1
|
Milara J, Ribera P, Marín S, Montero P, Roger I, Tenor H, Cortijo J. Phosphodiesterase 4 is overexpressed in human keloids and its inhibition reduces fibroblast activation and skin fibrosis. Chem Biol Interact 2024; 402:111211. [PMID: 39197814 DOI: 10.1016/j.cbi.2024.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
There is a pressing medical need for improved treatments in skin fibrosis including keloids and hypertrophic scars (HTS). This study aimed to characterize the role of phosphodiesterase 4 (PDE4), specifically PDE4B in fibrotic skin remodeling in vitro and in vivo. In vitro, effects of PDE4A-D (Roflumilast) or PDE4B (siRNA) inhibition on TGFβ1-induced myofibroblast differentiation and dedifferentiation were studied in normal (NHDF) and keloid (KF) human dermal fibroblasts. In vivo, the role of PDE4 on HOCl-induced skin fibrosis in mice was addressed in preventive and therapeutic protocols. PDE4B (mRNA, protein) was increased in Keloid > HTS compared to healthy skin and in TGFβ-stimulated NHDF and KF. In Keloid > HTS, collagen Iα1, αSMA, TGFβ1 and NOX4 mRNA were all elevated compared to healthy skin confirming skin fibrosis. In vitro, inhibition of PDE4A-D and PDE4B similarly prevented TGFβ1-induced Smad3 and ERK1/2 phosphorylation and myofibroblast differentiation, elevated NOX4 protein and proliferation in NHDF. PDE4A-D inhibition enabled myofibroblast dedifferentiation and curbed TGFβ1-induced reactive oxygen species and fibroblast senescence. In KF PDE4A-D inhibition restrained TGFβ1-induced Smad3 and ERK1/2 phosphorylation, myofibroblast differentiation and senescence. Mechanistically, PDE4A-D inhibition rescued from TGFβ1-induced loss in PPM1A, a Smad3 phosphatase. In vivo, PDE4 inhibition mitigated HOCl-induced skin fibrosis in mice in preventive and therapeutic protocols. The current study provides novel evidence evolving rationale for PDE4 inhibitors in skin fibrosis (including keloids and HTS) and delivered evidence for a functional role of PDE4B in this fibrotic condition.
Collapse
Affiliation(s)
- Javier Milara
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Pharmacy Unit, University General Hospital Consortium of Valencia, Spain.
| | - Pilar Ribera
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| | - Severiano Marín
- Plastic Surgery Unit, University General Hospital Consortium, 46014, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Inés Roger
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | | | - Julio Cortijo
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| |
Collapse
|
2
|
Zhou CJ, Guo Y. Mini review on collagens in normal skin and pathological scars: current understanding and future perspective. Front Med (Lausanne) 2024; 11:1449597. [PMID: 39091289 PMCID: PMC11291465 DOI: 10.3389/fmed.2024.1449597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Pathological scar tissues are characterized by the presence of overabundant collagens whose structure and organization are also different from those in unwounded skin. This causes scar tissues to lose some functions performed by normal skin, and currently, there are no effective measures to prevent scar formation. Inflammation has been shown to modulate fibroblast proliferation, differentiation, and function, hence collagen production and organization. In this minireview, we provide an overview of the current understanding of collagen, specifically collagen type I and III which are main collagens in skin, structure and fibre formation and highlight their differences between normal skin and pathological scars. We discuss the role that cytokines play in modulating fibroblast function. We also identify some potential research directions which could help to further our understanding of the complex and dynamic wound healing and scar formation process.
Collapse
Affiliation(s)
| | - Yuan Guo
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3
|
Briganti S, Mosca S, Di Nardo A, Flori E, Ottaviani M. New Insights into the Role of PPARγ in Skin Physiopathology. Biomolecules 2024; 14:728. [PMID: 38927131 PMCID: PMC11201613 DOI: 10.3390/biom14060728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor expressed in many tissues, including skin, where it is essential for maintaining skin barrier permeability, regulating cell proliferation/differentiation, and modulating antioxidant and inflammatory responses upon ligand binding. Therefore, PPARγ activation has important implications for skin homeostasis. Over the past 20 years, with increasing interest in the role of PPARs in skin physiopathology, considerable effort has been devoted to the development of PPARγ ligands as a therapeutic option for skin inflammatory disorders. In addition, PPARγ also regulates sebocyte differentiation and lipid production, making it a potential target for inflammatory sebaceous disorders such as acne. A large number of studies suggest that PPARγ also acts as a skin tumor suppressor in both melanoma and non-melanoma skin cancers, but its role in tumorigenesis remains controversial. In this review, we have summarized the current state of research into the role of PPARγ in skin health and disease and how this may provide a starting point for the development of more potent and selective PPARγ ligands with a low toxicity profile, thereby reducing unwanted side effects.
Collapse
Affiliation(s)
| | | | | | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.B.); (S.M.); (A.D.N.); (M.O.)
| | | |
Collapse
|
4
|
Chalwa T, Lebeko M, Matobole R, P Khumalo N, Bayat A. Enhanced bioenergetic cellular activity with metabolic switch to aerobic glycolysis in Keloid and Folliculitis Keloidalis Nuchae. Arch Dermatol Res 2024; 316:412. [PMID: 38878082 PMCID: PMC11180017 DOI: 10.1007/s00403-024-03038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/19/2024]
Abstract
Keloid scars and folliculitis keloidalis nuchae (FKN) are benign fibroproliferative dermal lesions of unknown aetiology and ill-defined treatment, which typically present in genetically susceptible individuals. Their pathognomonic hallmarks include local aggressive invasive behaviour plus high recurrence post-therapy. In view of this, we investigated proliferative and key parameters of bioenergetic cellular characteristics of site-specific keloid-derived fibroblasts (intra(centre)- and peri(margin)-lesional) and FKN compared to normal skin and normal flat non-hypertrophic scar fibroblasts as negative controls.The results showed statistically significant (P < 0.01) and variable growth dynamics with increased proliferation and migration in keloid fibroblasts, while FKN fibroblasts showed a significant (P < 0.001) increase in proliferation but similar migration profile to controls. A statistically significant metabolic switch towards aerobic glycolysis in the fibroblasts from the disease conditions was noted. Furthermore, an increase in basal glycolysis with a concomitant increase in the cellular maximum glycolytic capacity was also demonstrated in perilesional keloid and FKN fibroblasts (P < 0.05). Mitochondrial function parameters showed increased oxidative phosphorylation in the disease conditions (P < 0.05) indicating functional mitochondria. These findings further suggest that Keloids and FKN demonstrate a switch to a metabolic phenotype of aerobic glycolysis. Increased glycolytic flux inhibition is a potential mechanistic basis for future therapy.
Collapse
Affiliation(s)
- Temwani Chalwa
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Maribanyana Lebeko
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Relebohile Matobole
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
5
|
Anggraini YE, Trisnowati N, Martien R, Danarti R. A randomised clinical trial study assessing the efficacy of 5% losartan potassium loaded in ethosomal gel to treat human keloids: a trial protocol. Trials 2024; 25:12. [PMID: 38167064 PMCID: PMC10759551 DOI: 10.1186/s13063-023-07880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Keloid is a skin disorder that results from excessive fibrous tissue growth in the area of the initial trauma. Treating keloids can be challenging since the success of various treatments varies from one study to another. Triamcinolone acetonide injection, a standard treatment, can cause undesirable side effects. Meanwhile, the effectiveness of existing topical therapies for keloids is not always reliable. The pro-inflammatory, pro-proliferative, and pro-fibrotic effects of angiotensin II in human skin contribute to keloid formation. Losartan potassium, an angiotensin II blocker, has the potential to act as an anti-keloid agent. Due to the thicker skin structure of a keloid and ease of application, ethosome gel is chosen as a safe and comfortable carrier for losartan potassium, making it a good choice for treating keloids. METHODS In this randomised clinical trial, 46 adults with keloids were divided into two treatment groups. One group of 23 participants received 5% losartan potassium loaded in ethosomal gel, while the other group of 23 participants received intralesional injections of 10% triamcinolone acetonide. Over 12 weeks, changes in POSAS 3.0 scores, degree of erythema and pigmentation, surface area, thickness, and pliability of the keloids will be measured at four different times: baseline, 4 weeks, 8 weeks, and 12 weeks. Statistical analysis will be conducted using SPSS software version 24, with a significance level of p < 0.05. DISCUSSION Losartan potassium is believed to be beneficial for keloid management because it inhibits the angiotensin II receptor, which plays a role in inflammation, proliferation, and fibrosis. This study examines the efficacy of 5% losartan potassium loaded in ethosomal gel for human keloids. TRIAL REGISTRATION Clinicaltrial.gov identifier NCT05893108 . Registered on 7 June 2023.
Collapse
Affiliation(s)
- Yuni Eka Anggraini
- Faculty of Medicine, Universitas Riau, Kota Pekanbaru, Indonesia
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Niken Trisnowati
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ronny Martien
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Retno Danarti
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
6
|
Lee AR, Lee SY, Choi JW, Um IG, Na HS, Lee JH, Cho ML. Establishment of a humanized mouse model of keloid diseases following the migration of patient immune cells to the lesion: Patient-derived keloid xenograft (PDKX) model. Exp Mol Med 2023; 55:1713-1719. [PMID: 37524866 PMCID: PMC10474158 DOI: 10.1038/s12276-023-01045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/24/2023] [Indexed: 08/02/2023] Open
Abstract
Keloid disorder is an abnormal fibroproliferative reaction that can occur on any area of skin, and it can impair the quality of life of affected individuals. To investigate the pathogenesis and develop a treatment strategy, a preclinical animal model of keloid disorder is needed. However, keloid disorder is unique to humans, and the development of an animal model of keloid disorder is highly problematic. We developed the patient-derived keloid xenograft (PDKX), which is a humanized mouse model, and compared it to the traditional mouse xenograft model (transplantation of only keloid lesions). To establish the PDKX model, peripheral mononuclear cells (PBMCs) from ten keloid patients or five healthy control subjects were injected into NOD/SCID/IL-2Rγnull mice, and their keloid lesions were grafted onto the back after the engraftment of immune cells (transplantation of keloid lesions and KP PBMCs or HC PBMCs). Four weeks after surgery, the grafted keloid lesion was subjected to histologic evaluation. Compared to the traditional model, neotissue formed along the margin of the grafted skin, and lymphocyte infiltration and collagen synthesis were significantly elevated in the PDKX model. The neotissue sites resembled the margin areas of keloids in several respects. In detail, the levels of human Th17 cells, IL-17, HIF-1a, and chemokines were significantly elevated in the neotissue of the PDKX model. Furthermore, the weight of the keloid lesion was increased significantly in the PDKX model, which was due to the proinflammatory microenvironment of the keloid lesion. We confirmed that our patient-derived keloid xenograft (PDKX) model mimicked keloid disorder by recapitulating the in vivo microenvironment. This model will contribute to the investigation of cellular mechanisms and therapeutic treatments for keloid disorders.
