1
|
González-Acedo A, Illescas-Montes R, de Luna-Bertos E, Ruiz C, Ramos-Torrecillas J, García-Martínez O, Melguizo-Rodríguez L. Extra Virgin Olive Oil Phenolic Compounds Modulate the Gene Expression of Biomarkers Involved in Fibroblast Proliferation and Differentiation. Genes (Basel) 2024; 15:173. [PMID: 38397163 PMCID: PMC10887570 DOI: 10.3390/genes15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor β1 (TGF-β1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFβR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.
Collapse
Affiliation(s)
- Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, C/Santander, 1, 52005 Melilla, Spain;
| | - Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
- Institute of Neuroscience, Centro de Investigación Biomédica (CIBM), University of Granada, Parque de Tecnológico de la Salud (PTS), Avda. del Conocimiento S/N, Armilla, 18016 Granada, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| |
Collapse
|
2
|
Lee AR, Lee SY, Choi JW, Um IG, Na HS, Lee JH, Cho ML. Establishment of a humanized mouse model of keloid diseases following the migration of patient immune cells to the lesion: Patient-derived keloid xenograft (PDKX) model. Exp Mol Med 2023; 55:1713-1719. [PMID: 37524866 PMCID: PMC10474158 DOI: 10.1038/s12276-023-01045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/24/2023] [Indexed: 08/02/2023] Open
Abstract
Keloid disorder is an abnormal fibroproliferative reaction that can occur on any area of skin, and it can impair the quality of life of affected individuals. To investigate the pathogenesis and develop a treatment strategy, a preclinical animal model of keloid disorder is needed. However, keloid disorder is unique to humans, and the development of an animal model of keloid disorder is highly problematic. We developed the patient-derived keloid xenograft (PDKX), which is a humanized mouse model, and compared it to the traditional mouse xenograft model (transplantation of only keloid lesions). To establish the PDKX model, peripheral mononuclear cells (PBMCs) from ten keloid patients or five healthy control subjects were injected into NOD/SCID/IL-2Rγnull mice, and their keloid lesions were grafted onto the back after the engraftment of immune cells (transplantation of keloid lesions and KP PBMCs or HC PBMCs). Four weeks after surgery, the grafted keloid lesion was subjected to histologic evaluation. Compared to the traditional model, neotissue formed along the margin of the grafted skin, and lymphocyte infiltration and collagen synthesis were significantly elevated in the PDKX model. The neotissue sites resembled the margin areas of keloids in several respects. In detail, the levels of human Th17 cells, IL-17, HIF-1a, and chemokines were significantly elevated in the neotissue of the PDKX model. Furthermore, the weight of the keloid lesion was increased significantly in the PDKX model, which was due to the proinflammatory microenvironment of the keloid lesion. We confirmed that our patient-derived keloid xenograft (PDKX) model mimicked keloid disorder by recapitulating the in vivo microenvironment. This model will contribute to the investigation of cellular mechanisms and therapeutic treatments for keloid disorders.
Collapse
Affiliation(s)
- A Ram Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Yeong Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In Gyu Um
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung Ho Lee
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
3
|
La Cognata V, D’Amico AG, Maugeri G, Morello G, Guarnaccia M, Magrì B, Aronica E, D’Agata V, Cavallaro S. CXCR2 Is Deregulated in ALS Spinal Cord and Its Activation Triggers Apoptosis in Motor Neuron-Like Cells Overexpressing hSOD1-G93A. Cells 2023; 12:1813. [PMID: 37508478 PMCID: PMC10377984 DOI: 10.3390/cells12141813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by progressive depletion of motor neurons (MNs). Recent evidence suggests a role in ALS pathology for the C-X-C motif chemokine receptor 2 (CXCR2), whose expression was found increased at both mRNA and protein level in cortical neurons of sporadic ALS patients. Previous findings also showed that the receptor inhibition is able to prevent iPSC-derived MNs degeneration in vitro and improve neuromuscular function in SOD1-G93A mice. Here, by performing transcriptional analysis and immunofluorescence studies, we detailed the increased expression and localization of CXCR2 and its main ligand CXCL8 in the human lumbar spinal cord of sporadic ALS patients. We further investigated the functional role of CXCR2/ligands axis in NSC-34 motor neuron-like cells expressing human wild-type (WT) or mutant (G93A) SOD1. A significant expression of CXCR2 was found in doxycycline-induced G93A-SOD1-expressing cells, but not in WT cells. In vitro assays showed CXCR2 activation by GROα and MIP2α, two murine endogenous ligands and functional homologs of CXCL8, reduces cellular viability and triggers apoptosis in a dose dependent manner, while treatment with reparixin, a non-competitive allosteric CXCR2 inhibitor, effectively counteracts GROα and MIP2α toxicity, significantly inhibiting the chemokine-induced cell death. Altogether, data further support a role of CXCR2 axis in ALS etiopathogenesis and confirm its pharmacological modulation as a candidate therapeutic strategy.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Agata Grazia D’Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Benedetta Magrì
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 Amsterdam, The Netherlands
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| |
Collapse
|
4
|
Increased Expression of Galectin-3 in Skin Fibrosis: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:ijms232315319. [PMID: 36499646 PMCID: PMC9737805 DOI: 10.3390/ijms232315319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Skin fibrosis is a hallmark of a wide array of dermatological diseases which can greatly impact the patients' quality of life. Galectin-3 (GAL-3) has emerged as a central regulator of tissue fibrosis, playing an important pro-fibrotic role in numerous organs. Various studies are highlighting its importance as a skin fibrotic diseases biomarker; however, there is a need for further studies that clarify its role. This paper aims to ascertain whether the expression of GAL-3 is increased in relevant in vitro and in vivo models of skin fibrosis. We studied the role of GAL-3 in vitro using normal human dermal fibroblasts (NHDF) and fibrocytes. In addition, we used a skin fibrosis murine model (BALB/c mice) and human biopsies of healthy or keloid tissue. GAL-3 expression was analyzed using real time PCR, Western blot and immunostaining techniques. We report a significantly increased expression of GAL-3 in NHDF and fibrocytes cell cultures following stimulation with transforming growth factor β1 (TGFβ1). In vivo, GAL-3 expression was increased in a murine model of systemic sclerosis and in human keloid biopsies. In sum, this study underlines the involvement of GAL-3 in skin fibrosis using several models of the disease and highlights its role as a relevant target.
Collapse
|
5
|
Imai Y, Mori N, Nihashi Y, Kumagai Y, Shibuya Y, Oshima J, Sasaki M, Sasaki K, Aihara Y, Sekido M, Kida YS. Therapeutic Potential of Adipose Stem Cell-Derived Conditioned Medium on Scar Contraction Model. Biomedicines 2022; 10:biomedicines10102388. [PMID: 36289649 PMCID: PMC9598573 DOI: 10.3390/biomedicines10102388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Scars are composed of stiff collagen fibers, which contract strongly owing to the action of myofibroblasts. To explore the substances that modulate scar contracture, the fibroblast-populated collagen lattice (FPCL) model has been used. However, the molecular signature of the patient-derived FPCL model has not been verified. Here, we examined whether the patient-derived keloid FPCL model reflects scar contraction, analyzing detailed gene expression changes using comprehensive RNA sequencing and histological morphology, and revealed that these models are consistent with the changes during human scar contracture. Moreover, we examined whether conditioned media derived from adipose stem cells (ASC-CM) suppress the scar contracture of the collagen disc. Detailed time-series measurements of changes in disc area showed that the addition of ASC-CM significantly inhibited the shrinkage of collagen discs. In addition, a deep sequencing data analysis revealed that ASC-CM suppressed inflammation-related gene expression in the early phase of contraction; in the later phase, this suppression was gradually replaced by extracellular matrix (ECM)-related gene expression. These lines of data suggested the effectiveness of ASC-CM in suppressing scar contractures. Therefore, the molecular analysis of the ASC-CM actions found in this study will contribute to solving medical problems regarding pathological scarring in wound prognosis.
Collapse
Affiliation(s)
- Yukiko Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Nobuhito Mori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
| | - Yutaro Kumagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
| | - Yoichiro Shibuya
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Junya Oshima
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Masahiro Sasaki
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Kaoru Sasaki
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yukiko Aihara
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Mitsuru Sekido
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yasuyuki S. Kida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Correspondence: ; Tel.: +81-29-861-3000
| |
Collapse
|
6
|
Liu D, Zhang Y, Zhen L, Xu R, Ji Z, Ye Z. Activation of the NFκB signaling pathway in IL6+CSF3+ vascular endothelial cells promotes the formation of keloids. Front Bioeng Biotechnol 2022; 10:917726. [PMID: 36082167 PMCID: PMC9445273 DOI: 10.3389/fbioe.2022.917726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Keloid is a disease caused by abnormal proliferation of skin fibres, the causative mechanism of which remains unclear. Method: In this study, endothelial cells of keloids were studied using scRNAseq combined with bulk-RNAseq data from keloids. The master regulators driving keloid development were identified by transcription factor enrichment analysis. The pattern of changes in vascular endothelial cells during keloid development was explored by inferring endothelial cell differentiation trajectories. Deconvolution of bulkRNAseq by CIBERSORTX verified the pattern of keloidogenesis. Immunohistochemistry for verification of the lesion process in keloid endothelial cells. Results: The endothelial cells of keloids consist of four main cell populations (MMP1+ Endo0, FOS + JUN + Endo1, IL6+CSF3+Endo2, CXCL12 + Endo3). Endo3 is an endothelial progenitor cell, Endo1 is an endothelial cell in the resting state, Endo2 is an endothelial cell in the activated state and Endo0 is an endothelial cell in the terminally differentiated state. Activation of the NFΚB signaling pathway is a typical feature of Endo2 and represents the early skin state of keloids. Conclusion: We have identified patterns of vascular endothelial cell lesions during keloidogenesis and development, and have found that activation of the NFΚB signaling pathway is an essential feature of keloid formation. These findings are expected to contribute to the understanding of the pathogenesis of keloids and to the development of new targeted therapeutic agents for the lesional characteristics of vascular endothelial cells.
