonization, those related to gastric mucosal injury, and others. This review focuses on the relationship between genetic polymorphisms of the three classes of virulence genes of H. pylori and diseases. Most of the genetic polymorphisms of the main virulence factors of H. pylori are summarized in this paper.
Collapse
|
23
|
Bhattacharya S, Mukherjee O, Mukhopadhyay AK, Chowdhury R, Pal AK, Dhar KK. A Conserved Helicobacter pylori Gene, HP0102, Is Induced Upon Contact With Gastric Cells and Has Multiple Roles in Pathogenicity. J Infect Dis 2016; 214:196-204. [PMID: 27056952 DOI: 10.1093/infdis/jiw139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/30/2016] [Indexed: 01/13/2023] Open
Abstract
Contact with host cells is recognized as a signal capable of triggering expression of bacterial genes important for host pathogen interaction. Adherence of Helicobacter pylori to the gastric epithelial cell line AGS strongly upregulated expression of a gene, HP0102, in the adhered bacteria in all strains examined, including several Indian clinical isolates. The gene is highly conserved and ubiquitously present in all 69 sequenced H. pylori genomes at the same genomic locus, as well as in 15 Indian clinical isolates. The gene is associated with 2 distinct phenotypes related to pathogenicity. In AGS cell-adhered H. pylori, it has a role in upregulation of cagA expression from a specific σ(28)-RNAP promoter and consequent induction of the hummingbird phenotype in the infected AGS cells. Furthermore, HP0102 has a role in chemotaxis and a ΔHP0102 mutant exhibited low acid-escape response that might account for the poor colonization efficiency of the mutant.
Collapse
Affiliation(s)
- Saurabh Bhattacharya
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology
| | - Oindrilla Mukherjee
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology
| | - Asish K Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rukhsana Chowdhury
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology
| | | | | |
Collapse
|
24
|
Kao CY, Sheu BS, Wu JJ. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomed J 2016; 39:14-23. [PMID: 27105595 PMCID: PMC6138426 DOI: 10.1016/j.bj.2015.06.002] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori pathogenesis and disease outcomes are mediated by a complex interplay between bacterial virulence factors, host, and environmental factors. After H. pylori enters the host stomach, four steps are critical for bacteria to establish successful colonization, persistent infection, and disease pathogenesis: (1) Survival in the acidic stomach; (2) movement toward epithelium cells by flagella-mediated motility; (3) attachment to host cells by adhesins/receptors interaction; (4) causing tissue damage by toxin release. Over the past 20 years, the understanding of H. pylori pathogenesis has been improved by studies focusing on the host and bacterial factors through epidemiology researches and molecular mechanism investigations. These include studies identifying the roles of novel virulence factors and their association with different disease outcomes, especially the bacterial adhesins, cag pathogenicity island, and vacuolating cytotoxin. Recently, the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in H. pylori. In addition, a more available complete genomic database of H. pylori strains isolated from patients with different gastrointestinal diseases worldwide is helpful to characterize this bacterium. This review highlights the key findings of H. pylori virulence factors reported over the past 20 years.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
25
|
da Costa DM, Pereira EDS, Rabenhorst SHB. What exists beyond cagA and vacA? Helicobacter pylori genes in gastric diseases. World J Gastroenterol 2015; 21:10563-72. [PMID: 26457016 PMCID: PMC4588078 DOI: 10.3748/wjg.v21.i37.10563] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/13/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is present in more than half the world's population and has been associated with several gastric disorders, such as gastritis, peptic ulceration, and gastric adenocarcinoma. The clinical outcome of this infection depends on host and bacterial factors where H. pylori virulence genes seem to play a relevant role. Studies of cagA and vacA genes established that they were determining factors in gastric pathogenesis. However, there are gastric cancer cases that are cagA-negative. Several other virulence genes have been searched for, but these genes remain less well known that cagA and vacA. Thus, this review aimed to establish which genes have been suggested as potentially relevant virulence factors for H. pylori-associated gastrointestinal diseases. We focused on the cag-pathogenicity island, genes with adherence and motility functions, and iceA based on the relevance shown in several studies in the literature.