Collapse
Affiliation(s)
- A Ram Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Yeong Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In Gyu Um
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung Ho Lee
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
7
|
Wang X, Liang B, Li J, Pi X, Zhang P, Zhou X, Chen X, Zhou S, Yang R. Identification and characterization of four immune-related signatures in keloid. Front Immunol 2022; 13:942446. [PMID: 35967426 PMCID: PMC9365668 DOI: 10.3389/fimmu.2022.942446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
A keloid is a fibroproliferative disorder of unknown etiopathogenesis that requires ill-defined treatment. Existing evidence indicates that the immune system plays an important role in the occurrence and development of keloid. However, there is still a lack of research on the immune-related signatures of keloid. Here we identified immune-related signatures in keloid and explored their pathological mechanisms. Transcriptomic datasets (GSE7890, GSE92566, and GSE44270) of keloid and normal skin tissues were obtained from the Gene Expression Omnibus database. The overlap of differentially expressed genes and immune-related genes was considered as differentially expressed immune-related genes (DEIGs). Functional analysis, expression, and distribution were applied to explore the function and characteristics of DEIGs, and the expression of these DEIGs in keloid and normal skin tissues was verified by immunohistochemistry. Finally, we conducted interactive network analysis and immune infiltration analysis to determine the therapeutic potential and immune correlation. We identified four DEIGs (LGR5, PTN, JAG1, and DKK1). In these datasets, only GSE7890 met the screening criteria. In the GSE7890 dataset, DKK1 and PTN were downregulated in keloid, whereas JAG1 and LGR5 were upregulated in keloid. In addition, we obtained the same conclusion through immunohistochemistry. Functional analysis indicated that these four DEIGs were mainly involved in stem cell, cell cycle, UV response, and therapy resistance. Through interactive network analysis, we found that these DEIGs were associated with drugs currently used to treat keloid, such as hydrocortisone, androstanolone, irinotecan, oxaliplatin, BHQ-880, and lecoleucovorin. Finally, many immune cells, including CD8+ T cells, resting memory CD4+ T cells, and M1 macrophages, were obtained by immune infiltration analysis. In conclusion, we identified four immune signaling molecules associated with keloid (LGR5, PTN, JAG1, and DKK1). These immune-related signaling molecules may be important modules in the pathogenesis of keloid. Additionally, we developed novel therapeutic targets for the treatment of this challenging disease.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Bo Liang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiehua Li
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaobing Pi
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
| | - Peng Zhang
- Neijiang Health Vocational College, Neijiang, China
| | - Xinzhu Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| | - Sitong Zhou
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| | - Ronghua Yang
- Guangdong Medical University, Zhanjiang, China
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| |
Collapse
|
8
|
Zhang Y, Hollis D, Ross R, Snow T, Terrill NJ, Lu Y, Wang W, Connelly J, Tozzi G, Gupta HS. Investigating the Fibrillar Ultrastructure and Mechanics in Keloid Scars Using In Situ Synchrotron X-ray Nanomechanical Imaging. MATERIALS 2022; 15:ma15051836. [PMID: 35269067 PMCID: PMC8911729 DOI: 10.3390/ma15051836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/24/2021] [Accepted: 01/21/2022] [Indexed: 12/10/2022]
Abstract
Fibrotic scarring is prevalent in a range of collagenous tissue disorders. Understanding the role of matrix biophysics in contributing to fibrotic progression is important to develop therapies, as well as to elucidate biological mechanisms. Here, we demonstrate how microfocus small-angle X-ray scattering (SAXS), with in situ mechanics and correlative imaging, can provide quantitative and position-resolved information on the fibrotic matrix nanostructure and its mechanical properties. We use as an example the case of keloid scarring in skin. SAXS mapping reveals heterogeneous gradients in collagen fibrillar concentration, fibril pre-strain (variations in D-period) and a new interfibrillar component likely linked to proteoglycans, indicating evidence of a complex 3D structure at the nanoscale. Furthermore, we demonstrate a proof-of-principle for a diffraction-contrast correlative imaging technique, incorporating, for the first time, DIC and SAXS, and providing an initial estimate for measuring spatially resolved fibrillar-level strain and reorientation in such heterogeneous tissues. By application of the method, we quantify (at the microscale) fibrillar reorientations, increases in fibrillar D-period variance, and increases in mean D-period under macroscopic tissue strains of ~20%. Our results open the opportunity of using synchrotron X-ray nanomechanical imaging as a quantitative tool to probe structure–function relations in keloid and other fibrotic disorders in situ.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (Y.Z.); (W.W.)
| | - Dave Hollis
- LaVision UK, 2 Minton Place, Victoria Road, Bicester OX26 6QB, UK;
| | - Rosie Ross
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (R.R.); (J.C.)
| | - Tim Snow
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (T.S.); (N.J.T.)
| | - Nick J. Terrill
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (T.S.); (N.J.T.)
| | - Yongjie Lu
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 5PZ, UK;
| | - Wen Wang
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (Y.Z.); (W.W.)
| | - John Connelly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (R.R.); (J.C.)
| | - Gianluca Tozzi
- School of Engineering, London South Bank University, London SE1 0AA, UK;
| | - Himadri S. Gupta
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (Y.Z.); (W.W.)
- Correspondence:
| |
Collapse
|
9
|
Molecular Mechanisms and Physiological Changes behind Benign Tracheal and Subglottic Stenosis in Adults. Int J Mol Sci 2022; 23:ijms23052421. [PMID: 35269565 PMCID: PMC8910114 DOI: 10.3390/ijms23052421] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Laryngotracheal stenosis (LTS) is a complex and heterogeneous disease whose pathogenesis remains unclear. LTS is considered to be the result of aberrant wound-healing process that leads to fibrotic scarring, originating from different aetiology. Although iatrogenic aetiology is the main cause of subglottic or tracheal stenosis, also autoimmune and infectious diseases may be involved in causing LTS. Furthermore, fibrotic obstruction in the anatomic region under the glottis can also be diagnosed without apparent aetiology after a comprehensive workup; in this case, the pathological process is called idiopathic subglottic stenosis (iSGS). So far, the laryngotracheal scar resulting from airway injury due to different diseases was considered as inert tissue requiring surgical removal to restore airway patency. However, this assumption has recently been revised by regarding the tracheal scarring process as a fibroinflammatory event due to immunological alteration, similar to other fibrotic diseases. Recent acquisitions suggest that different factors, such as growth factors, cytokines, altered fibroblast function and genetic susceptibility, can all interact in a complex way leading to aberrant and fibrotic wound healing after an insult that acts as a trigger. However, also physiological derangement due to LTS could play a role in promoting dysregulated response to laryngo-tracheal mucosal injury, through biomechanical stress and mechanotransduction activation. The aim of this narrative review is to present the state-of-the-art knowledge regarding molecular mechanisms, as well as mechanical and physio-pathological features behind LTS.
Collapse
|
10
|
Kim S, Kim J, Lee YI, Jang S, Song SY, Lee WJ, Lee JH. Particulate matter-induced atmospheric skin aging is aggravated by UVA and inhibited by a topical l-ascorbic acid compound. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 38:123-131. [PMID: 34411336 DOI: 10.1111/phpp.12725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 01/03/2023]
Abstract
Ambient particulate matter (PM) is a major contributor to environmental air pollution-associated skin damage. However, most published studies are observational or epidemiologic and have not mechanistically investigated the effects of air pollutants on cellular senescence and aging, particularly in combination with ultraviolet (UV) radiation. Herein, we analyzed whether UVA aggravates the PM-induced inflammatory cascade, which contributes to the aging of skin-derived cells. We hypothesized that cellular senescence is involved in PM&UVA-induced aging and tested whether an l-ascorbic acid compound (LAC), containing vitamin E and ferulic acid, can inhibit PM&UVA-induced aging. PM&UVA-exposed HDFs showed further elevated reactive oxygen species (ROS) levels detected by flow cytometry. We then demonstrated that PM induces MAPK signaling activation and the expression of AhR and NF-κB, responses that are both exacerbated by UVA. The levels of inflammatory cytokines, IL-1β and IL-6, were significantly higher in the PM&UVA-exposed group which resulted in increased transcription of MMPs, causing downregulation of type I collagen. Meanwhile, treatment with LAC reduced the levels of ROS and inflammatory cytokines. Additionally, PM&UVA-induced SA-β-gal production (staining assay) was reduced by LAC. These findings suggest a role of atmospheric pollution and UVA radiation in cellular senescence induction. Our findings also suggest a possible role of AhR inhibition by topical antioxidants to prevent atmospheric pollution-induced skin aging.