Collapse
Affiliation(s)
- Delin Liu
- Department of General Surgery, Institute for Minimally Invasive Surgery, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yidi Zhang
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Lisha Zhen
- School of Statistics, Renmin University of China, Beijing, China
- Beijing Sankuai Online Technology Co.,Ltd, Dhaka, Bangladesh
| | - Rong Xu
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Zhenling Ji
- Department of General Surgery, Institute for Minimally Invasive Surgery, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- *Correspondence: Zhenling Ji, ; Zheng Ye,
| | - Zheng Ye
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- *Correspondence: Zhenling Ji, ; Zheng Ye,
| |
Collapse
|
7
|
Xue M, Zhao R, March L, Jackson C. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Adv Wound Care (New Rochelle) 2022; 11:87-107. [PMID: 33607934 DOI: 10.1089/wound.2020.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Dermal fibroblasts are the major cell type in the skin's dermal layer. These cells originate from distinct locations of the embryo and reside in unique niches in the dermis. Different dermal fibroblasts exhibit distinct roles in skin development, homeostasis, and wound healing. Therefore, these cells are becoming attractive candidates for cell-based therapies in wound healing. Recent Advances: Human skin dermis comprises multiple fibroblast subtypes, including papillary, reticular, and hair follicle-associated fibroblasts, and myofibroblasts after wounding. Recent studies reveal that these cells play distinct roles in wound healing and contribute to diverse healing outcomes, including nonhealing chronic wound or excessive scar formation, such as hypertrophic scars (HTS) and keloids, with papillary fibroblasts having antiscarring and reticular fibroblast scar-forming properties. Critical Issues: The identities and functions of dermal fibroblast subpopulations in many respects remain unknown. In this review, we summarize the current understanding of dermal fibroblast heterogeneity, including their defined cell markers and dermal niches, dynamic changes, and contributions to skin wound healing, with the emphasis on scarless healing, healing with excessive scars (HTS and keloids), chronic wounds, and the potential application of this heterogeneity for developing cell-based therapies that allow wounds to heal faster with less scarring. Future Directions: Heterogeneous dermal fibroblast populations and their functions are poorly characterized. Refining and advancing our understanding of dermal fibroblast heterogeneity and their participation in skin homeostasis and wound healing may create potential therapeutic applications for nonhealing chronic wounds or wounds that heal with excessive scarring.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
8
|
La Cognata V, Golini E, Iemmolo R, Balletta S, Morello G, De Rosa C, Villari A, Marinelli S, Vacca V, Bonaventura G, Dell'Albani P, Aronica E, Mammano F, Mandillo S, Cavallaro S. CXCR2 increases in ALS cortical neurons and its inhibition prevents motor neuron degeneration in vitro and improves neuromuscular function in SOD1G93A mice. Neurobiol Dis 2021; 160:105538. [PMID: 34743985 DOI: 10.1016/j.nbd.2021.105538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease characterized by depletion of motor neurons (MNs), for which effective medical treatments are still required. Previous transcriptomic analysis revealed the up-regulation of C-X-C motif chemokine receptor 2 (CXCR2)-mRNA in a subset of sporadic ALS patients and SOD1G93A mice. Here, we confirmed the increase of CXCR2 in human ALS cortex, and showed that CXCR2 is mainly localized in cell bodies and axons of cortical neurons. We also investigated the effects of reparixin, an allosteric inhibitor of CXCR2, in degenerating human iPSC-derived MNs and SOD1G93A mice. In vitro, reparixin rescued MNs from apoptotic cell death, preserving neuronal morphology, mitochondrial membrane potential and cytoplasmic membrane integrity, whereas in vivo it improved neuromuscular function of SOD1G93A mice. Altogether, these data suggest a role for CXCR2 in ALS pathology and support its pharmacological inhibition as a candidate therapeutic strategy against ALS at least in a specific subgroup of patients.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Elisabetta Golini
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Rosario Iemmolo
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Sara Balletta
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Carla De Rosa
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Ambra Villari
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Sara Marinelli
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Valentina Vacca
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Paola Dell'Albani
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 Amsterdam, the Netherlands.
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy; Department of Physics and Astronomy "G. Galilei", University of Padua, Padova, Italy.
| | - Silvia Mandillo
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| |
Collapse
|
9
|
Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. Hypertrophic scars and keloids: Overview of the evidence and practical guide for differentiating between these abnormal scars. Exp Dermatol 2021; 30:146-161. [PMID: 32479693 PMCID: PMC7818137 DOI: 10.1111/exd.14121] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Although hypertrophic scars and keloids both generate excessive scar tissue, keloids are characterized by their extensive growth beyond the borders of the original wound, which is not observed in hypertrophic scars. Whether or not hypertrophic scars and keloids are two sides of the same coin or in fact distinct entities remains a topic of much debate. However, proper comparison between the two ideally occurs within the same study, but this is the exception rather than the rule. For this reason, the goal of this review was to summarize and evaluate all publications in which both hypertrophic scars and keloids were studied and compared to one another within the same study. The presence of horizontal growth is the mainstay of the keloid diagnosis and remains the strongest argument in support of keloids and hypertrophic scars being distinct entities, and the histopathological distinction is less straightforward. Keloidal collagen remains the strongest keloid parameter, but dermal nodules and α-SMA immunoreactivity are not limited to hypertrophic scars alone. Ultimately, the current hypertrophic scars-keloid differences are mostly quantitative in nature rather than qualitative, and many similar abnormalities exist in both lesions. Nonetheless, the presence of similarities does not equate the absence of fundamental differences, some of which may not yet have been uncovered given how much we still have to learn about the processes involved in normal wound healing. It therefore seems pertinent to continue treating hypertrophic scars and keloids as separate entities, until such a time as new findings more decisively convinces us otherwise.
Collapse
Affiliation(s)
- Grace C. Limandjaja
- Department of Molecular Cell Biology and ImmunologyAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Frank B. Niessen
- Department of Plastic SurgeryAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Rik J. Scheper
- Department of PathologyAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and ImmunologyAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Oral Cell BiologyAcademic Centre for Dentistry (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
10
|
Mattos MS, Ferrero MR, Kraemer L, Lopes GAO, Reis DC, Cassali GD, Oliveira FMS, Brandolini L, Allegretti M, Garcia CC, Martins MA, Teixeira MM, Russo RC. CXCR1 and CXCR2 Inhibition by Ladarixin Improves Neutrophil-Dependent Airway Inflammation in Mice. Front Immunol 2020; 11:566953. [PMID: 33123138 PMCID: PMC7566412 DOI: 10.3389/fimmu.2020.566953] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale Increased IL-8 levels and neutrophil accumulation in the airways are common features found in patients affected by pulmonary diseases such as Asthma, Idiopathic Pulmonary Fibrosis, Influenza-A infection and COPD. Chronic neutrophilic inflammation is usually corticosteroid insensitive and may be relevant in the progression of those diseases. Objective To explore the role of Ladarixin, a dual CXCR1/2 antagonist, in several mouse models of airway inflammation with a significant neutrophilic component. Findings Ladarixin was able to reduce the acute and chronic neutrophilic influx, also attenuating the Th2 eosinophil-dominated airway inflammation, tissue remodeling and airway hyperresponsiveness. Correspondingly, Ladarixin decreased bleomycin-induced neutrophilic inflammation and collagen deposition, as well as attenuated the corticosteroid resistant Th17 neutrophil-dominated airway inflammation and hyperresponsiveness, restoring corticosteroid sensitivity. Finally, Ladarixin reduced neutrophilic airway inflammation during cigarette smoke-induced corticosteroid resistant exacerbation of Influenza-A infection, improving lung function and mice survival. Conclusion CXCR1/2 antagonist Ladarixin offers a new strategy for therapeutic treatment of acute and chronic neutrophilic airway inflammation, even in the context of corticosteroid-insensitivity.
Collapse
Affiliation(s)
- Matheus Silverio Mattos
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Lucas Kraemer
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Augusto Oliveira Lopes
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego Carlos Reis
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabricio Marcus Silva Oliveira
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Cristiana Couto Garcia
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Satish L, Evdokiou A, Geletu E, Hahn JM, Supp DM. Pirfenidone inhibits epithelial-mesenchymal transition in keloid keratinocytes. BURNS & TRAUMA 2020; 8:tkz007. [PMID: 32405508 DOI: 10.1093/burnst/tkz007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 01/23/2023]
Abstract
Background Keloids are benign fibroproliferative skin lesions that are difficult to treat and become a lifetime predicament for patients. Several treatment modalities have been put forth, but as yet no satisfactory approach to the prevention or treatment of keloids has been identified. The process of epithelial-to-mesenchymal transition (EMT) has been implicated in keloid scarring, as keloid keratinocytes display an EMT-like phenotype. This study investigated the potential of pirfenidone, an antifibrotic agent, to counteract EMT-like alterations in keloid keratinocytes, including gene expression, cell migratory and proliferative functions. Methods Normal and keloid keratinocytes were isolated from discarded normal skin tissues and from resected keloid tissues, respectively. Cells were quiesced for 24 h without epidermal growth factor DS-Qi1MCDigital and were exposed to transforming growth factor-beta1 (TGF-β1; 10 ng/mL), with or without pirfenidone (400 μg/mL), for an additional 24 h. The effects of pirfenidone on cytotoxicity, cell migration, cell proliferation, and on expression of genes and proteins involved in EMT were assayed. Statistical significance was determined by two-way ANOVA using Sigma Plot. Results We found that pirfenidone did not elicit any cytotoxic effect at concentrations up to 1000 μg/mL. A statistically significant dose-dependent decrease in basal cell proliferation rate was noted in both normal and keloid keratinocytes when exposed to pirfenidone at concentrations ranging from 200 to 1000 μg/mL. Pirfenidone significantly decreased basal cell migration in both normal and keloid keratinocytes, but a significant decrease in TGF-β1-induced cell migration was seen only in keloid keratinocytes. Significant inhibition of the expression of TGF-β1-induced core EMT genes, namely hyaluronan synthase 2, vimentin, cadherin-11, and wingless-type MMTV integration site family, member 5A along with fibronectin-1, was observed in both normal and keloid keratinocytes treated with pirfenidone. In addition, the protein levels of vimentin and fibronectin were significantly reduced by pirfenidone (400 μg/mL) in both normal and keloid keratinocytes. Conclusions For the first time, this study shows the efficacy of pirfenidone in inhibiting the EMT-like phenotype in keratinocytes derived from keloids, suggesting that pirfenidone may counteract a critical contributor of keloid progression and recurrence.