Collapse
|
26
|
Lin P, Li Y, Dong K, Li Q. The Antibacterial Effects of an Antimicrobial Peptide Human β-Defensin 3 Fused with Carbohydrate-Binding Domain on Pseudomonas aeruginosa PA14. Curr Microbiol 2015; 71:170-6. [PMID: 25862466 DOI: 10.1007/s00284-015-0814-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/27/2015] [Indexed: 01/27/2023]
Abstract
Pseudomonas aeruginosa is one of the most opportunistic bacterial pathogens in human communities. Being a potential antibacterial agent, antimicrobial peptide human β-defensin 3-carbohydrate-binding domain (hBD3-CBD) was evaluated in this study by in vitro bactericidal test, special gene expressions, hBD3-CBD effects on biofilm formation assays, swimming, twitching, and swarming activities of P. aeruginosa PA14, and hBD3-CBD effects on the antibiotic 50 % minimal inhibitory concentration (MIC50) and 90 % minimal inhibitory concentration (MIC90) against clinical P. aeruginosa isolates. The MIC against P. aeruginosa PA14 was 32 μg/ml; hBD3-CBD showed significant bactericidal activities when the concentration reached 8 μg/ml, and when the concentration reached 2 μg/ml, hBD3-CBD successfully repressed the biofilm productions in P. aeruginosa PA14. hBD3-CBD could inhibit the in vitro swimming, twitching, and swarming activities of P. aeruginosa PA14. When 5 μg/ml hBD3-CBD was combined with antibiotics, it decreased the MIC50 and MIC90 of tetracycline, rifampicin, and streptomycin against clinical P. aeruginosa isolates. As new antibacterial agents, hBD3-CBD and other AMPs might be used together with antibiotics to deal with infections in the future, especially the skin and soft tissue infections of drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | | | | | | |
Collapse
|
27
|
Baidya AK, Bhattacharya S, Chowdhury R. Role of the Flagellar Hook-Length Control Protein FliK and σ28 in cagA Expression in Gastric Cell-Adhered Helicobacter pylori. J Infect Dis 2014; 211:1779-89. [PMID: 25512629 DOI: 10.1093/infdis/jiu808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/08/2014] [Indexed: 01/26/2023] Open
Abstract
Adherence of Helicobacter pylori to the gastric epithelial cell line AGS strongly induces expression of fliK encoding a flagellar hook-length control protein. FliK has a role in triggering dissociation of the alternate sigma factor, σ(28), from a nonfunctional σ(28)-FlgM complex, releasing free, functional σ(28). The σ(28)-RNA polymerase initiates transcription of cagA, the major virulence gene, from a promoter identified in this study. Consequently, significant up-regulation of cagA was observed in AGS-adhered H. pylori. Direct binding of σ(28) to the cagA promoter was demonstrated by chromatin immunoprecipitation and the transcription start site was identified by 5' RACE (rapid amplification of complementary DNA ends). The σ(28)-dependent cagA promoter was active specifically in AGS-adhered H. pylori, and this motif might be associated with high cagA expression and severity of disease. These results also indicate that H. pylori has evolved to integrate expression of the major virulence gene cagA with the flagellar regulatory circuit, essential for colonization of the human host.