Collapse
Affiliation(s)
- Soomin Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jihee Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Scar Plastic Surgery and Laser Center, Yonsei Cancer Hospital, Seoul, Korea
| | - Young In Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Scar Plastic Surgery and Laser Center, Yonsei Cancer Hospital, Seoul, Korea
| | - Seulgi Jang
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Yong Song
- Department of Plastic and Reconstructive Surgery, Human Tissue Restoration Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Won Jai Lee
- Department of Plastic and Reconstructive Surgery, Human Tissue Restoration Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Scar Plastic Surgery and Laser Center, Yonsei Cancer Hospital, Seoul, Korea
| |
Collapse
|
11
|
Zhang D, Li B, Zhao M. Therapeutic Strategies by Regulating Interleukin Family to Suppress Inflammation in Hypertrophic Scar and Keloid. Front Pharmacol 2021; 12:667763. [PMID: 33959031 PMCID: PMC8093926 DOI: 10.3389/fphar.2021.667763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic scar (HS) and keloid are fibroproliferative disorders (FPDs) of the skin due to aberrant wound healing, which cause disfigured appearance, discomfort, dysfunction, psychological stress, and patient frustration. The unclear pathogenesis behind HS and keloid is partially responsible for the clinical treatment stagnancy. However, there are now increasing evidences suggesting that inflammation is the initiator of HS and keloid formation. Interleukins are known to participate in inflammatory and immune responses, and play a critical role in wound healing and scar formation. In this review, we summarize the function of related interleukins, and focus on their potentials as the therapeutic target for the treatment of HS and keloid.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bo Li
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Muxin Zhao
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Wang J, You J, Gong D, Xu Y, Yang B, Jiang C. PDGF-BB induces conversion, proliferation, migration, and collagen synthesis of oral mucosal fibroblasts through PDGFR-β/PI3K/ AKT signaling pathway. Cancer Biomark 2021; 30:407-415. [PMID: 33492283 DOI: 10.3233/cbm-201681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To explore the pathogenesis of oral submucosal fibrosis (OSF) by analyzing the impact of Platelet Derived Growth Factor (PDGF)-BB on oral mucosal fibroblasts (FB) and PDGFR-β/Phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT) signaling pathway. METHODS The isolated and purified oral mucosal fibroblasts were divided into four groups: the control group (CON, 10% FBS DMEM), the PDGF-BB group (40 ng/ml PDGF-BB), the PDGF-BB+IMA group (40 ng/ml PDGF-BB and 60 μmol/L IMA), and the PDGF-BB+LY294002 group (40 ng/ml PDGF-BB and 48 μmol/L LY294002). Primary human FB cells were isolated and cultured for detecting the effects of PDGF-BB on α-smooth muscle actin (α-SMA) by indirect immunofluorescence. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, Thiazolyl Blue Tetrazolium Bromide (MTT) method and scratch test were used to detect the proliferation and migration of FB. Western blots were used to detect the synthesis of type I collagen (Col I) and the expression of PDGFR-β/PI3K/AKT signaling pathway-related proteins. The effects of PDGFR-β inhibitor and PI3K inhibitor were observed. RESULTS Compared with group CON, group IMA, and group LY294002, α-SMA was upregulated in group PDGF-BB (p< 0.05), with higher OD490 nm value (p< 0.05), narrower average scratch width, and higher relative cell migration rate (p< 0.05). The expression levels of Col I, p-PDGFR-β, p-PI3K, and p-AKT were higher in group PDGF-BB (p< 0.05). CONCLUSIONS PDGF-BB induces FB to transform into myofibroblasts (MFB) through the PDGFR-β/PI3K/AKT signaling pathway, and promotes the proliferation, migration, and collagen synthesis.
Collapse
Affiliation(s)
- Jie Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jialing You
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ding Gong
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ying Xu
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Yang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Lee SY, Kim EK, Seo HB, Choi JW, Yoo JH, Jung KA, Kim DS, Yang SC, Moon SJ, Lee JH, Cho ML. IL-17 Induced Stromal Cell-Derived Factor-1 and Profibrotic Factor in Keloid-Derived Skin Fibroblasts via the STAT3 Pathway. Inflammation 2021; 43:664-672. [PMID: 31814061 PMCID: PMC7170982 DOI: 10.1007/s10753-019-01148-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pathogenesis of keloids has not been elucidated, and the disease is thought to be caused by abnormal secretion of proinflammatory mediators and irregular responses to other inflammatory signals mediated by keloid fibroblasts (KFs). In this study, we investigated whether a local increase in interleukin IL-17 in keloid tissues stimulates the production of stromal cell–derived factor-1 (SDF-1) in KFs causing further recruitment of IL-17-producing T helper 17 (Th17) cells, which subsequently creates a positive feedback loop. Histological assessment was performed and the change in the expression of IL-17, IL-1β, IL-6, and TNF-α which of fibrosis and inflammation associated markers was examined. In addition, fibroblasts were treated with IL-17 in the presence or absence of STAT3 inhibitor STA-21; SDF-1 levels and fibrosis genes were measured. Our results showed that fibrotic reaction and expression of proinflammatory cytokines including IL-17 were most prominent in the growing margin (perilesional area) of keloid tissue and Th17 cells significantly infiltrated the perilesional area. In addition, IL-17 upregulated the expression of SDF-1, collagen, and α-SMA in KFs. Finally, STA-21 decreased SDF-1α expression and the expression of fibrosis genes in KFs even after IL-17 stimulation. Our study demonstrated that a local increase in IL-17 in keloid tissues stimulates the production of SDF-1 in KFs causing further recruitment of IL-17-producing T helper 17 (Th17) cells, which subsequently creates a positive feedback loop. These findings suggest that STAT3 inhibition can be used to treat keloid scars by reversing the vicious cycle between Th17 cells and KFs.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Beom Seo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Hee Yoo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyoung Ah Jung
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Da-Som Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Cheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Jin Moon
- Department of Internal Medicine, College of Medicine, Division for Rheumatology, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Ho Lee
- Department of Plastic and Reconstructive Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 2 Sosa-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-717, Republic of Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
14
|
Nagar H, Kim S, Lee I, Kim S, Choi SJ, Piao S, Jeon BH, Oh SH, Kim CS. Downregulation of CR6-interacting factor 1 suppresses keloid fibroblast growth via the TGF-β/Smad signaling pathway. Sci Rep 2021; 11:500. [PMID: 33436666 PMCID: PMC7804403 DOI: 10.1038/s41598-020-79785-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
Keloids are a type of aberrant skin scarring characterized by excessive accumulation of collagen and extracellular matrix (ECM), arising from uncontrolled wound healing responses. While typically non-pathogenic, keloids are occasionally regarded as a form of benign tumor. CR6-interacting factor 1 (CRIF1) is a well-known CR6/GADD45-interacting protein, that has both nuclear and mitochondrial functions, and also exerts regulatory effects on cell growth and apoptosis. In this study, cell proliferation, cell migration, collagen production and TGF-β signaling was compared between normal fibroblasts (NFs) and keloid fibroblasts (KFs). Subsequently, the effects of CRIF1 deficiency were investigated in both NFs and KFs. Cell proliferation, cell migration, collagen production and protein expressions of TGF-β, phosphorylation of Smad2 and Smad3 were all found to be higher in KFs compared to NFs. CRIF1 deficiency in NFs and KFs inhibited cell proliferation, migration, and collagen production. In addition, phosphorylation of Smad2 and Smad3, which are transcription factors of collagen, was decreased. In contrast, mRNA expression levels of Smad7 and SMURF2, two important inhibitory proteins of Smad2/3, were increased, suggesting that CRIF1 may regulate collagen production. CRIF1 deficiency decreases the proliferation and migration of KFs, thereby inhibiting their overgrowth via the transforming growth factor-β (TGF-β)/Smad pathway. CRIF1 may therefore represent a potential therapeutic target in keloid pathogenesis.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Sungmin Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea.,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Seonhee Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea.,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
| | - Su-Jeong Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Shuyu Piao
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, School of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-Gu, Daejeon, 35015, Republic of Korea. .,Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Cuk-Seong Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea. .,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea. .,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Sulaiman M, Alyileili SR, Raghavankutty M, Kurup GM. Sulfated polysaccharide ascophyllan from Padina tetrastromatica enhances healing of burn wounds by ameliorating inflammatory responses and oxidative damage. Mol Biol Rep 2020; 47:8701-8710. [PMID: 33130964 DOI: 10.1007/s11033-020-05914-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
Sulfated polysaccharide ascophyllan from marine brown algae has been identified to have burn wound healing properties. Thus, we examined the effects of ascophyllan fraction (AF3) on the inflammatory response and oxidative damage in burn wounds. Full-thickness burn wounds in rats were then treated twice per day with topical AF3 ointment (5%), while control groups were treated with 10% povidone-iodine (positive control) and petroleum jelly-based ointment (negative control). The activity of cyclooxygenase-2 and myeloperoxidase and levels of C-reactive protein, nitric oxide, and proinflammatory cytokines (tumor necrosis factor-α, interleukin-6, and interleukin-1β) were observed to have significantly decreased in peripheral blood mononuclear cells, serum, and wound tissue of the group treated with AF3 ointment on day 8 after wounding. The expression of inducible nitric oxide synthase, endothelial nitric oxide synthase, and vascular endothelial growth factor at the mRNA level was determined to be upregulated in the wound tissue of the AF3 ointment-treated group. After treatment with AF3 ointment, the antioxidant enzyme activity and level of reduced glutathione were upregulated, whereas the content of thiobarbituric acid reactive substances decreased. Treatment of burn wounds using 5% AF3 ointment decreases oxidative damage associated with inflammation deceptively via inhibition of inflammatory enzymes, regulation of proinflammatory cytokines, upregulation of angiogenesis, and activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Mohsin Sulaiman
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
- Department of Biochemistry, University of Kerala, P.O. Box 695581, Thiruvananthapuram, Kerala, India.
| | - Salem Rashed Alyileili
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Mahadevan Raghavankutty
- Department of Biochemistry and Nutrition, Central Institute of Fisheries Technology, Matsyapuri, P.O. Box 682029, Cochin, Kerala, India
- Department of Biochemistry, University of Kerala, P.O. Box 695581, Thiruvananthapuram, Kerala, India
| | - G Muraleedhara Kurup
- Department of Biochemistry, University of Kerala, P.O. Box 695581, Thiruvananthapuram, Kerala, India
| |
Collapse
|
16
|
Kumar AS, Kamalasanan K. Drug delivery to optimize angiogenesis imbalance in keloid: A review. J Control Release 2020; 329:1066-1076. [PMID: 33091533 DOI: 10.1016/j.jconrel.2020.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The wound healing process involves three continuous stages. Where, any imbalance can lead to the formation of unwanted keloids, hypertrophic scar, or tumors. Keloids are any unpleasant, non-compliant comorbidity affecting a major section of people around the globe who acquire it either genetically or by pathological means as a result of a skin injury. Angiogenesis is unavoidable in the healing process after an injury or disruption of skin to promote tissue regeneration. Uncontrolled angiogenesis during the healing process can initiate the unwanted response in the wound that facilitate keloid. Angiogenic therapy is adapted to accelerate healing after an injury. Else ways, there exists a risk of keloid formation due to excessive angiogenesis during the wound healing process. There are numerous strategies to treat keloid. Anti-angiogenic factors are provided to patients post-surgery to prevent the keloid formation; however, they come into the picture after the formation of keloid. The available strategies to treat keloids are steroidal injections, surgical excision of the keloid, radiotherapy, pressure therapy, the use of cryosurgery, and many more. The available treatments are not promising in reducing the recurrent rate of keloids as there are chances of high re-occurrences with similar/larger lesions on the removed keloid site. In this review, we are discussing the importance of controlled angiogenesis with the help of controlled drug delivery strategies enabling the wound healing process without the induction of keloid.