Collapse
Affiliation(s)
- Latha Satish
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA.,Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45229, USA, and
| | - Alexander Evdokiou
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA
| | - Eleni Geletu
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA
| | - Jennifer M Hahn
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA
| | - Dorothy M Supp
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA.,Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Illescas-Montes R, Melguizo-Rodríguez L, García-Martínez O, de Luna-Bertos E, Manzano-Moreno FJ, Ruiz C, Ramos-Torrecillas J. Human Fibroblast Gene Expression Modulation Using 940 NM Diode Laser. Sci Rep 2019; 9:12037. [PMID: 31427686 PMCID: PMC6700136 DOI: 10.1038/s41598-019-48595-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Low-Level Laser Therapy is used as regenerative therapy in different clinical fields. This is due to its photobiomodulation effect via cell signaling on different cell populations, Including fibroblasts, cells involved in tissue regeneration and healing. The aim was to analyze the effect of 940 nm diode laser on the gene expression of different markers involved in fibroblast growth, differentiation, and migration. Real-time polymerase chain reaction (q-RT-PCR) was used to quantify the expression of fibroblast growth factor (FGF), connective tissue growth factor (CTGF), vascular-endothelial growth factor (VEGF), transforming growth factor β1 (TGF-β1), TGFβ-receptors (TGFβR1, TGFβR2, and TGFβR3), discoidin-domain receptor-2 (DDR2), matrix metalloproteinase-2 (MMP2), α-actin, fibronectin, decorin, and elastin on human fibroblast, treated with single dose (T1) or two doses (T2) of diode laser at 0.5 Watts and 4 J/cm2. A significant increase in the expression of FGF, TGF-β1, TGFβR1, TGFβR2, α-actin, fibronectin, decorin, DDR2 and MMP2 was observed after both treatments. A decrease was observed in expression of elastin (T1 and T2), and CTGF (T2). These changes underlie the biostimulatory effect of laser on fibroblasts, which translates into an increase in short-term proliferation and in long-term differentiation to myofibroblasts. These data support the therapeutic potential of diode laser for wound repair.
Collapse
Affiliation(s)
- Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain
| | - Francisco Javier Manzano-Moreno
- Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain.,Biomedical Group (BIO277). Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain. .,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain. .,Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM). Parque de Tecnológico de la Salud (PTS), Granada, Spain.
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain
| |
Collapse
|
13
|
Tan S, Khumalo N, Bayat A. Understanding Keloid Pathobiology From a Quasi-Neoplastic Perspective: Less of a Scar and More of a Chronic Inflammatory Disease With Cancer-Like Tendencies. Front Immunol 2019; 10:1810. [PMID: 31440236 PMCID: PMC6692789 DOI: 10.3389/fimmu.2019.01810] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Keloids are considered as benign fibroproliferative skin tumors growing beyond the site of the original dermal injury. Although traditionally viewed as a form of skin scarring, keloids display many cancer-like characteristics such as progressive uncontrolled growth, lack of spontaneous regression and extremely high rates of recurrence. Phenotypically, keloids are consistent with non-malignant dermal tumors that are due to the excessive overproduction of collagen which never metastasize. Within the remit of keloid pathobiology, there is increasing evidence for the various interplay of neoplastic-promoting and suppressing factors, which may explain its aggressive clinical behavior. Amongst the most compelling parallels between keloids and cancer are their shared cellular bioenergetics, epigenetic methylation profiles and epithelial-to-mesenchymal transition amongst other disease biological (genotypic and phenotypic) behaviors. This review explores the quasi-neoplastic or cancer-like properties of keloids and highlights areas for future study.
Collapse
Affiliation(s)
- Silvian Tan
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
| | - Nonhlanhla Khumalo
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Maeda D, Kubo T, Kiya K, Kawai K, Matsuzaki S, Kobayashi D, Fujiwara T, Katayama T, Hosokawa K. Periostin is induced by IL-4/IL-13 in dermal fibroblasts and promotes RhoA/ROCK pathway-mediated TGF-β1 secretion in abnormal scar formation. J Plast Surg Hand Surg 2019; 53:288-294. [DOI: 10.1080/2000656x.2019.1612752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daisuke Maeda
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koichiro Kiya
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenichiro Kawai
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Toshihiro Fujiwara
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Ko Hosokawa
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
15
|
Wang M, Chen L, Huang W, Jin M, Wang Q, Gao Z, Jin Z. Improving the anti-keloid outcomes through liposomes loading paclitaxel-cholesterol complexes. Int J Nanomedicine 2019; 14:1385-1400. [PMID: 30863067 PMCID: PMC6390862 DOI: 10.2147/ijn.s195375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Keloids represent benign fibroproliferative tumors which result from elevated expression of inflammation. Paclitaxel (PTX) was an effective chemotherapeutic agent and has been reported to have anti-fibrotic effects, but the strong hydrophobicity brings a challenge for its clinical application. Purpose The objective of this study was to improve the water solubility of PTX and investigate its anti-keloid effects. Methods We prepared a PTX-cholesterol-loaded liposomes (PTXL) by thin film evaporation fashion and characterized their physicochemical properties. We also investigated the effects of PTX on proliferation, invasion and fibrosis of keloid fibroblasts in vitro and in vivo. Results The prepared PTXL have a spherical appearance, a particle size of 101.43 nm and a zeta potential of −41.63 mV. PTXL possessed a high drug entrapment efficiency of 95.63% and exhibited a good stability within 30 days. The drugs in PTXL were released in a slow and sustained mode. The PTXL could be effectively uptaken into human keloids fibroblast (HKFs) in a time-dependent manner. In vitro, PTXL showed better ability on inhibiting cell proliferation, migration and invasion, and effectively on promoting apoptosis and arresting cell cycle in G2/M phase compared to PTX. Meanwhile, in vivo studies indicated that the PTXL had better performance on inhibiting the keloids growth compared to the PTX in keloid-bearing BALB/c nude mice model. Finally, we found PTX treatment suppressed the production of tumor necrosis factor alpah (TNF-α), interleukin 6 (IL-6) and transforming growth factor beta (TGF-β) and inhibited the expression of alpha smooth muscle actin (α-SMA) and collagen I in HKFs. The activation of protein kinase B (AKT)/glycogen synthase kinase 3 beta (GSK3β) signaling pathway also blocked by PTX in cultured HKFs and keloid tissues. LY294002, a PI3K (phosphatidylinositol 3-kinase)/AKT inhibitor, also suppressed the expression of TNF-α, IL-6 and TGF-β, and simultaneously, reduced the production of α-SMA and collagen I in HKFs. The inhibition of AKT/GSK3β signaling pathway contribute to inhibit the generation of fibrogenic cytokines by PTXL on ameliorating fibrosis progress in keloids. Conclusion Our results suggested that the developed PTXL would become a promising therapeutic agent in the field of anti-keloid therapy.
Collapse
Affiliation(s)
- Mengjiao Wang
- Klebs Research Center, Department of Dermatology, Yanbian University Hospital, Yanji 133000, China,
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Zhehu Jin
- Klebs Research Center, Department of Dermatology, Yanbian University Hospital, Yanji 133000, China,
| |
Collapse
|
16
|
Butzelaar L, Niessen FB, Talhout W, Schooneman DPM, Ulrich MM, Beelen RHJ, Mink van der Molen AB. Different properties of skin of different body sites: The root of keloid formation? Wound Repair Regen 2017; 25:758-766. [PMID: 28846161 DOI: 10.1111/wrr.12574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/03/2017] [Indexed: 01/24/2023]
Abstract
The purpose of this study was to examine extracellular matrix composition, vascularization, and immune cell population of skin sites prone to keloid formation. Keloids remain a complex problem, posing esthetical as well as functional difficulties for those affected. These scars tend to develop at anatomic sites of preference. Mechanical properties of skin vary with anatomic location and depend largely on extracellular matrix composition. These differences in extracellular matrix composition, but also vascularization and resident immune cell populations might play a role in the mechanism of keloid formation. To examine this hypothesis, skin samples of several anatomic locations were taken from 24 human donors within zero to 36 hours after they had deceased. Collagen content and cross-links were determined through high-performance liquid chromatography. The expression of several genes, involved in extracellular matrix production and degradation, was measured by means of real-time PCR. (Immuno)histochemistry was performed to detect fibroblasts, collagen, elastin, blood vessels, Langerhans cells, and macrophages. Properties of skin of keloid predilections sites were compared to properties of skin from other locations (nonpredilection sites [NPS]). The results indicated that there are site specific variations in extracellular matrix properties (collagen and cross-links) as well as macrophage numbers. Moreover, predilection sites (PS) for keloid formation contain larger amounts of collagen compared to NPS, but decreased numbers of macrophages, in particular classically activated CD40 positive macrophages. In conclusion, the altered (histological, protein, and genetic) properties of skin of keloid PS may cause a predisposition for and contribute to keloid formation.
Collapse
Affiliation(s)
- Liselotte Butzelaar
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Frank B Niessen
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Wendy Talhout
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Dennis P M Schooneman
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Magda M Ulrich
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, The Netherlands.,Association of Dutch Burn Centers, Beverwijk, The Netherlands
| | - Robert H J Beelen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Negahdari S, Galehdari H, Kesmati M, Rezaie A, Shariati G. Wound Healing Activity of Extracts and Formulations of Aloe vera, Henna, Adiantum capillus-veneris, and Myrrh on Mouse Dermal Fibroblast Cells. Int J Prev Med 2017; 8:18. [PMID: 28382194 PMCID: PMC5364744 DOI: 10.4103/ijpvm.ijpvm_338_16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Among the most important factors in wound healing pathways are transforming growth factor beta1 and vascular endothelial growth factor. Fibroblasts are the main cell in all phases wound closure. In this study, the extracts of plant materials such as Adiantum capillus-veneris, Commiphora molmol, Aloe vera, and henna and one mixture of them were used to treatment of normal mouse skin fibroblasts. Methods: Cytotoxic effects of each extract and their mixture were assessed on mouse skin fibroblasts cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We performed migration assays to assess migration properties of mouse skin fibroblasts cells in response to the extracts. Changes in the gene expression of the Tgfβ1 and Vegf-A genes were monitored by real-time polymerase chain reaction. Results: A. capillus-veneris, C. molmol and henna extract improved the expression of Tgfβ1 gene. All used extracts upregulated the expression of Vegf-A gene and promoted the migration of mouse fibroblast cells in vitro. Conclusions: The present study demonstrated that the mentioned herbal extracts might be effective in wound healing, through the improvement in the migration of fibroblast cells and regulating the gene expression of Tgfβ1 and Vegf-A genes in fibroblast cells treated with extracts.