Collapse
Affiliation(s)
- Amit K Baidya
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Saurabh Bhattacharya
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Rukhsana Chowdhury
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
28
|
Kao CY, Sheu BS, Wu JJ. CsrA regulates Helicobacter pylori J99 motility and adhesion by controlling flagella formation. Helicobacter 2014; 19:443-54. [PMID: 25109343 DOI: 10.1111/hel.12148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Motility mediated by the flagella of Helicobacter pylori has been shown to be required for normal colonization and is thought to be important for the bacteria to move toward the gastric mucus in niches adjacent to the epithelium. Barnard et al. showed that CsrA appears to be necessary for full motility and the ability to infect mice, but its mechanism of regulation is still unclear. METHODS Motility and cell adhesion ability were determined in wild-type, csrA mutant, and revertant J99 strains. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. The expression of two major flagellins, flaA/flaB, and the alternative sigma factor rpoN (σ(54)) were determined by real-time quantitative RT-PCR and Western blot. RESULTS The csrA mutant showed loss of motility and lower adhesion ability compared with the wild-type and revertant J99 strains. The csrA mutant was not flagellated. Transcription of flaA and flaB mRNA decreased to only 40% and 16%, respectively, in the csrA mutant compared with the wild-type J99 (p = .006 and <.0001, respectively), and Western blot analysis showed dramatically reduced FlaA/FlaB proteins in a csrA mutant. The disruption of csrA also decreased expression of rpoN to 48% in the csrA mutant, but the degradation rate of rpoN mRNA was not changed. CONCLUSION These results suggest that CsrA regulates H. pylori J99 flagella formation and thereby affects bacterial motility.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
29
|
Kao CY, Lin WH, Tseng CC, Wu AB, Wang MC, Wu JJ. The complex interplay among bacterial motility and virulence factors in different Escherichia coli infections. Eur J Clin Microbiol Infect Dis 2014; 33:2157-62. [PMID: 24957011 DOI: 10.1007/s10096-014-2171-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/20/2014] [Indexed: 01/12/2023]
Abstract
Motility mediated by the flagella of Escherichia coli is important for the bacteria to move toward host cells. Here, we present the relationship among bacterial motility, virulence factors, antimicrobial susceptibility, and types of infection. A total of 231 clinical E. coli isolates from different infections were collected and analyzed. Higher-motility strains (motility diameter ≥6.6 mm) were more common in spontaneous bacterial peritonitis (SBP) (SBP 59 %, colonization 32 %, urinary tract infection 16 %, urosepsis 34 %, and biliary tract infection 29 %; p < 0.0001). Compared with the higher-motility group, there was a higher prevalence of afa and ompT genes (p = 0.0160 and p = 0.0497, respectively) in E. coli strains with lower motility. E. coli isolates with higher and lower motility were in different phylogenetic groups (p = 0.018), with a lower prevalence of A and B1 subgroups in higher-motility strains. Also, the patterns of virulence factors and antibiotic susceptibility of E. coli isolates derived from various infections were significantly different. This study demonstrates that the prevalence of higher-motility strains was greater in E. coli isolates from SBP compared to other types of infection. Various types of E. coli infection were associated with differences in bacterial motility, virulence factors, and antibiotic susceptibility. More bacterial virulence factors may be necessary for the development of extraintestinal infections caused by E. coli isolates with lower motility.
Collapse
Affiliation(s)
- C Y Kao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Tsang J, Hoover TR. Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species. SCIENTIFICA 2014; 2014:681754. [PMID: 24672734 PMCID: PMC3930126 DOI: 10.1155/2014/681754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ (54) (also known as RpoN) to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni), Gammaproteobacteria (e.g., Vibrio and Pseudomonas species), and Alphaproteobacteria (e.g., Caulobacter crescentus). This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization.
Collapse
Affiliation(s)
- Jennifer Tsang
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
31
|
The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis. BIOLOGY 2013; 2:1110-34. [PMID: 24833057 PMCID: PMC3960876 DOI: 10.3390/biology2031110] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is one of the most successful human pathogens, which colonizes the mucus layer of the gastric epithelium of more than 50% of the world’s population. This curved, microaerophilic, Gram-negative bacterium induces a chronic active gastritis, often asymptomatic, in all infected individuals. In some cases, this gastritis evolves to more severe diseases such as peptic ulcer disease, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori has developed a unique set of factors, actively supporting its successful survival and persistence in its natural hostile ecological niche, the human stomach, throughout the individual’s life, unless treated. In the human stomach, the vast majority of H. pylori cells are motile in the mucus layer lining, but a small percentage adheres to the epithelial cell surfaces. Adherence to the gastric epithelium is important for the ability of H. pylori to cause disease because this intimate attachment facilitates: (1) colonization and persistence, by preventing the bacteria from being eliminated from the stomach, by mucus turnover and gastric peristalsis; (2) evasion from the human immune system and (3) efficient delivery of proteins into the gastric cell, such as the CagA oncoprotein. Therefore, bacteria with better adherence properties colonize the host at higher densities. H. pylori is one of the most genetically diverse bacterial species known and is equipped with an extraordinarily large set of outer membrane proteins, whose role in the infection and persistence process will be discussed in this review, as well as the different receptor structures that have been so far described for mucosal adherence.
Collapse
|