Collapse
Affiliation(s)
- Aishwari S Kumar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, AIMS Ponekkara PO, Kochi, Kerala, 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, AIMS Ponekkara PO, Kochi, Kerala, 682041, India.
| |
Collapse
|
17
|
Colangelo MT, Galli C, Guizzardi S. The effects of polydeoxyribonucleotide on wound healing and tissue regeneration: a systematic review of the literature. Regen Med 2020; 15:1801-1821. [PMID: 32757710 DOI: 10.2217/rme-2019-0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: The present study evaluated the effects of polydeoxyribonucleotide (PDRN) on tissue regeneration, paying special attention to the molecular mechanisms that underlie its tissue remodeling actions to better identify its effective therapeutic potential in wound healing. Materials & methods: Strategic searches were conducted through MEDLINE/PubMed, Google Scholar, Scopus, Web of Science and the Cochrane Central Register of Controlled Trials, from their earliest available dates to March 2020. The studies were included with the following eligibility criteria: studies evaluating tissue regeneration, and being an in vitro, in vivo and clinical study. Results: Out of more than 90 articles, 34 fulfilled the eligibility criteria. All data obtained proved the ability of PDRN in promoting a physiological tissue repair through salvage pathway and adenosine A2A receptor activation. Conclusion: Up to date PDRN has proved promising results in term of wound regeneration, healing time and absence of side effects.
Collapse
Affiliation(s)
- Maria T Colangelo
- Department of Medicine & Surgery, Histology & Embryology Lab, University of Parma, Parma, Italy
| | - Carlo Galli
- Department of Medicine & Surgery, University of Parma, Parma, Italy
| | - Stefano Guizzardi
- Department of Medicine & Surgery, Histology & Embryology Lab, University of Parma, Parma, Italy
| |
Collapse
|
18
|
Satish L, Evdokiou A, Geletu E, Hahn JM, Supp DM. Pirfenidone inhibits epithelial-mesenchymal transition in keloid keratinocytes. BURNS & TRAUMA 2020; 8:tkz007. [PMID: 32405508 DOI: 10.1093/burnst/tkz007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 01/23/2023]
Abstract
Background Keloids are benign fibroproliferative skin lesions that are difficult to treat and become a lifetime predicament for patients. Several treatment modalities have been put forth, but as yet no satisfactory approach to the prevention or treatment of keloids has been identified. The process of epithelial-to-mesenchymal transition (EMT) has been implicated in keloid scarring, as keloid keratinocytes display an EMT-like phenotype. This study investigated the potential of pirfenidone, an antifibrotic agent, to counteract EMT-like alterations in keloid keratinocytes, including gene expression, cell migratory and proliferative functions. Methods Normal and keloid keratinocytes were isolated from discarded normal skin tissues and from resected keloid tissues, respectively. Cells were quiesced for 24 h without epidermal growth factor DS-Qi1MCDigital and were exposed to transforming growth factor-beta1 (TGF-β1; 10 ng/mL), with or without pirfenidone (400 μg/mL), for an additional 24 h. The effects of pirfenidone on cytotoxicity, cell migration, cell proliferation, and on expression of genes and proteins involved in EMT were assayed. Statistical significance was determined by two-way ANOVA using Sigma Plot. Results We found that pirfenidone did not elicit any cytotoxic effect at concentrations up to 1000 μg/mL. A statistically significant dose-dependent decrease in basal cell proliferation rate was noted in both normal and keloid keratinocytes when exposed to pirfenidone at concentrations ranging from 200 to 1000 μg/mL. Pirfenidone significantly decreased basal cell migration in both normal and keloid keratinocytes, but a significant decrease in TGF-β1-induced cell migration was seen only in keloid keratinocytes. Significant inhibition of the expression of TGF-β1-induced core EMT genes, namely hyaluronan synthase 2, vimentin, cadherin-11, and wingless-type MMTV integration site family, member 5A along with fibronectin-1, was observed in both normal and keloid keratinocytes treated with pirfenidone. In addition, the protein levels of vimentin and fibronectin were significantly reduced by pirfenidone (400 μg/mL) in both normal and keloid keratinocytes. Conclusions For the first time, this study shows the efficacy of pirfenidone in inhibiting the EMT-like phenotype in keratinocytes derived from keloids, suggesting that pirfenidone may counteract a critical contributor of keloid progression and recurrence.
Collapse
Affiliation(s)
- Latha Satish
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA.,Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45229, USA, and
| | - Alexander Evdokiou
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA
| | - Eleni Geletu
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA
| | - Jennifer M Hahn
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA
| | - Dorothy M Supp
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA.,Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
19
|
Dachlan I, Wirohadidjojo YW, Wahyuningsih MSH, Aryandono T, Soebono H, Afandy D. The effect of 5α-oleandrin on keloid fibroblast activities. BMC Proc 2020; 13:14. [PMID: 31890007 PMCID: PMC6912934 DOI: 10.1186/s12919-019-0177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Keloids develop due to hyperactivity of keloid fibroblast (KF) in proliferation, migration, and collagen deposition along with low rates of collagen degradation. These are a result of the Wnt/β catenin signaling pathways under stimulation of TGF-β. 5α-oleandrin can suppress Wnt-targeted genes of osteosarcoma cells. We aimed to evaluate the anti-fibrotic effects of 5α-oleandrin on KF activities. Methods We collected the core of keloid materials from six patients who underwent keloid debulking surgery. Passage 4 of KF cells were then treated with mitomycin-C, 5α-oleandrin, and dilution medium as the negative control. To determine the effective dose of 5α-oleandrin, we diluted 5α-oleandrin into various concentrations. The incubation periods were 24 h, 48 h, and 72 h. The anti-proliferation and anti-fibrotic properties were measured using standard assay. Results Both the mitomycin-C and 5α-oleandrin treated groups indicated decrease in proliferation index (86.16 ± 4.20% and 73.76 ± 4.94%, respectively), collagen deposition index (90.26 ± 1.72% and 71.35 ± 4.26%, respectively), and migration capacity (33.51 ± 1.50% and 28.57 ± 1.58%, respectively). These were significant changes (p ≤ 0.05) compared to the non-treated group. Antifibrotic activities of 5α-oleandrin in cellular proliferation and collagen deposition were better than mitomycin-C. Conclusions The 5α-oleandrin has good antifibrotic effect in keloid fibroblast activities.
Collapse
Affiliation(s)
- Ishandono Dachlan
- 1Plastic and Reconstructive Surgery Division, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, North Sekip, Yogyakarta, 55281 Indonesia
| | - Yohanes Widodo Wirohadidjojo
- 2Department of Dermato-venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/ Sardjito-Hospital, North Sekip, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- 3Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Gadjah Mada, North Sekip, Yogyakarta, Indonesia
| | - Teguh Aryandono
- 4Oncology Surgery Division, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/ Sardjito-Hospital, North Sekip, Yogyakarta, Indonesia
| | - Hardyanto Soebono
- 5Department of Dermato-venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/ Sardjito-Hospital, North Sekip, Yogyakarta, Indonesia
| | - Dwiki Afandy
- 6Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/ Sardjito-Hospital, North Sekip, Yogyakarta, Indonesia
| |
Collapse
|
20
|
The integrative regulatory network of circRNA and microRNA in keloid scarring. Mol Biol Rep 2019; 47:201-209. [PMID: 31612410 DOI: 10.1007/s11033-019-05120-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Circular RNA (circRNA), a novel type of non-coding RNA that consists of a circular loop, has been demonstrated to act as a "sponge" for microRNAs (miRNAs). However, the role of circRNAs in keloid remains unknown. In this study, we investigated circRNA expression profiles in keloid to identify potential diagnostic and therapeutic circRNAs. We performed a circRNA microarray assay to determine circRNA expression in keloid and paired normal skin tissues. Quantitative reverse transcription polymerase chain reaction was used to evaluate the expression levels of candidate circRNAs. The most significantly over-expressed circRNA was used to predict putative miRNA targets and the binding sites of miRNAs with this circRNA. Finally, we constructed a circRNA-miRNA interaction network and carried out gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. We found 52 significantly upregulated and 24 downregulated circRNAs in keloid compared with normal skin tissue. We confirmed that hsa_circ_0057452, hsa_circ_0007482, hsa_circ_0020792, hsa_circ_0057342, and hsa_circ_0043688 were significantly upregulated in keloid tissues. Analysis of the circRNA-miRNA interaction network revealed that circRNAs could interact with miRNAs, including miRNA-29a, miRNA-23a-5p and miRNA-1976. GO and KEGG analyses indicated that these target genes were involved in biological functions and signaling pathways that may play vital roles in the pathogenesis of keloid. This study revealed that circRNAs are potentially implicated in the development of keloid and could serve as novel diagnostic and therapeutic targets.