Collapse
Affiliation(s)
- Samira Negahdari
- Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahnaz Kesmati
- Department of Biology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Anahita Rezaie
- Department of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Gholamreza Shariati
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Xiao K, Luo X, Wang X, Gao Z. MicroRNA‑185 regulates transforming growth factor‑β1 and collagen‑1 in hypertrophic scar fibroblasts. Mol Med Rep 2017; 15:1489-1496. [PMID: 28259900 PMCID: PMC5364971 DOI: 10.3892/mmr.2017.6179] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) and collagen type I (Col-1) serve a critical role in the development and progression of hypertrophic scarring (HS). The present study hypothesized that a post‑translational mechanism of microRNAs (miR) regulated the expression of TGF‑β1 and Col‑1 in HS fibroblasts (HSFBs). A collection of 20 HS tissues was compared with corresponding normal tissues from clinical patients, and the expression of miR‑185 was measured. Using PicTar, TargetScan and miRBase databases, it was identified that miR‑185 may be a regulator of TGF‑β1 and Col‑1 in humans. Based on these hypotheses, the expression of miR‑185, TGF‑β1 and Col‑1 in HS tissues was investigated. The results demonstrated that the expression of miR‑185 was markedly suppressed, and TGF‑β1 and Col‑1 levels were increased, in HS tissues. The expression levels of endogenous miR‑185 negatively correlated with the TGF‑β1 and Col‑1 mRNA levels (Pearson's correlation coefficient r=‑0.674, P<0.01 and r=‑0.590, P<0.01, respectively). In vitro, miR‑185 can regulate TGF‑β1 and Col‑1 through the predicted binding sites in its 3'‑untranslated region. miR‑185 had an effect on cell proliferation and apoptosis, thereby regulating HSFBs growth. In addition, miR‑185 gain‑of‑function decreased TGF‑β1 and Col‑1 protein expression, and miR‑185 loss‑of‑function increased TGF‑β1 and Col‑1 protein expression in HSFBs. In conclusion, overexpressed miR‑185 could inhibit HSFBs growth, and the underlying mechanism was mediated, at least partly, through the suppression of TGF‑β1 and Col‑1 expression. However, above all, miR‑185 might serve as a potential therapeutic approach for the treatment of HS.
Collapse
Affiliation(s)
- Kaiyan Xiao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiuxia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
19
|
Characterization of a Vascular Endothelial Growth Factor-loaded Bioresorbable Delivery System for Pulp Regeneration. J Endod 2016; 43:77-83. [PMID: 27939739 DOI: 10.1016/j.joen.2016.09.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Vascular endothelial growth factor (VEGF) is a signal protein that stimulates angiogenesis and vasculogenesis and has been used in tissue regeneration and pulp regeneration experimental models. The purpose of this study was to develop a delivery system composed of a biodegradable fiber and controlled release of VEGF to promote cell viability and secure an adequate blood supply for the survival of human stem cells of the apical papilla (SCAP) favoring endodontic regenerative procedures. METHODS We developed a polydioxanone fiber, 50 μm in diameter, loaded with VEGF at a linear concentration of 12.2 ng/cm. Cytotoxic effects of the VEGF-loaded fiber (VF) on SCAP and mouse fibroblasts were assessed by using a multiparametric assay kit (XTT-NR-CVDE [Xenometrix, Allschwil, Switzerland]). We evaluated VF-induced mRNA expression of downstream growth factors by using a human growth factor Taqman array in real-time polymerase chain reaction. We also assessed the in vivo subcutaneous reaction of C57BL/6 mice to implants of VF alone and human root fragments (10 mm in length) filled with VF after 10, 20, and 45 days. Statistical analyses were performed by using analysis of variance and Student t tests or non-parametric alternatives. RESULTS Enzyme-linked immunosorbent assay verified detectable concentrations of released VEGF in solution for 25 days. No cytotoxicity was observed on SCAP and mouse fibroblasts treated with VEGF. In addition, VEGF treatment also induced the expression of additional growth factors with roles in tissue and blood vessel formation and neuroprotective function. Implantation of VF and root fragments filled with VF showed biocompatibility in vivo, promoting new blood vessels and connective tissue formation into the root canal space with negligible inflammation. CONCLUSIONS Our results show that the VF used in this study is biocompatible and may be a promising scaffold for additional optimization and use in endodontic regenerative procedures.
Collapse
|
20
|
Andrews JP, Marttala J, Macarak E, Rosenbloom J, Uitto J. Keloids: The paradigm of skin fibrosis - Pathomechanisms and treatment. Matrix Biol 2016; 51:37-46. [PMID: 26844756 DOI: 10.1016/j.matbio.2016.01.013] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Keloids, fibroproliferative dermal tumors with effusive accumulation of extracellular matrix (ECM) components, particularly collagen, result from excessive expression of growth factors and cytokines. The etiology of keloids is unknown but they occur after dermal injury in genetically susceptible individuals, and they cause both physical and psychological distress for the affected individuals. Several treatment methods for keloids exist, including the combination therapy of surgical excision followed by intralesional steroid therapy, however, they have high recurrence rate regardless of the current treatment method. Improved understanding of the pathomechanisms leading to keloid formation will hopefully identify pathways that serve as specific targets to improve therapy for this devastating, currently intractable, disorder.
Collapse
Affiliation(s)
- Jonathan P Andrews
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jaana Marttala
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edward Macarak
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joel Rosenbloom
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Ding J, Tredget EE. The Role of Chemokines in Fibrotic Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:673-686. [PMID: 26543681 DOI: 10.1089/wound.2014.0550] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Significance: Main dermal forms of fibroproliferative disorders are hypertrophic scars (HTS) and keloids. They often occur after cutaneous wound healing after skin injury, or keloids even form spontaneously in the absence of any known injury. HTS and keloids are different in clinical performance, morphology, and histology, but they all lead to physical and psychological problems for survivors. Recent Advances: Although the mechanism of wound healing at cellular and tissue levels has been well described, the molecular pathways involved in wound healing, especially fibrotic healing, is incompletely understood. Critical Issues: Abnormal scars not only lead to increased health-care costs but also cause significant psychological problems for survivors. A plethora of therapeutic strategies have been used to prevent or attenuate excessive scar formation; however, most therapeutic approaches remain clinically unsatisfactory. Future Directions: Effective care depends on an improved understanding of the mechanisms that cause abnormal scars in patients. A thorough understanding of the roles of chemokines in cutaneous wound healing and abnormal scar formation will help provide more effective preventive and therapeutic strategies for dermal fibrosis as well as for other proliferative disorders.
Collapse
Affiliation(s)
- Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Edward E. Tredget
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Division of Critical Care Medicine, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Rees PA, Greaves NS, Baguneid M, Bayat A. Chemokines in Wound Healing and as Potential Therapeutic Targets for Reducing Cutaneous Scarring. Adv Wound Care (New Rochelle) 2015; 4:687-703. [PMID: 26543682 DOI: 10.1089/wound.2014.0568] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Cutaneous scarring is an almost inevitable end point of adult human wound healing. It is associated with significant morbidity, both physical and psychological. Pathological scarring, including hypertrophic and keloid scars, can be particularly debilitating. Manipulation of the chemokine system may lead to effective therapies for problematic lesions. Recent Advances: Rapid advancement in the understanding of chemokines and their receptors has led to exciting developments in the world of therapeutics. Modulation of their function has led to clinically effective treatments for conditions as diverse as human immunodeficiency virus and inflammatory bowel disease. Potential methods of targeting chemokines include monoclonal antibodies, small-molecule antagonists, interference with glycosaminoglycan binding and the use of synthetic truncated chemokines. Early work has shown promising results on scar development and appearance when the chemokine system is manipulated. Critical Issues: Chemokines are implicated in all stages of wound healing leading to the development of a cutaneous scar. An understanding of entirely regenerative wound healing in the developing fetus and how the expression of chemokines and their receptors change during the transition to the adult phenotype is central to addressing pathological scarring in adults. Future Directions: As our understanding of chemokine/receptor interactions and scar formation evolves it has become apparent that effective therapies will need to mirror the complexities in these diverse biological processes. It is likely that sophisticated treatments that sequentially influence multiple ligand/receptor interactions throughout all stages of wound healing will be required to deliver viable treatment options.
Collapse
Affiliation(s)
- Peter Adam Rees
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, United Kingdom
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Nicholas Stuart Greaves
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, United Kingdom
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Mohamed Baguneid
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Furie N, Shteynberg D, Elkhatib R, Perry L, Ullmann Y, Feferman Y, Preis M, Flugelman MY, Tzchori I. Fibulin-5 regulates keloid-derived fibroblast-like cells through integrin beta-1. Int J Cosmet Sci 2015; 38:35-40. [PMID: 26095157 DOI: 10.1111/ics.12245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 06/05/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Keloid scar is pathological tissue that appears after skin injury, and that is more aggressive than hypertrophic scars. Keloid scars are characterized by increased proliferation of fibroblast-like cells (FLCs) and the accumulation of extracellular matrix, mainly collagen. Fibulin-5, a glycoprotein secreted by many cell types, is a component of the extracellular matrix. We investigated the effect of fibulin-5 on the adhesion and proliferation of FLCs derived from keloid scars and the role of integrin beta-1 in these activities. METHODS Fibroblast-like cells were isolated from six keloid scars and cultured on plates coated with fibulin-5 or with gelatin. Cells were incubated for 72-96 h to examine proliferation rates and incubated for 240 min, with washings at 20, 40, 60, 90, 120, 180 min, to assess adhesion rates. To examine the role of integrin beta-1, the anti-human integrin beta-1 (CD29) antibody was added to the culture medium. RESULTS Fibroblast-like cells from keloids cultured on a fibulin-5-coated surface showed a significantly reduced proliferation rate and a delayed adhesion rate, compared to cells cultured on gelatin-coated dishes. Adherence of these cells to fibulin-5 pre-coated wells was significantly reduced in the presence of anti-human integrin beta-1 (CD29) antibodies. Our current findings are similar to previously observed reduced proliferation in vascular smooth muscle cells overexpressing fibulin-5. We did not test the effects of fibulin-5 on normal fibroblasts. CONCLUSION This study demonstrates the pivotal role of the extracellular protein, fibulin-5, on the adhesion and proliferation of human keloid-derived cells, through binding to integrin beta-1.