Collapse
|
21
|
Yang JX, Hsiung TC, Weng FC, Ding SL, Wu CP, Conti M, Chuang TH, Catherine Jin SL. Synergistic effect of phosphodiesterase 4 inhibitor and serum on migration of endotoxin-stimulated macrophages. Innate Immun 2019; 24:501-512. [PMID: 30409089 PMCID: PMC6830870 DOI: 10.1177/1753425918809155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macrophage migration is an essential step in host defense against infection and
wound healing. Elevation of cAMP by inhibiting phosphodiesterase 4 (PDE4),
enzymes that specifically degrade cAMP, is known to suppress various
inflammatory responses in activated macrophages, but the role of PDE4 in
macrophage migration is poorly understood. Here we show that the migration of
Raw 264.7 macrophages stimulated with LPS was markedly and dose-dependently
induced by the PDE4 inhibitor rolipram as assessed by scratch wound healing
assay. Additionally, this response required the involvement of serum in the
culture medium as serum starvation abrogated the effect. Further analysis
revealed that rolipram and serum exhibited synergistic effect on the migration,
and the influence of serum was independent of PDE4 mRNA expression in
LPS-stimulated macrophages. Moreover, the enhanced migration by rolipram was
mediated by activating cAMP/exchange proteins directly activated by cAMP (Epac)
signaling, presumably via interaction with LPS/TLR4 signaling with the
participation of unknown serum components. These results suggest that PDE4
inhibitors, together with serum components, may serve as positive regulators of
macrophage recruitment for more efficient pathogen clearance and wound
repair.
Collapse
Affiliation(s)
| | | | - Fu-Chun Weng
- 1 National Central University, Taoyuan City, Taiwan
| | | | | | - Marco Conti
- 3 Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, USA
| | - Tsung-Hsien Chuang
- 4 Immunology Research Center, National Health Research Institutes, Miaoli
| | | |
Collapse
|
22
|
Wang M, Chen L, Huang W, Jin M, Wang Q, Gao Z, Jin Z. Improving the anti-keloid outcomes through liposomes loading paclitaxel-cholesterol complexes. Int J Nanomedicine 2019; 14:1385-1400. [PMID: 30863067 PMCID: PMC6390862 DOI: 10.2147/ijn.s195375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Keloids represent benign fibroproliferative tumors which result from elevated expression of inflammation. Paclitaxel (PTX) was an effective chemotherapeutic agent and has been reported to have anti-fibrotic effects, but the strong hydrophobicity brings a challenge for its clinical application. Purpose The objective of this study was to improve the water solubility of PTX and investigate its anti-keloid effects. Methods We prepared a PTX-cholesterol-loaded liposomes (PTXL) by thin film evaporation fashion and characterized their physicochemical properties. We also investigated the effects of PTX on proliferation, invasion and fibrosis of keloid fibroblasts in vitro and in vivo. Results The prepared PTXL have a spherical appearance, a particle size of 101.43 nm and a zeta potential of −41.63 mV. PTXL possessed a high drug entrapment efficiency of 95.63% and exhibited a good stability within 30 days. The drugs in PTXL were released in a slow and sustained mode. The PTXL could be effectively uptaken into human keloids fibroblast (HKFs) in a time-dependent manner. In vitro, PTXL showed better ability on inhibiting cell proliferation, migration and invasion, and effectively on promoting apoptosis and arresting cell cycle in G2/M phase compared to PTX. Meanwhile, in vivo studies indicated that the PTXL had better performance on inhibiting the keloids growth compared to the PTX in keloid-bearing BALB/c nude mice model. Finally, we found PTX treatment suppressed the production of tumor necrosis factor alpah (TNF-α), interleukin 6 (IL-6) and transforming growth factor beta (TGF-β) and inhibited the expression of alpha smooth muscle actin (α-SMA) and collagen I in HKFs. The activation of protein kinase B (AKT)/glycogen synthase kinase 3 beta (GSK3β) signaling pathway also blocked by PTX in cultured HKFs and keloid tissues. LY294002, a PI3K (phosphatidylinositol 3-kinase)/AKT inhibitor, also suppressed the expression of TNF-α, IL-6 and TGF-β, and simultaneously, reduced the production of α-SMA and collagen I in HKFs. The inhibition of AKT/GSK3β signaling pathway contribute to inhibit the generation of fibrogenic cytokines by PTXL on ameliorating fibrosis progress in keloids. Conclusion Our results suggested that the developed PTXL would become a promising therapeutic agent in the field of anti-keloid therapy.
Collapse
Affiliation(s)
- Mengjiao Wang
- Klebs Research Center, Department of Dermatology, Yanbian University Hospital, Yanji 133000, China,
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Zhehu Jin
- Klebs Research Center, Department of Dermatology, Yanbian University Hospital, Yanji 133000, China,
| |
Collapse
|
23
|
Oncostatin M exerts a protective effect against excessive scarring by counteracting the inductive effect of TGFβ1 on fibrosis markers. Sci Rep 2019; 9:2113. [PMID: 30765798 PMCID: PMC6376164 DOI: 10.1038/s41598-019-38572-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Wound healing is a complex physiological process that repairs a skin lesion and produces fibrous tissue. In some cases, this process can lead to hypertrophic scars (HS) or keloid scars (KS), for which the pathophysiology remains poorly understood. Previous studies have reported the presence of oncostatin M (OSM) during the wound healing process; however, the role of OSM in pathological scarring remains to be precisely elucidated. This study aims to analyse the presence and involvement of OSM in the pathological scarring process. It was conducted with 18 patients, including 9 patients with hypertrophic scarring and 9 patients with keloid scarring. Histological tissue analysis of HS and KS showed minor differences in the organization of the extracellular matrix, the inflammatory infiltrate and the keratinocyte phenotype. Transcriptomic analysis showed increased expression levels of fibronectin, collagen I, TGFβ1, β-defensin-2 and S100A7 in both pathological samples. OSM expression levels were greater in HS than in KS and control skin. In vitro, OSM inhibited TGFβ1-induced secretion of components of the extracellular matrix by normal and pathological fibroblasts. Overall, we suggest that OSM is involved in pathological wound healing processes by inhibiting the evolution of HS towards KS by controlling the fibrotic effect of TGFβ1.
Collapse
|
24
|
van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol 2018; 9:2452. [PMID: 30483246 PMCID: PMC6242950 DOI: 10.3389/fimmu.2018.02452] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality and unfortunately no disease modifying therapy is currently available. A key cell in the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with contractile properties that produce a large amount of pro-fibrotic extracellular matrix molecules such as collagen type I. In this narrative review we will discuss the presence, formation, and role of myofibroblasts in SSc, and how these processes are stimulated and mediated by cells of the (innate) immune system such as mast cells and T helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target myofibroblasts will be highlighted for future perspective.
Collapse
Affiliation(s)
- Arjan van Caam
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | - Madelon Vonk
- Department of Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | | - Peter van Lent
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | |
Collapse
|
25
|
Lee WJ, Song SY, Roh H, Ahn HM, Na Y, Kim J, Lee JH, Yun CO. Profibrogenic effect of high-mobility group box protein-1 in human dermal fibroblasts and its excess in keloid tissues. Sci Rep 2018; 8:8434. [PMID: 29849053 PMCID: PMC5976629 DOI: 10.1038/s41598-018-26501-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 05/01/2018] [Indexed: 11/09/2022] Open
Abstract
High-mobility group box 1 (HMGB1) protein acts as a DNA chaperone for nuclear homeostasis. It translocates into the cytosol and is secreted into extracellular spaces, triggering proinflammatory cytokines and acting as a mediator in fibrosis. We determined whether HMGB1 plays a role in normal dermal fibrosis and keloid, and is involved with transforming growth factor β. We investigated the translocation and active release of HMGB1 from normal dermal fibroblasts under lipopolysaccharide stimuli, and the redistribution of nuclear HMGB1 into the cytoplasm of keloid fibroblasts. HMGB1 and its effector toll-like receptors and receptors for advanced glycation end product proteins are actively expressed in keloid tissues. Exogenous HMGB1 can induce the proliferation of human dermal fibroblasts, and could act as a profibrogenic molecule to produce collagen, decrease MMP-1, and increase TIMP-1 mRNA expression. Moreover, administration of HMGB1 increased the expression level of TGF-β1 and internal signaling molecules, such as Smad 2 and 3, phosphorylated Smad 2/3 complex, Erk 1/2, Akt, and NF-κB. Collectively, we demonstrate that HMGB1 treatment increases the expression level of collagen types I and III, elastin, and fibronectin in dermal spheroid cultures, thus making HMGB1 a promising therapeutic target for treatment of profibrogenic diseases.
Collapse
Affiliation(s)
- Won Jai Lee
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Yong Song
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Roh
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Min Ahn
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Youjin Na
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Jihee Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Chae Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea.