Collapse
Affiliation(s)
- N Furie
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, 7 Michal Street, Haifa 34361, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion IIT, P.O.B. 9649, Efron Street, Bat Galim, Haifa 31096, Israel
| | - D Shteynberg
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, 7 Michal Street, Haifa 34361, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion IIT, P.O.B. 9649, Efron Street, Bat Galim, Haifa 31096, Israel
| | - R Elkhatib
- Ruth and Bruce Rappaport Faculty of Medicine, Technion IIT, P.O.B. 9649, Efron Street, Bat Galim, Haifa 31096, Israel.,Department of Plastic Surgery, Ramabam - Health Care Campus, P.O.B 9602, Haifa 3109601, Israel
| | - L Perry
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, 7 Michal Street, Haifa 34361, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion IIT, P.O.B. 9649, Efron Street, Bat Galim, Haifa 31096, Israel
| | - Y Ullmann
- Ruth and Bruce Rappaport Faculty of Medicine, Technion IIT, P.O.B. 9649, Efron Street, Bat Galim, Haifa 31096, Israel.,Department of Plastic Surgery, Ramabam - Health Care Campus, P.O.B 9602, Haifa 3109601, Israel
| | - Y Feferman
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, 7 Michal Street, Haifa 34361, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion IIT, P.O.B. 9649, Efron Street, Bat Galim, Haifa 31096, Israel
| | - M Preis
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, 7 Michal Street, Haifa 34361, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion IIT, P.O.B. 9649, Efron Street, Bat Galim, Haifa 31096, Israel
| | - M Y Flugelman
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, 7 Michal Street, Haifa 34361, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion IIT, P.O.B. 9649, Efron Street, Bat Galim, Haifa 31096, Israel
| | - I Tzchori
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, 7 Michal Street, Haifa 34361, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion IIT, P.O.B. 9649, Efron Street, Bat Galim, Haifa 31096, Israel
| |
Collapse
|
24
|
Aspidin PB, a novel natural anti-fibrotic compound, inhibited fibrogenesis in TGF-β1-stimulated keloid fibroblasts via PI-3K/Akt and Smad signaling pathways. Chem Biol Interact 2015; 238:66-73. [PMID: 26054450 DOI: 10.1016/j.cbi.2015.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/19/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022]
Abstract
Keloid is an overgrowth of scar tissue that develops around a wound. The mechanisms of keloid formation and development still remain unknown, and no effective treatment is available. Searching for active natural resources may develop better prevention and treatment approaches for keloids. Aspidin PB is a natural resource with lower toxicity. We explored its effect on the regulation of TGF-β1-induced expression of type I collagen, CTGF, and α-SMA in keloid fibroblasts (KFs). Western blotting was used to detect the expression levels of type I collagen, CTGF, α-SMA, PI-3K/Akt and Smad-dependent and Smad-independent signaling pathway. The effect of aspidin PB on cell viability in human keloid fibroblasts was measured by MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). The percentage of the apoptotic cells was studied by flow cytometry. Based on our results, we revealed that aspidin PB inhibited the production of type I collagen, CTGF, and α-SMA in TGF-β1-induced KFs by blocking PI-3K/Akt signaling pathway. The TGF-β1-mediated phosphorylated levels of Smad2/3 were inhibited by aspidin PB pretreatment. Conclusively, our study suggests that aspidin PB has an inhibitory effect on fibrogenesis in TGF-β1-induced KFs. Our findings imply that aspidin PB has a therapeutic potential to intervene and prevent keloids and other fibrotic diseases.
Collapse
|
25
|
Chen Y, Liao N, Lu F, Peng H, Gao J. The role of Duffy antigen receptor for chemokines in keloids. Gene 2015; 570:44-9. [PMID: 26045366 DOI: 10.1016/j.gene.2015.05.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/27/2015] [Accepted: 05/30/2015] [Indexed: 11/17/2022]
Abstract
This study aims to determine the relationship between Duffy antigen receptor for chemokines (DARC) and keloid pathogenesis. DARC expression was determined by immunohistochemistry, real-time PCR, and Western blot analysis. Cell proliferation was assessed by CCK-8 assay. Cell migration and invasion abilities were measured by the shift assay. Levels of CC chemokine ligand 2 (CCL2), CXC chemokine ligand 8 (CXCL8), and matrix metalloproteinase 2 (MMP2) were detected by real-time PCR and ELISA. Our results showed that DARC levels were elevated in human keloid fibroblasts. After knocking down DARC, cell proliferation was not altered, whereas the migration and invasion abilities of keloid fibroblasts were significantly elevated. Additionally, the mRNA expression levels of CCL2, CXCL8, and MMP2 were not influenced by DARC knockdown. However, the secretion of CCL2, but not CXCL8 or MMP2, was significantly increased after DARC knockdown. Our results suggest that DARC might inhibit the secretion of CCL2. Moreover, DARC knockdown increases the migration and invasion abilities of keloid fibroblasts.
Collapse
Affiliation(s)
- Ying Chen
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Breast Surgery, Guangdong Traditional Chinese Medicine Hospital, Guangzhou 510000, Guangdong, China
| | - Nong Liao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Plastic Surgery, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou 510150, Guangdong, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hui Peng
- Department of Pathology, Guangdong Traditional Chinese Medicine Hospital, Guangzhou 510000, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
26
|
Genome-Wide Scan for Methylation Profiles in Keloids. DISEASE MARKERS 2015; 2015:943176. [PMID: 26074660 PMCID: PMC4446486 DOI: 10.1155/2015/943176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/28/2015] [Indexed: 12/29/2022]
Abstract
Keloids are benign fibroproliferative tumors of the skin which commonly occur after injury mainly in darker skinned patients. Medical treatment is fraught with high recurrence rates mainly because of an incomplete understanding of the biological mechanisms that lead to keloids. The purpose of this project was to examine keloid pathogenesis from the epigenome perspective of DNA methylation. Genome-wide profiling used the Infinium HumanMethylation450 BeadChip to interrogate DNA from 6 fresh keloid and 6 normal skin samples from 12 anonymous donors. A 3-tiered approach was used to call out genes most differentially methylated between keloid and normal. When compared to normal, of the 685 differentially methylated CpGs at Tier 3, 510 were hypomethylated and 175 were hypermethylated with 190 CpGs in promoter and 495 in nonpromoter regions. The 190 promoter region CpGs corresponded to 152 genes: 96 (63%) were hypomethylated and 56 (37%) hypermethylated. This exploratory genome-wide scan of the keloid methylome highlights a predominance of hypomethylated genomic landscapes, favoring nonpromoter regions. DNA methylation, as an additional mechanism for gene regulation in keloid pathogenesis, holds potential for novel treatments that reverse deleterious epigenetic changes. As an alternative mechanism for regulating genes, epigenetics may explain why gene mutations alone do not provide definitive mechanisms for keloid formation.
Collapse
|
27
|
Hochman B, Isoldi FC, Furtado F, Ferreira LM. New approach to the understanding of keloid: psychoneuroimmune-endocrine aspects. Clin Cosmet Investig Dermatol 2015; 8:67-73. [PMID: 25709489 PMCID: PMC4329995 DOI: 10.2147/ccid.s49195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The skin is a dynamic and complex organ that relies on the interrelation among different cell types, macromolecules, and signaling pathways. Further, the skin has interactions with its own appendages and other organs such as the sebaceous glands and hair follicles, the kidney, and adrenal glands; systems such as the central nervous system; and axes such as the hypothalamic–pituitary–adrenal axis. These continuous connections give the skin its versatility, and when an injury is caused, some triggers start a cascade of events designed to restore its integrity. Nowadays, it is known that this psychoneuroimmune–endocrine intercommunication modulates both the homeostatic condition and the healing process. In this sense, the skin conditions before a trauma, whether of endogenous (acne) or exogenous origin (injury or surgical incision), could regulate the process of tissue repair. Most skin diseases such as psoriasis and atopic dermatitis, among others, have in their pathophysiology a psychogenic component that triggers integrated actions in the nervous, immune, and endocrine systems. However, fibroproliferative disorders of wound healing, such as hypertrophic scar and keloid, are not yet included in this listing, despite showing correlation with stress, especially with the psychosocial character. This review, by understanding the “brain–skin connection”, presents evidence that allows us to understand the keloid as a psychomediated disease.
Collapse
Affiliation(s)
- Bernardo Hochman
- Plastic Surgery Division, Federal University of São Paulo, São Paulo, Brazil
| | | | - Fabianne Furtado
- Plastic Surgery Division, Federal University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
28
|
NGF accelerates cutaneous wound healing by promoting the migration of dermal fibroblasts via the PI3K/Akt-Rac1-JNK and ERK pathways. BIOMED RESEARCH INTERNATIONAL 2014; 2014:547187. [PMID: 25006578 PMCID: PMC4055427 DOI: 10.1155/2014/547187] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/12/2014] [Indexed: 11/18/2022]
Abstract
As a well-known neurotrophic factor, nerve growth factor (NGF) has also been extensively recognized for its acceleration of healing in cutaneous wounds in both animal models and randomized clinical trials. However, the underlying mechanisms accounting for the therapeutic effect of NGF on skin wounds are not fully understood. NGF treatment significantly accelerated the rate of wound healing by promoting wound reepithelialization, the formation of granulation tissue, and collagen production. To explore the possible mechanisms of this process, the expression levels of CD68, VEGF, PCNA, and TGF-β1 in wounds were detected by immunohistochemical staining. The levels of these proteins were all significantly raised in NGF-treated wounds compared to untreated controls. NGF also significantly promoted the migration, but not the proliferation, of dermal fibroblasts. NGF induced a remarkable increase in the activity of PI3K/Akt, JNK, ERK, and Rac1, and blockade with their specific inhibitors significantly impaired the NGF-induced migration. In conclusion, NGF significantly accelerated the healing of skin excisional wounds in rats and the fibroblast migration induced by NGF may contribute to this healing process. The activation of PI3K/Akt, Rac1, JNK, and ERK were all involved in the regulation of NGF-induced fibroblast migration.
Collapse
|
29
|
Russo RC, Garcia CC, Teixeira MM, Amaral FA. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 2014; 10:593-619. [DOI: 10.1586/1744666x.2014.894886] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Ashcroft KJ, Syed F, Bayat A. Site-specific keloid fibroblasts alter the behaviour of normal skin and normal scar fibroblasts through paracrine signalling. PLoS One 2013; 8:e75600. [PMID: 24348987 PMCID: PMC3857170 DOI: 10.1371/journal.pone.0075600] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 08/19/2013] [Indexed: 01/31/2023] Open
Abstract
Keloid disease (KD) is an abnormal cutaneous fibroproliferative disorder of unknown aetiopathogenesis. Keloid fibroblasts (KF) are implicated as mediators of elevated extracellular matrix deposition. Aberrant secretory behaviour by KF relative to normal skin fibroblasts (NF) may influence the disease state. To date, no previous reports exist on the ability of site-specific KF to induce fibrotic-like phenotypic changes in NF or normal scar fibroblasts (NS) by paracrine mechanisms. Therefore, the aim of this study was to investigate the influence of conditioned media from site-specific KF on the cellular and molecular behaviour of both NF and NS enabled by paracrine mechanisms. Conditioned media was collected from cultured primary fibroblasts during a proliferative log phase of growth including: NF, NS, peri-lesional keloid fibroblasts (PKF) and intra-lesional keloid fibroblasts (IKF). Conditioned media was used to grow NF, NS, PKF and IKF cells over 240 hrs. Cellular behavior was monitored through real time cell analysis (RTCA), proliferation rates and migration in a scratch wound assay. Fibrosis-associated marker expression was determined at both protein and gene level. PKF conditioned media treatment of both NF and NS elicited enhanced cell proliferation, spreading and viability as measured in real time over 240 hrs versus control conditioned media. Following PKF and IKF media treatments up to 240 hrs, both NF and NS showed significantly elevated proliferation rates (p<0.03) and migration in a scratch wound assay (p<0.04). Concomitant up-regulation of collagen I, fibronectin, α-SMA, PAI-1, TGF-β and CTGF (p<0.03) protein expression were also observed. Corresponding qRT-PCR analysis supported these findings (P<0.03). In all cases, conditioned media from growing marginal PKF elicited the strongest effects. In conclusion, primary NF and NS cells treated with PKF or IKF conditioned media exhibit enhanced expression of fibrosis-associated molecular markers and increased cellular activity as a result of keloid fibroblast-derived paracrine factors.
Collapse
Affiliation(s)
- Kevin J. Ashcroft
- Plastic & Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, United Kingdom
- Institute of Inflammation & Repair, University of Manchester, Manchester, United Kingdom
| | - Farhatullah Syed
- Plastic & Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, United Kingdom
- Institute of Inflammation & Repair, University of Manchester, Manchester, United Kingdom
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, United Kingdom
- Institute of Inflammation & Repair, University of Manchester, Manchester, United Kingdom
- Department of Plastic and Reconstructive Surgery, University Hospital South Manchester Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- The University of Manchester, Manchester Academic Health Science Centre, University Hospital South Manchester Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Martins-Green M, Petreaca M, Wang L. Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:327-347. [PMID: 24587971 DOI: 10.1089/wound.2012.0380] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
SIGNIFICANCE Normal wound healing progresses through a series of overlapping phases, all of which are coordinated and regulated by a variety of molecules, including chemokines. Because these regulatory molecules play roles during the various stages of healing, alterations in their presence or function can lead to dysregulation of the wound-healing process, potentially leading to the development of chronic, nonhealing wounds. RECENT ADVANCES A discovery that chemokines participate in a variety of disease conditions has propelled the study of these proteins to a level that potentially could lead to new avenues to treat disease. Their small size, exposed termini, and the fact that their only modifications are two disulfide bonds make them excellent targets for manipulation. In addition, because they bind to G-protein-coupled receptors (GPCRs), they are highly amenable to pharmacological modulation. CRITICAL ISSUES Chemokines are multifunctional, and in many situations, their functions are highly dependent on the microenvironment. Moreover, each specific chemokine can bind to several GPCRs to stimulate the function, and both can function as monomers, homodimers, heterodimers, and even oligomers. Activation of one receptor by any single chemokine can lead to desensitization of other chemokine receptors, or even other GPCRs in the same cell, with implications for how these proteins or their receptors could be used to manipulate function. FUTURE DIRECTIONS Investment in better understanding of the functions of chemokines and their receptors in a local context can reveal new ways for therapeutic intervention. Understanding how different chemokines can activate the same receptor and vice versa could identify new possibilities for drug development based on their heterotypic interactions.
Collapse
Affiliation(s)
- Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Melissa Petreaca
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Lei Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| |
Collapse
|
32
|
Russo RC, Garcia CC, Barcelos LS, Rachid MA, Guabiraba R, Roffê E, Souza ALS, Sousa LP, Mirolo M, Doni A, Cassali GD, Pinho V, Locati M, Teixeira MM. Phosphoinositide 3-kinase γ plays a critical role in bleomycin-induced pulmonary inflammation and fibrosis in mice. J Leukoc Biol 2010; 89:269-82. [PMID: 21048214 DOI: 10.1189/jlb.0610346] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PI3Kγ is central in signaling diverse arrays of cellular functions and inflammation. Pulmonary fibrosis is associated with pulmonary inflammation, angiogenesis, and deposition of collagen and is modeled by instillation of bleomycin. The role of PI3Kγ in mediating bleomycin-induced pulmonary inflammation and fibrosis in mice and potential mechanisms involved was investigated here. WT or PI3Kγ KO mice were instilled with bleomycin and leukocyte subtype influx, cytokine and chemokine levels, and angiogenesis and tissue fibrosis evaluated. The activation of lung-derived leukocytes and fibroblasts was evaluated in vitro. The relevance of PI3Kγ for endothelial cell function was evaluated in HUVECs. PI3Kγ KO mice had greater survival and weight recovery and less fibrosis than WT mice after bleomycin instillation. This was associated with decreased production of TGF-β(1) and CCL2 and increased production of IFN-γ and IL-10. There was reduced expression of collagen, fibronectin, α-SMA, and von Willebrand factor and decreased numbers and activation of leukocytes and phosphorylation of AKT and IκB-α. PI3Kγ KO mice had a reduced number and area of blood vessels in the lungs. In vitro, treatment of human endothelial cells with the PI3Kγ inhibitor AS605240 decreased proliferation, migration, and formation of capillary-like structures. AS605240 also decreased production of collagen by murine lung-derived fibroblasts. PI3Kγ deficiency confers protection against bleomycin-induced pulmonary injury, angiogenesis, and fibrosis through the modulation of leukocyte, fibroblast, and endothelial cell functions. Inhibitors of PI3Kγ may be beneficial for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Remo C Russo
- Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zeng Q, Chen W. The functional behavior of a macrophage/fibroblast co-culture model derived from normal and diabetic mice with a marine gelatin-oxidized alginate hydrogel. Biomaterials 2010; 31:5772-81. [PMID: 20452666 DOI: 10.1016/j.biomaterials.2010.04.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/12/2010] [Indexed: 01/13/2023]
Abstract
Tissues/cells-mediated biodegradable material degradation is epitomized by the constantly changing tissues/cell-implant interface, implicating the constant adaptation of the tissues/cells. Macrophages and fibroblasts are multi-functional cells highly involved in the interactions; the two cell types modulates the behaviors of each other, but their combinatorial functional behavior in the presence of interactive bioactive wound dressings has not been adequately examined. The activity is further complicated by the implantation of biodegradable materials, such as hydrogels commonly utilized as wound dressings, in a pathological environment and this is exemplified by the macrophages with a diabetic pathology producing an alternative cytokine profile which is implicated in wound healing delay. In this study, an in situ gelable formable/conformable hydrogel formulated from modified alginate and marine gelatin was used as a model biodegradable interactive wound dressing to elucidate the combinatorial behavior of macrophages/fibroblasts derived from both normal and diabetic hosts. Cell proliferation, migration and distribution were first characterized; this was followed by simultaneous quantitative detection of 40 inflammatory cytokines and chemokines by a protein microarray. The results showed that the macrophages/fibroblasts co-culture promoted fibroblasts proliferation and migration in the presence of the hydrogel; moreover, the expressions of inflammatory cytokines and chemokines were altered when compared with the corresponding fibroblasts or macrophages monocultures. The inflammatory cytokines patterns between the normal and diabetic hosts were considerably different.
Collapse
Affiliation(s)
- Qiong Zeng
- Department of Biomedical Engineering, Health Science Center T18-030, State University of New York-Stony Brook, Stony Brook, NY 11794-8181, USA
| | | |
Collapse
|
34
|
Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol 2009; 21:40-6. [PMID: 19944178 DOI: 10.1016/j.semcdb.2009.11.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 11/13/2009] [Accepted: 11/20/2009] [Indexed: 12/13/2022]
Abstract
Tumor development is critically dependent on the formation of a supporting stroma consisting of neovasculature, inflammatory cells and activated fibroblasts. Activated fibroblasts present a heterogeneous cell population not only in regard to the expression of marker molecules but also to their origin and molecular signaling properties. The plasticity of this cell type is pointed out by the multiple transdifferentiation events that lead to the generation of activated fibroblasts which can arise from resting fibroblasts, epithelial and endothelial cells as well as from mesenchymal stem cells. Cellular in vitro and in vivo experiments have changed the perspective of fibroblasts from passive "bystanders" in the tumor microenvironment to that of important drivers of tumor progression. Here, we describe the multiple origins of fibroblast recruitment to the tumor tissue as well as the function of activated fibroblasts during tumor initiation, progression, metastasis and anti-VEGF resistance. The identification of markers present in activated fibroblasts as well as a better understanding how these cells influence other tumor compartments has led to the clinical development of anti-tumor therapies.