| |
Collapse
|
26
|
Bielfeldt S, Blaak J, Staib P, Simon I, Wohlfart R, Manger C, Wilhelm KP. Observer-blind randomized controlled study of a cosmetic blend of safflower, olive and other plant oils in the improvement of scar and striae appearance. Int J Cosmet Sci 2017; 40:81-86. [DOI: 10.1111/ics.12438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Affiliation(s)
- S. Bielfeldt
- proDERM; Institute for Applied Dermatological Research GmbH; Kiebitzweg 2 Schenefeld/Hamburg DE 22869 Germany
| | - J. Blaak
- Kneipp GmbH, Research & Development; Winterhäuser Str. 85 Würzburg DE 97084 Germany
| | - P. Staib
- Kneipp GmbH, Research & Development; Winterhäuser Str. 85 Würzburg DE 97084 Germany
| | - I. Simon
- Kneipp GmbH, Research & Development; Winterhäuser Str. 85 Würzburg DE 97084 Germany
| | - R. Wohlfart
- Kneipp GmbH, Research & Development; Winterhäuser Str. 85 Würzburg DE 97084 Germany
| | - C. Manger
- proDERM; Institute for Applied Dermatological Research GmbH; Kiebitzweg 2 Schenefeld/Hamburg DE 22869 Germany
| | - K. P. Wilhelm
- proDERM; Institute for Applied Dermatological Research GmbH; Kiebitzweg 2 Schenefeld/Hamburg DE 22869 Germany
| |
Collapse
|
27
|
Torii K, Maeshige N, Aoyama-Ishikawa M, Miyoshi M, Terashi H, Usami M. Combination therapy with butyrate and docosahexaenoic acid for keloid fibrogenesis: an in vitro study. An Bras Dermatol 2017; 92:184-190. [PMID: 28538876 PMCID: PMC5429102 DOI: 10.1590/abd1806-4841.20176198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023] Open
Abstract
Background: A single, effective therapeutic regimen for keloids has not been established yet, and the development of novel therapeutic approaches is expected. Butyrate, a short-chain fatty acid, and docosahexaenoic acid (DHA), a ω-3 polyunsaturated fatty acid, play multiple anti-inflammatory and anticancer roles via their respective mechanisms of action. Objective: In this study, we evaluated the antifibrogenic effects of their single and combined use on keloid fibroblasts. Methods: Keloid fibroblasts were treated with butyrate (0-16 mM) and/or DHA (0-100 µM) for 48 or 96 h. Results: Butyrate inhibited cell proliferation, and α-smooth muscle actin (α-SMA) and type III collagen expressions, with inhibition of the transforming growth factor (TGF)-β1 and TGF-β type I receptor expressions and increased prostaglandin E2 with upregulation of cyclooxygenase-1 expression with induction of histone acetylation. DHA inhibited α-SMA, type III collagen, and TGF-β type I receptor expressions. Then, the butyrate/DHA combination augmented the antifibrogenic effects, resulting in additional inhibition of α-SMA, type I and III collagen expressions, with strong disruption of stress fiber and apoptosis induction. Moreover, the butyrate/DHA combination inhibited the cyclooxygenase-2 expression, suggesting stronger anti-inflammatory effect than each monotherapy. Study limitations: Activation in keloid tissue is affected not only by fibroblasts but also by epithelial cells and immune cells. Evaluation of the effects by butyrate and DHA in these cells or in an in vivo study is required. Conclusion: This study demonstrated that butyrate and docosahexaenoic acid have antifibrogenic effects on keloid fibroblasts and that these may exert therapeutic effects for keloid.
Collapse
Affiliation(s)
- Kazuhiro Torii
- Division of Nutrition and Metabolism, Department of Biophysics, Graduate School of Health Sciences, Kobe University - Kobe, Japan
| | - Noriaki Maeshige
- Division of Nutrition and Metabolism, Department of Biophysics, Graduate School of Health Sciences, Kobe University - Kobe, Japan.,Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University - Kobe, Japan
| | - Michiko Aoyama-Ishikawa
- Division of Nutrition and Metabolism, Department of Biophysics, Graduate School of Health Sciences, Kobe University - Kobe, Japan
| | - Makoto Miyoshi
- Division of Nutrition and Metabolism, Department of Biophysics, Graduate School of Health Sciences, Kobe University - Kobe, Japan
| | - Hiroto Terashi
- Department of Plastic Surgery, Graduate School of Medicine, Kobe University - Kobe, Japan
| | - Makoto Usami
- Division of Nutrition and Metabolism, Department of Biophysics, Graduate School of Health Sciences, Kobe University - Kobe, Japan.,Department of Nutrition, Kobe University Hospital - Kobe, Japan
| |
Collapse
|
28
|
The wound-healing effect of 7,3',4'-trimethoxyflavone through increased levels of prostaglandin E 2 by 15-hydroxyprostaglandin dehydrogenase inhibition. Biotechnol Lett 2017; 39:1575-1582. [PMID: 28664315 DOI: 10.1007/s10529-017-2386-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To find an inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) that rapidly metabolises Prostaglandin E2 (PGE2) as a mediator of wound healing, we examined seven flavonoids for this role. RESULTS 7,3',4'-Trimethoxyflavone (TMF) had the lowest IC50 value of 0.34 µM for 15-PGDH inhibition but >400 µM for cytotoxicity, indicating a high therapeutic index. TMF elevated PGE2 levels in a concentration-dependent manner in both A549 lung cancer and HaCaT cells. It also significantly increased mRNA expression of multidrug resistance-associated protein 4 (MRP4) and of prostaglandin transporter (PGT) slightly in HaCaT cells. In addition, TMF facilitated in vitro wound healing in a HaCaT scratch model, which was completely inhibited by adding both 15-PGDH and NAD+ as cofactor, confirming the involvement of PGE2 in its wound healing effect. CONCLUSION TMF with a high therapeutic index can facilitate wound healing through PGE2 elevation by 15-PGDH inhibition.
Collapse
|
29
|
Gold MH, Andriessen A, Dayan SH, Fabi SG, Lorenc ZP, Henderson Berg MH. Hypochlorous acid gel technology-Its impact on postprocedure treatment and scar prevention. J Cosmet Dermatol 2017; 16:162-167. [PMID: 28370943 DOI: 10.1111/jocd.12330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND A pre-and postprocedure regime aimed at prevention of infection, reduction of inflammation and risk of scarring, is to enable optimal outcomes. OBJECTIVES The role of a hypochlorous acid containing spray and translucent scar gel formulation that combines modified silicon oil with hypochlorous acid, was explored for pre- and postprocedure treatment and scar management. METHODS For this purpose a literature review was conducted to explore the value of the technology used in pre-and postprocedural regimes. A panel of dermatologists and plastic surgeons who practice in the United States discussed the summarized search results, taking into account their current clinical practice. A nominal group process for consensus was used, followed by online reviews of the manuscript. RESULTS Based on panel discussions, consensus was reached regarding clinical recommendations given for postprocedure treatment and scar management. The hypochlorous acid products are produced with electrolysis and are classified among biocidal substances. The technology has demonstrated efficacy and safety for pre-and postprocedure use. The safety of hypochlorous solution use demonstrated to be comparable to that of standard local antiseptics. Small studies demonstrated better results with the scar gel compared to silicone gel regarding the appearance of hypertrophic and keloid scars, relief of associated pruritus and pain. CONCLUSIONS A postprocedure regime using this technology, aimed at preventing infection, reducing inflammation, and promoting healing is proposed to have benefits over current regimes as it appears to be effective, safe, and well tolerated.
Collapse
Affiliation(s)
- Michael H Gold
- Gold Skin Care Center, Nashville, TN, USA.,Tennessee Clinical Research Center, Nashville, TN, USA.,Vanderbilt University School of Nursing, Nashville, TN, USA.,School of Medicine, Meharry Medical College, Nashville, TN, USA
| | | | - Steven H Dayan
- Department of Otolaryngology, Division of Facial Plastic and Reconstructive Surgery, University of Illinois, Chicago, IL, USA
| | | | - Z Paul Lorenc
- Lorenc Aesthetic Plastic Surgery Center, New York, NY, USA.,Department of Plastic Surgery, Lenox Hill Hospital, New York, NY, USA
| | | |
Collapse
|
30
|
Klinkert K, Whelan D, Clover AJP, Leblond AL, Kumar AHS, Caplice NM. Selective M2 Macrophage Depletion Leads to Prolonged Inflammation in Surgical Wounds. Eur Surg Res 2017; 58:109-120. [PMID: 28056458 DOI: 10.1159/000451078] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/26/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND A prolonged inflammatory phase is seen in aberrant wound healing and in chronic wounds. Macrophages are central to wound healing. Distinct macrophage subtypes have differing roles both in initial inflammation and in later tissue repair. Broadly, these cells can be divided into M1 and M2 macrophages. M2 macrophage proliferation and differentiation is regulated by colony-stimulating factor 1 (CSF-1) signalling and can be blocked by GW2580, a competitive cFMS kinase inhibitor, thereby allowing for analysis of the effect of M2 blockade on progression of surgical wounds. MATERIALS AND METHODS Macrophage Fas-induced apoptosis (MaFIA) transgenic mice with a macrophage-specific promoter used to express green fluorescent protein (GFP) were used to allow for cell tracking. The animals were treated by oral gavage with GW2580. Surgical wounds were created and harvested after 2 weeks for analysis. RESULTS GW2580-treated mice had significantly more GFP+ cells in the surgical scar than vehicle-treated animals (GW2580, 68.0 ± 3.1%; vehicle, 42.8 ± 1.7%; p < 0.001), and GW2580 treatment depleted CD206+ M2 macrophages in the scar (GW2580, 1.4%; vehicle, 19.3%; p < 0.001). Treated animals showed significantly higher numbers of neutrophils (vehicle, 18.0%; GW2580, 51.3%; p < 0.01) and M1 macrophages (vehicle, 3.8%; GW2580, 12.8%; p < 0.01) in the scar compared to vehicle-treated animals. The total collagen content in the area of the scar was decreased in animals treated with GW2580 as compared to those treated with vehicle alone (GW2580, 67.1%; vehicle, 79.9%; p < 0.005). CONCLUSIONS Depletion of M2 macrophages in surgical wounds via CSF-1 signalling blockade leads to persistent inflammation, with an increase in neutrophils and M1 macrophages and attenuated collagen deposition.
Collapse
Affiliation(s)
- Kerstin Klinkert
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
31
|
Zhou X, Cui J, Liu S, Kong D, Sun H, Gu C, Wang H, Qiu X, Chang Y, Liu Z, Wang X. Comparative transcriptome analysis of papilla and skin in the sea cucumber, Apostichopus japonicus. PeerJ 2016; 4:e1779. [PMID: 26989617 PMCID: PMC4793329 DOI: 10.7717/peerj.1779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/17/2016] [Indexed: 01/02/2023] Open
Abstract
Papilla and skin are two important organs of the sea cucumber. Both tissues have ectodermic origin, but they are morphologically and functionally very different. In the present study, we performed comparative transcriptome analysis of the papilla and skin from the sea cucumber (Apostichopus japonicus) in order to identify and characterize gene expression profiles by using RNA-Seq technology. We generated 30.6 and 36.4 million clean reads from the papilla and skin and de novo assembled in 156,501 transcripts. The Gene Ontology (GO) analysis indicated that cell part, metabolic process and catalytic activity were the most abundant GO category in cell component, biological process and molecular funcation, respectively. Comparative transcriptome analysis between the papilla and skin allowed the identification of 1,059 differentially expressed genes, of which 739 genes were expressed at higher levels in papilla, while 320 were expressed at higher levels in skin. In addition, 236 differentially expressed unigenes were not annotated with any database, 160 of which were apparently expressed at higher levels in papilla, 76 were expressed at higher levels in skin. We identified a total of 288 papilla-specific genes, 171 skin-specific genes and 600 co-expressed genes. Also, 40 genes in papilla-specific were not annotated with any database, 2 in skin-specific. Development-related genes were also enriched, such as fibroblast growth factor, transforming growth factor-β, collagen-α2 and Integrin-α2, which may be related to the formation of the papilla and skin in sea cucumber. Further pathway analysis identified ten KEGG pathways that were differently enriched between the papilla and skin. The findings on expression profiles between two key organs of the sea cucumber should be valuable to reveal molecular mechanisms involved in the development of organs that are related but with morphological differences in the sea cucumber.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Jun Cui
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States
| | - Derong Kong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - He Sun
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Chenlei Gu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Hongdi Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xuemei Qiu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States
| | - Xiuli Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
32
|
Gerarduzzi C, He Q, Antoniou J, Di Battista JA. Prostaglandin E(2)-dependent blockade of actomyosin and stress fibre formation is mediated through S1379 phosphorylation of ROCK2. J Cell Biochem 2015; 115:1516-27. [PMID: 24610576 DOI: 10.1002/jcb.24806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/04/2014] [Indexed: 12/26/2022]
Abstract
Prostaglandin E2 is a pleiotropic bioactive lipid that controls cytoskeletal alterations, although the precise G-protein coupled EP receptor signalling mechanisms remain ill defined. We adopted a phosphoproteomic approach to characterize post-receptor downstream signalling substrates using antibodies that selectively recognize and immunoprecipitate phosphorylated substrates of a number of kinases. Using human synovial fibroblasts in monolayer cell culture, PGE2 induced rapid and sustained changes in cellular morphology and reduction in cytoplasmic volume that were associated with disassembly of the phalloidin-stained stress fibres as judged by light and confocal microscopy. Furthermore, PGE2 induced a rapid dephosphorylation of myosin light chain II (MLC) at S19 under basal or cytokine-induced conditions that was linked to an activation of myosin light chain phosphatase. The use of specific synthetic EP agonists suggested that the response was mediated by EP2 receptors, as other EP agonists did not manifest the same effect on MLC phosphorylation. In addition, PGE2 induced sustained Y118 dephosphorylation of phospho-paxillin and loss of focal adhesions as observed by confocal microscopy and Western analysis. Phosphoproteomic analysis of PGE2 /GPCR/PKA phosphosubstrates identified a unique, non-redundant, phosphorylated (>30-fold) site on rho-associated coiled coil-containing kinase 2 (ROCK2) at S1379. Analysis of ROCK2 mutant behaviour (e.g. S1379A) in overexpression studies revealed that PGE2 -dependent phosphorylation of ROCK2 resulted in the inhibition of the kinase, since induced MLC phosphorylation was no longer blocked by PGE2 nor could PGE2 induce disassembly of stress fibres. Thus, PGE2 -dependent blockade of actomyosin fibre formation, characteristic of myofibroblasts, may be mediated through specific ROCK2 S1379 phosphorylation.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts; Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
33
|
Branski RC, Bing R, Kraja I, Amin MR. The role of Smad3 in the fibrotic phenotype in human vocal fold fibroblasts. Laryngoscope 2015; 126:1151-6. [PMID: 26422444 DOI: 10.1002/lary.25673] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/21/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES/HYPOTHESIS To investigate the role of Smad3 as a regulator of transforming growth factor (TGF)-β1-mediated cell activities associated with fibrosis in normal human vocal fold fibroblasts. We also sought to confirm the temporal stability of Smad3 knockdown via small inhibitor ribonucleic acid (siRNA). Vocal fold fibroblasts were employed to determine the effects of Smad3 knockdown on TGF-β1-mediated migration and contraction, as well as regulation of connective tissue growth factor (CTGF). We hypothesized that Smad3 is an ideal candidate for therapeutic manipulation in vivo based on its role in fibrosis. STUDY DESIGN In vitro. METHODS Knockdown of Smad3 via siRNA was performed in our normal human vocal fold cell line. Three-dimensional collagen gel contraction and scratch assays were employed to determine the role of Smad3 on TGF-β1-mediated contraction and migration, respectively. The role Smad3 in the induction of CTGF was characterized via sodium dodecyl sulfate polyacrylamide gel electrophoresis. The effects of Smad3 signaling on Smad7 messenger (m)RNA and protein were also quantified. RESULTS Smad3 knockdown was temporally-stable up to 72 hours (P < 0.001), diminished TGF-β1-mediated collagen gel contraction and migration, and blunted induction of CTGF, but it had no effect on TGF-β1-mediated Smad7 mRNA or protein induction. CONCLUSION Transforming growth factor-β1 stimulated profibrotic cell activities in our cell line and these actions were largely reduced with Smad3 knockdown. These data provide continued support for therapeutic targeting of Smad3 for vocal fold fibrosis because it appears to regulate the fibrotic phenotype. LEVEL OF EVIDENCE N/A. Laryngoscope, 126:1151-1156, 2016.
Collapse
Affiliation(s)
| | | | | | - Milan R Amin
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| |
Collapse
|
34
|
Age-Associated Increase in Skin Fibroblast-Derived Prostaglandin E2 Contributes to Reduced Collagen Levels in Elderly Human Skin. J Invest Dermatol 2015; 135:2181-2188. [PMID: 25905589 PMCID: PMC4537382 DOI: 10.1038/jid.2015.157] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/15/2015] [Accepted: 04/07/2015] [Indexed: 01/16/2023]
Abstract
Production of type I collagen declines during aging, leading to skin thinning and impaired function. Prostaglandin E2 (PGE2) is a pleiotropic lipid mediator that is synthesized from arachidonic acid by the sequential actions of cyclooxygenases (COX) and PGE synthases (PTGES). PGE2 inhibits collagen production by fibroblasts in vitro. We report that PTGES1 and COX2 progressively increase with aging in sun-protected human skin. PTGES1 and COX2 mRNA were increased 3.4-fold and 2.7-fold, respectively, in the dermis of elderly (>80 years) versus young (21-30 years) individuals. Fibroblasts were the major cell source of both enzymes. PGE2 levels were increased 70% in elderly skin. Fibroblasts in aged skin display reduced spreading due to collagen fibril fragmentation. To investigate the relationship between spreading and PGE2 synthesis, fibroblasts were cultured on micropost arrays or hydrogels of varying mechanical compliance. Reduced spreading/mechanical force resulted in increased expression of both PTGES1 and COX2 and elevated levels of PGE2. Inhibition of PGE2 synthesis by diclofenac enhanced collagen production in skin organ cultures. These data suggest that reduced spreading/mechanical force of fibroblasts in aged skin elevates PGE2 production, contributing to reduced collagen production. Inhibition of PGE2 production may be therapeutically beneficial for combating age-associated collagen deficit in human skin.
Collapse
|
35
|
Shin JM, Park IH, Moon YM, Hong SM, Cho JS, Um JY, Lee HM. Inhibitory effect of prostaglandin E(2) on the migration of nasal fibroblasts. Am J Rhinol Allergy 2015; 28:e120-4. [PMID: 24980222 DOI: 10.2500/ajra.2014.28.4039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Fibroblast migration is crucial for normal wound repair after sinonasal surgery. Prostaglandin E2 (PGE2) is a potent inhibitor of fibroblast functions including chemotaxis, proliferation, and matrix production. The purpose of this study was to determine whether PGE2 affects the migration of nasal fibroblasts and to investigate the mechanism of action of PGE2 on nasal fibroblasts. METHODS Primary cultures of nasal fibroblasts were established from inferior turbinate samples. Fibroblast migration was evaluated with scratch assays. Reverse-transcription polymerase chain reaction was performed for E prostanoid (EP) 1, EP2, EP3, and EP4 receptors. EP receptor-selective agonists and antagonists were used to evaluate receptor functions. Stimulatory G (Gs) proteins were activated to evaluate mechanisms. Intracellular cyclic adenosine monophosphate (cAMP) levels were measured by ELISA, and fibroblast cytoskeletal structures were visualized with immunocytochemistry. RESULTS PGE2 significantly reduced the migration of nasal fibroblasts. Agonists selective for the EP2 and EP4 receptors significantly reduced the nasal fibroblast migration. Antagonists of the EP2 and EP4 receptors inhibited the effect of PGE2 on nasal fibroblast migration. Activation of Gs protein and adenyl cyclase reduced nasal fibroblast migration. CONCLUSION PGE2 inhibited the migration of nasal fibroblasts via the EP2 and EP4 receptors, and this inhibition was mediated by cAMP elevation. Targeting specific EP receptors could offer therapeutic opportunities for conditions such as delayed wound healing after nasal surgery.
Collapse
Affiliation(s)
- Jae-Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Guro Hospital, Korea University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Arai KY, Fujioka A, Okamura R, Nishiyama T. Stimulatory effect of fibroblast-derived prostaglandin E₂ on keratinocyte stratification in the skin equivalent. Wound Repair Regen 2015; 22:701-11. [PMID: 25224163 DOI: 10.1111/wrr.12228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/04/2014] [Indexed: 02/03/2023]
Abstract
Epidermal-dermal interaction plays important roles in physiological events such as wound healing. In this study, we examined a double paracrine mechanism between keratinocytes and fibroblasts through interleukin-1 (IL-1) and an IL-1-induced inflammatory mediator prostaglandin E₂ (PGE₂) using the skin equivalent. The epidermal layer of the skin equivalent expressed high levels of IL-1α mRNA (IL1A mRNA) and relatively low levels of IL-1β mRNA (IL1B mRNA). IL1A mRNA was not detected in fibroblasts. Fibroblasts also expressed low but not negligible levels of IL1B mRNA only in the presence of keratinocytes. Expression of prostaglandin-endoperoxide synthase 2 mRNA (PTGS2 mRNA) and production of PGE₂ in three-dimensionally cultured fibroblasts were noticeably stimulated by co-culture with keratinocytes, whereas PTGS2 mRNA expression in the epidermal layer was very low. In addition, hydroxyprostaglandin dehydrogenase 15-(NAD) mRNA was highly expressed in keratinocytes but not in fibroblasts, and exogenous IL-1β stimulated PTGS2 mRNA expression in the dermal equivalent. The thickness of the epidermal layer and the number of MKI67-positive keratinocytes in the skin equivalent were decreased by treatment with indomethacin, and the decrease recovered when exogenous PGE₂ was added. These results indicate that keratinocytes stimulate their own proliferation through a double paracrine mechanism mediated by IL-1 and PGE₂.