Collapse
|
35
|
Rossiello L, D'Andrea F, Grella R, Signoriello G, Abbondanza C, De Rosa C, Prudente M, Morlando M, Rossiello R. Differential expression of cyclooxygenases in hypertrophic scar and keloid tissues. Wound Repair Regen 2009; 17:750-7. [DOI: 10.1111/j.1524-475x.2009.00530.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Unfolded protein response regulation in keloid cells. J Surg Res 2009; 167:151-7. [PMID: 19631342 DOI: 10.1016/j.jss.2009.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 04/06/2009] [Accepted: 04/09/2009] [Indexed: 11/20/2022]
Abstract
BACKGROUND Keloids are a common form of pathologic wound healing characterized by excessive production of extracellular matrix. The unfolded protein response (UPR) is a cellular response to hypoxia, a component of the wound microenvironment, capable of protecting cells from the effects of over-accumulation of misfolded proteins. Since keloids have hypersecretion of extracellular matrix, we hypothesized that keloid fibroblasts (KFs) may have enhanced activation of the UPR compared with normal fibroblasts (NFs). METHODS KFs and NFs were placed in a hypoxia chamber for 0, 24, and 48h. We also used tunicamycin to specifically up-regulate the UPR. UPR activation was assayed by PCR for xbp-1 splicing and by immunoblotting with specific antibodies for the three UPR transducers. Nuclear localization of XBP-1 protein in KFs was confirmed by immunofluorescence. RESULTS There is increased activation of XBP-1 protein in KFs compared with NFs following exposure to hypoxia. Pancreatic ER kinase (PERK) and ATF-6, two other pathways activated by the UPR, show comparable activation between KFs and NFs. We confirmed that there is enhanced activation of XBP-1 by demonstrating increased nuclear localization of XBP-1 using immunofluorescence. CONCLUSION In contrast to our initial hypothesis that keloids would have broad activation of the UPR, we demonstrate here that there is a specific up-regulation of one facet of the UPR response. This may represent a specific molecular defect in KFs compared with NFs, and also suggests modulation of the UPR can be used in wound healing therapy.
Collapse
|
37
|
CXCR2 antagonists for the treatment of pulmonary disease. Pharmacol Ther 2008; 121:55-68. [PMID: 19026683 DOI: 10.1016/j.pharmthera.2008.10.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 10/02/2008] [Indexed: 01/03/2023]
Abstract
Chemokines have long been implicated in the initiation and amplification of inflammatory responses by virtue of their role in leukocyte chemotaxis. The expression of one of the receptors for these chemokines, CXCR2, on a variety of cell types and tissues suggests that these receptors may have a broad functional role under both constitutive conditions and in the pathophysiology of a number of acute and chronic diseases. With the development of several pharmacological, immunological and genetic tools to study CXCR2 function, an important role for this CXC chemokine receptor subtype has been identified in chronic obstructive pulmonary disease (COPD), asthma and fibrotic pulmonary disorders. Interference with CXCR2 receptor function has demonstrated different effects in the lungs including inhibition of pulmonary damage induced by neutrophils (PMNs), antigen or irritant-induced goblet cell hyperplasia and angiogenesis/collagen deposition caused by lung injury. Many of these features are common to inflammatory and fibrotic disorders of the lung. Clinical trials evaluating small molecule CXCR2 antagonists in COPD, asthma and cystic fibrosis are currently underway. These studies hold considerable promise for identifying novel and efficacious treatments of pulmonary disorders.
Collapse
|
38
|
Yu Y, Su Y, Opalenik SR, Sobolik-Delmaire T, Neel NF, Zaja-Milatovic S, Short ST, Sai J, Richmond A. Short tail with skin lesion phenotype occurs in transgenic mice with keratin-14 promoter-directed expression of mutant CXCR2. J Leukoc Biol 2008; 84:406-19. [PMID: 18505935 DOI: 10.1189/jlb.0807544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CXCR2 plays an important role during cutaneous wound healing. Transgenic mice were generated using the keratin-14 promoter/enhancer to direct expression of wild-type human CXCR2 (K14hCXCR2 WT) or mutant CXCR2, in which the carboxyl-terminal domain (CTD) was truncated at Ser 331 and the dileucine AP-2 binding motif was mutated to alanine (K14hCXCR2 331T/LL/AA/IL/AA). Our results indicate that K14hCXCR2WT transgenic mice exhibited a normal phenotype, while K14hCXCR2 331T/LL/AA/IL/AA transgenic mice were born with tails of normal length, but three to eight days after birth their tails degenerated, leaving only a short tail stub. The tissue degeneration in the tail started between caudal somites with degeneration of bone and connective tissue distal to the constriction, which was replaced with stromal tissue heavily infiltrated with inflammatory cells. The tail lesion site revealed coagulation in enlarged vessels and marked edema that eventually led to loss of the distal tail. Moreover, 66% of the mice exhibited focal skin blemishes and inflammation that exhibited an increase in the number of sebaceous glands and blood vessels, enlargement of the hair follicles due to increased number of keratinocytes, reduction in the connective tissue content, and a thickening of the epidermis. Furthermore, immunohistochemical staining of the epidermis from tail tissue in the transgenic mice indicated a loss of the cell adhesion markers E-cadherin and desmoplakin. These data suggest that keratinocyte expression of a CTD mutant of CXCR2 has effects on homeostasis of the connective tissue in the tail, as well as the maintenance of the epidermis and its appendages.
Collapse
Affiliation(s)
- Yingchun Yu
- Department of Cancer Biology, Vanderbilt University School of Medicine, 23rd Ave. South at Pierce, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Smith JC, Boone BE, Opalenik SR, Williams SM, Russell SB. Gene profiling of keloid fibroblasts shows altered expression in multiple fibrosis-associated pathways. J Invest Dermatol 2008; 128:1298-310. [PMID: 17989729 PMCID: PMC2933038 DOI: 10.1038/sj.jid.5701149] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Keloids are benign tumors of the dermis that form during a protracted wound healing process. Susceptibility to keloid formation occurs predominantly in people of African and Asian descent. The key alteration(s) responsible for keloid formation has not been identified and there is no satisfactory treatment for this disorder. The altered regulatory mechanism is limited to dermal wound healing, although several diseases characterized by an exaggerated response to injury are prevalent in individuals of African ancestry. We have observed a complex pattern of phenotypic differences in keloid fibroblasts grown in standard culture medium or induced by hydrocortisone (HC). In this study Affymetrix-based microarray was performed on RNA obtained from fibroblasts cultured from normal scars and keloids grown in the absence and presence of HC. We observed differential regulation of approximately 500 genes of the 38,000 represented on the Affymetrix chip. Of particular interest was increased expression of several IGF-binding and IGF-binding-related proteins and decreased expression of a subset of Wnt pathway inhibitors and multiple IL-1-inducible genes. Increased expression of connective tissue growth factor and insulin-like growth factor binding protein-3 was observed in keloid fibroblasts only in the presence of HC. These findings support a role for multiple fibrosis-related pathways in the pathogenesis of keloids.
Collapse
Affiliation(s)
- Joan C. Smith
- Department of Biomedical Sciences, Department of Surgery, Meharry Medical College, Nashville, TN, USA
| | - Braden E. Boone
- Vanderbilt Microarray Shared Resource, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Susan R. Opalenik
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Scott M. Williams
- Center for Human Genetics Research and Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shirley B. Russell
- Center for Human Genetics Research and Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Middle Tennessee Research Institute, VA Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
40
|
Butler PD, Longaker MT, Yang GP. Current Progress in Keloid Research and Treatment. J Am Coll Surg 2008; 206:731-41. [DOI: 10.1016/j.jamcollsurg.2007.12.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 11/02/2007] [Accepted: 12/03/2007] [Indexed: 02/02/2023]
|
41
|
Jin Q, Wei G, Lin Z, Sugai JV, Lynch SE, Ma PX, Giannobile WV. Nanofibrous scaffolds incorporating PDGF-BB microspheres induce chemokine expression and tissue neogenesis in vivo. PLoS One 2008; 3:e1729. [PMID: 18320048 PMCID: PMC2248711 DOI: 10.1371/journal.pone.0001729] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/24/2008] [Indexed: 11/19/2022] Open
Abstract
Platelet-derived growth factor (PDGF) exerts multiple cellular effects that stimulate wound repair in multiple tissues. However, a major obstacle for its successful clinical application is the delivery system, which ultimately controls the in vivo release rate of PDGF. Polylactic-co-glycolic acid (PLGA) microspheres (MS) in nanofibrous scaffolds (NFS) have been shown to control the release of rhPDGF-BB in vitro. In order to investigate the effects of rhPDGF-BB release from MS in NFS on gene expression and enhancement of soft tissue engineering, rhPDGF-BB was incorporated into differing molecular weight (MW) polymeric MS. By controlling the MW of the MS over a range of 6.5 KDa–64 KDa, release rates of PDGF can be regulated over periods of weeks to months in vitro. The NFS-MS scaffolds were divided into multiple groups based on MS release characteristics and PDGF concentration ranging from 2.5–25.0 µg and evaluated in vivo in a soft tissue wound repair model in the dorsa of rats. At 3, 7, 14 and 21 days post-implantation, the scaffold implants were harvested followed by assessments of cell penetration, vasculogenesis and tissue neogenesis. Gene expression profiles using cDNA microarrays were performed on the PDGF-releasing NFS. The percentage of tissue invasion into MS-containing NFS at 7 days was higher in the PDGF groups when compared to controls. Blood vessel number in the HMW groups containing either 2.5 or 25 µg PDGF was increased above those of other groups at 7d (p<0.01). Results from cDNA array showed that PDGF strongly enhanced in vivo gene expression of the CXC chemokine family members such as CXCL1, CXCL2 and CXCL5. Thus, sustained release of rhPDGF-BB, controlled by slow-releasing MS associated with the NFS delivery system, enhanced cell migration and angiogenesis in vivo, and may be related to an induced expression of chemokine-related genes. This approach offers a technology to accurately control growth factor release to promote soft tissue engineering in vivo.
Collapse
Affiliation(s)
- Qiming Jin
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Guobao Wei
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhao Lin
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James V. Sugai
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Samuel E. Lynch
- Biomimetic Therapeutics, Inc., Franklin, Tennessee, United States of America
| | - Peter X. Ma
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biologic and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - William V. Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Center for Oral Health Research, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Butler PD, Ly DP, Longaker MT, Yang GP. Use of organotypic coculture to study keloid biology. Am J Surg 2008; 195:144-8. [PMID: 18070722 DOI: 10.1016/j.amjsurg.2007.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/15/2007] [Accepted: 10/15/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Keloids are pathologic scars afflicting a large segment of our population and for which there is no definitive therapy. The lack of an animal model for keloid formation has hampered study. We developed an in vitro organotypic skin model to simulate normal keloid biology, which may allow us to study keloid formation without an animal model. METHODS Normal (NFs) and keloid (KFs) human fibroblasts were cultured in a collagen matrix to create a 3-dimensional dermal structure. Normal human keratinocytes (NKs) were cultured as a second layer on top and exposed to an air-fluid interface to allow differentiation into a mature keratinocyte layer. The organotypic skin was maintained for 28 days in Dulbecco's modified eagle medium with 10% fetal calf serum. Samples were collected, processed, sectioned, stained with hematoxylin and eosin, and then measured for qualitative analysis. alpha-smooth-muscle actin was also evaluated by immunoblotting. RESULTS KF/NK organotypic skin showed increased collagen deposition, based on significantly denser collagen staining, with increased dermal thickness compared with NF/NK organotypic skin. We saw increased contracture in the KF/NK construct, and this correlated with increased organization of alpha-smooth-muscle actin fibers in the dermal layer of KF/NK organotypic skin compared with NF/NK skin. CONCLUSIONS We have shown that coculture of KFs with keloid keratinocytes leads to an increased collagen production and dermal contracture compared with NFs and NKs, consistent with known keloid behavior. Given the lack of an animal model, we believe that organotypic skin culture can serve as a surrogate to study keloid formation.
Collapse
Affiliation(s)
- Paris D Butler
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | |
Collapse
|
43
|
Keloid and hypertrophic scar: Neurogenic inflammation hypotheses. Med Hypotheses 2008; 71:32-8. [DOI: 10.1016/j.mehy.2008.01.032] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 11/24/2022]
|
44
|
Sandulache VC, Parekh A, Li-Korotky H, Dohar JE, Hebda PA. Prostaglandin E2 inhibition of keloid fibroblast migration, contraction, and transforming growth factor (TGF)-beta1-induced collagen synthesis. Wound Repair Regen 2007; 15:122-33. [PMID: 17244328 DOI: 10.1111/j.1524-475x.2006.00193.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Keloid formation has been linked to aberrant fibroblast activity, exacerbated by growth factors and inflammatory mediators. Prostaglandin E2 (PGE2), synthesized from arachidonic acid by cyclooxygenases (COX) and synthases (PGES), acts as both an inflammatory mediator and fibroblast modulator. Although PGE2 has known antifibrotic effects in the lower airway, its role in dermal fibrosis in general, and keloid formation in particular, remains unclear. This study focused on: (1) the effects of PGE2 on keloid fibroblast migration, contraction, and collagen synthesis and (2) endogenous PGE2 synthesis in response interleukin-1beta. PGE2 decreased keloid fibroblast migration and contraction via an EP2/EP4-cAMP mechanism that disrupted actin cytoskeletal dynamics and reversed transforming growth factor-beta1-induced collagen I and III synthesis. Impaired fibroblast PGE2 production has been linked to lower airway fibrosis and recently to keloid formation. Here, we showed that interleukin-1beta stimulation leads to nuclear factor-kappaB translocation to the nucleus, resulting in up-regulation of COX-2 and microsomal PGE2 synthase 1. Up-regulation of COX-2 in, and secretion of PGE2 by keloid fibroblasts are diminished compared with their normal fibroblast counterparts. We suggest that the antifibrotic effects of PGE2 during keloid formation are potentially diminished due to aberrant paracrine fibroblast signaling. Exogenous PGE2 may supplement decreased endogenous levels and inhibit keloid formation or progression.
Collapse
Affiliation(s)
- Vlad C Sandulache
- Division of Pediatric Otolaryngology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
45
|
García-Ulloa AC, Arrieta O. Tubal occlusion causing infertility due to an excessive inflammatory response in patients with predisposition for keloid formation. Med Hypotheses 2005; 65:908-14. [PMID: 16005574 DOI: 10.1016/j.mehy.2005.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 03/23/2005] [Indexed: 12/20/2022]
Abstract
Infertility is a condition that affects approximately 15-25% of couples with the desire to procreate. The integrity of the feminine reproductive tract is essential for this purpose, but the occlusion of the Fallopian tubes occurs in 12-33% of infertile women. The infection by Chlamydia trachomatis is one of the principle causes of tubal injury, which could finally lead to tubal occlusion. The tract infection has also been related to the use of intrauterine device, basically due to the fact that the insertion of the device could carry bacteria to the endometrial cavity. Keloid scars result from alterations in the normal process of wound healing, and it affects principally the population in reproductive age, maybe due to specific hormonal influence. These fibroproliferative alterations may produce significant deformations and alter organ function. The genetic factors have been studied in order to have a better understanding of the pathophysiology of keloid scarring. With these assessments, many other factors have been known to have a relationship with this abnormal healing process. This keloid scarring involves an excess in extracellular matrix production and inhibition of apoptosis, for which a several growth factors and interleukins are needed. One of the most important growth factors is IGF-1, which increases the expression of type I and III procollagen (found in the uterus); the IGF-1 receptor is overexpressed in the fibroblasts of keloids. Based on those previous observations a hypothesis that the chronic and repeated infection, and the use of IUD, generate an exaggerated inflammatory response in patients with a predisposition for keloid formation (which frequently form in childbearing age), in comparison to the patients that do not form this type of scarring, has been proposed. This makes a major frequency of adherences and finally tubal occlusion and infertility. The tendency of excessive scarring could not be exclusive of skin and generate abnormal scarring responses in feminine reproductive tract, leading to a major frequency of infertility. Thus, it could be suggested the use of other contraceptive methods and a more aggressive treatment against infections of the reproductive tract, taking in consideration the pathophysiology of keloid scar formation and its relationship with tubal occlusion.
Collapse
Affiliation(s)
- Ana Cristina García-Ulloa
- Department of Medical Oncology, Instituto National de Cancerologia, Av. San Fernando No. 22, Col. Seccion XVI, 14080 Tlalpan, Mexico City, Mexico
| | | |
Collapse
|
46
|
Abstract
Keloid and hypertrophic scars are 2 types of excessive scarring observed clinically that require different therapeutic approaches. The clinical course and physical appearance define keloids and hypertrophic scars as separate entities; however, they are often confused because of an apparent lack of morphologic differences. Nevertheless, clinical differences between hypertrophic scars and keloids have long been recognized by plastic surgeons and dermatologists. Yet, translating these differences into morphologic or biochemical distinctions has prompted much conflict in the literature. The present report is an attempt to clarify the longstanding controversy regarding these 2 similar yet separate and nonidentical entities by highlighting the reported points of differentiation as well as the similarities.
Collapse
Affiliation(s)
- Bishara S Atiyeh
- Division of Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon.
| | | | | |
Collapse
|
47
|
|
48
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:1466-1468. [DOI: 10.11569/wcjd.v12.i6.1466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
49
|
Habibipour S, Oswald TM, Zhang F, Joshi P, Zhou XC, Dorsett-Martin W, Lineaweaver WC. Effect of Sodium Diphenylhydantoin on Skin Wound Healing in Rats. Plast Reconstr Surg 2003; 112:1620-7. [PMID: 14578793 DOI: 10.1097/01.prs.0000086773.96319.da] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study evaluated the effect of phenytoin (sodium diphenylhydantoin) on skin wound healing in a rat model. The study was divided into two parts. In part I, 20 mul of phenytoin (10 mg/ml) was subcutaneously injected into the 3-cm dorsal full-thickness incisional wounds of 14 rats on postoperative days 0, 3, and 6. Twelve rats that received saline injections were used as the controls. The skin samples were harvested and tested for tensile strength and histology. An additional 12 rats with the same incisional wounds were tested for chemokine gene expressions. In part II, 20 mul of phenytoin (10 mg/ml) was applied topically once a day on a 4 x 4 cm area of the open dorsal wounds of 10 rats. Saline was applied to the wounds of the 10 control group rats. The wounds were measured weekly. The results showed that the average tensile strength of the phenytoin-treated wound was 0.49 +/- 0.08 MPa compared with the control group at 0.02 +/- 0.01 MPa (p < 0.05). The density ratio of chemokine monocyte chemotactic protein (MCP-1) to beta-actin in the phenytoin-treated group was also significantly higher than in the control group (p < 0.05). Histologic analysis of the phenytoin group showed a large amount of fibroblast proliferation, collagen synthesis, and neovascularization. Phenytoin-treated wounds were also smaller at 1 to 6 weeks postoperatively than the control group wounds. The authors conclude that the administration of phenytoin can promote wound healing and significantly increase MCP-1 expression. Phenytoin-treated wounds showed significant increase in collagen deposition and neovascularization, which resulted in an increased wound tensile strength and accelerated healing of both open and closed wounds.
Collapse
|
50
|
Abstract
This article provides much evidence that the inflammatory process has direct effects on normal and abnormal wound healing. As better understanding develops for the mechanism for these outcomes, targeted proinflammatory and anti-inflammatory interventions are likely to be successful. When inflammation is maintained as a regulated and orchestrated response, effective and normal wound healing is likely to result.
Collapse
Affiliation(s)
- Ginard Henry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Southern California, Keck School of Medicine, 1450 San Pablo Street, Los Angeles, CA 90033, USA
| | | |
Collapse
|