Collapse
Affiliation(s)
- Koji Y Arai
- Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | | | | | | |
Collapse
|
37
|
Chen J, Zhao S, Liu Y, Cen Y, Nicolas C. Effect of captopril on collagen metabolisms in keloid fibroblast cells. ANZ J Surg 2014; 86:1046-1051. [PMID: 24852495 DOI: 10.1111/ans.12670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Keloid is a proliferative disease of fibrous tissues. The mechanism and consistently effective treatments of keloid remained unknown. Although there was a report about treating keloid with topical captopril, the further investigation about captopril affecting keloid has not been performed so far. OBJECTIVES The aim of this study was to analyse the effect of captopril on collagen metabolisms in keloid fibroblast cells, and to provide information for the mechanism and therapy of keloid. METHODS To investigate the effects and relative mechanism of captopril on keloid fibroblast cells, we examined the changes of collagen metabolism, expression of angiotensin, transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF)-BB and heat shock protein 47 (HSP47), and cellular proliferation in keloid fibroblast cells. RESULTS We found that all collagen metabolisms, expression of TGF-β1, PDGF-BB and HSP47, and cellular proliferation decreased significantly with effective captopril concentrations in keloid fibroblast cells. CONCLUSIONS With a comprehensive analysis of test results, we proposed that captopril may decrease the expression of angiotensin, PDGF-BB, TGF-β1 and HSP47, and further inhibit proliferation and collagen synthesis of keloid fibroblast cells, which were the key in keloid formation.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong Liu
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Cen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Crook Nicolas
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Kang HR, Lee JY, Lee CG. TGF-β1 as a therapeutic target for pulmonary fibrosis and COPD. Expert Rev Clin Pharmacol 2014; 1:547-58. [PMID: 24410556 DOI: 10.1586/17512433.1.4.547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TGF-β1 is a multifunctional molecule that is expressed in an exaggerated fashion during injury, inflammation and repair. Its expression is dysregulated in lung tissues from patients with pulmonary fibrosis and chronic obstructive pulmonary disease. In animal models, introduction of TGF-β1 expression in the lung causes prominent tissue fibrosis and alveolar destruction. On the other hand, the exaggerated production of TGF-β1, an inability to activate TGF-β1 or a block in TGF-β1 signaling have all been associated with the development of emphysematous pulmonary lesions. A number of studies have demonstrated that TGF-β1 is a major player in the pathogenesis of pulmonary fibrosis and emphysema. In this review, we discuss how TGF-β1 expression is regulated and mechanistically related to the development of tissue fibrosis and emphysema in experimental animal models and humans. We further highlight potential therapeutic options that control TGF-β1-associated genes or signals to restore extracellular matrix homeostasis in which TGF-β1 plays a central role.
Collapse
Affiliation(s)
- Hye-Ryun Kang
- Department of Internal Medicine, Hallym University School of Medicine, Anyang, Korea
| | | | | |
Collapse
|
39
|
Dong X, Mao S, Wen H. Upregulation of proinflammatory genes in skin lesions may be the cause of keloid formation (Review). Biomed Rep 2013; 1:833-836. [PMID: 24649037 DOI: 10.3892/br.2013.169] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/19/2013] [Indexed: 01/04/2023] Open
Abstract
It was previously demonstrated that the main cause behind keloid formation may be keloid fibroblast abnormalities, which are closely associated with the microenvironment of the keloid lesion. The post-traumatic and chronic inflammation of the keloid lesion area suggest that inflammatory mediators play an important role in the keloid microenvironment and are crucial for keloid fibroblast abnormalities. In this study, we hypothesized that the mechanism underlying keloid formation may involve the continuous upregulation of proinflammatory gene expression in keloid lesions. This hypothesis may explain the inflammatory response, invasive growth and recurrence following resection of keloids, as well as the selective localization of keloids in specific parts of a patient's body and the differences in localization among different patients.
Collapse
Affiliation(s)
- Xianglin Dong
- Department of Burns and Plastic Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Shaolin Mao
- Department of Burns and Plastic Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Hao Wen
- Department of Hydatid Hepatobiliary, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
40
|
Poole NM, Mamidanna G, Smith RA, Coons LB, Cole JA. Prostaglandin E(2) in tick saliva regulates macrophage cell migration and cytokine profile. Parasit Vectors 2013; 6:261. [PMID: 24025197 PMCID: PMC3846740 DOI: 10.1186/1756-3305-6-261] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/04/2013] [Indexed: 12/29/2022] Open
Abstract
Background Ticks are obligate hematophagous ectoparasites that suppress the host’s immune and inflammatory responses by secreting immuno-modulatory and anti-inflammatory molecules in their saliva. In previous studies we have shown that tick salivary gland extract (SGE) and saliva from Dermacentor variabilis have distinct effects on platelet-derived growth factor (PDGF)-stimulated IC-21 macrophage and NIH3T3-L1 fibroblast migration. Since tick saliva contains a high concentration of prostaglandin E2 (PGE2), a potent modulator of inflammation, we used a PGE2 receptor antagonist to evaluate the role of PGE2 in the different migratory responses induced by saliva and its impact on macrophage cytokine profile. Methods Adult ticks were fed on female New Zealand white rabbits for 5-8 days. Female ticks were stimulated with dopamine/theophylline to induce salivation and saliva was pooled. Competitive enzyme immunoassays (EIA) were used to measure saliva PGE2 content and the changes in macrophage intracellular cyclic adenosine monophosphate (cAMP) levels. The effects of tick saliva on macrophage and fibroblast migration were assessed in the absence and presence of the PGE2 receptor antagonist, AH 6809, using blind well chamber assays. A cytokine antibody array was used to examine the effects of tick saliva on macrophage cytokine secretion. Statistical significance was determined by one-way ANOVA; Student Newman-Kuels post-test was used for multiple comparisons. Results The saliva-induced increase in PDGF-stimulated macrophage migration was reversed by AH 6809. The inhibition of PDGF-stimulated fibroblast migration by saliva was also antagonist-sensitive. Tick saliva induced macrophages to secrete copious amounts of PGE2, and conditioned medium from these cells caused an AH 6809-sensitive inhibition of stimulated fibroblast migration, showing that macrophages can regulate fibroblast activity. We show that tick saliva decreased the secretion of the pro-inflammatory cytokines regulated and normal T cell expressed and secreted (RANTES/CCL5), tumor necrosis factor-alpha (TNF-α), and soluble TNF receptor I (sTNFRI) through a PGE2-dependent mechanism mediated by cAMP. Saliva had similar effects on lipopolysaccharide (LPS) stimulated macrophages. Conclusions Our data show that ticks utilize salivary PGE2 to subvert the ability of macrophages to secrete pro-inflammatory mediators and recruit fibroblasts to the feeding lesion, therefore inhibiting wound healing.
Collapse
Affiliation(s)
- Nina M Poole
- Department of Biological Sciences, The University of Memphis, 239 Ellington Hall, 3700 Walker Avenue, Memphis TN, 38152, USA.
| | | | | | | | | |
Collapse
|
41
|
Huang C, Ogawa R. Roles of lipid metabolism in keloid development. Lipids Health Dis 2013; 12:60. [PMID: 23634948 PMCID: PMC3653711 DOI: 10.1186/1476-511x-12-60] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/26/2013] [Indexed: 11/12/2022] Open
Abstract
Keloids are common cutaneous pathological scars that are characterised by the histological accumulation of fibroblasts, collagen fibres, and clinically significant invasive growth. Although increasing lines of research on keloids have revealed genetic and environmental factors that contribute to their formation, the etiology of these scars remains unclear. Several studies have suggested the involvement of lipid metabolism, from a nutritional point of view. However, the role that lipid metabolism plays in the pathogenesis and progression of keloids has not previously been reviewed. The progress that has been made in understanding the roles of the pro- and anti-inflammatory lipid mediators in inflammation, and how they relate to the formation and progression of keloids, is also outlined. In particular, the possible relationships between mechanotransduction and lipid metabolites in keloids are explored. Mechanotransduction is the process by which physical forces are converted into biochemical signals that are then integrated into cellular responses. It is possible that lipid rafts and caveolae provide the location of lipid signaling and interactions between these signaling pathways and mechanotransduction. Moreover, interactions between lipid signaling pathway molecules and mechanotransduction molecules have been observed. A better understanding of the lipid profile changes and the functional roles lipid metabolism plays in keloids will help to identify target molecules for the development of novel interventions that can prevent, reduce, or even reverse pathological scar formation and/or progression.
Collapse
Affiliation(s)
- Chenyu Huang
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-8603, Japan
| | | |
Collapse
|
42
|
Barreto RS, Albuquerque-Júnior RL, Pereira-Filho RN, Quintans JS, Barreto AS, DeSantana JM, Santana-Filho VJ, Santos MR, Bonjardim LR, Araújo AA, Quintans-Júnior LJ. Evaluation of wound healing activity of atranorin, a lichen secondary metabolite, on rodents. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2013005000010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Mohammadzadeh R. Nanosilver as a novel agent in keloid therapy. J Eur Acad Dermatol Venereol 2013; 27:e260-1. [DOI: 10.1111/j.1468-3083.2012.04594.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Kendall AC, Nicolaou A. Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res 2012; 52:141-64. [PMID: 23124022 DOI: 10.1016/j.plipres.2012.10.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 12/20/2022]
Abstract
The skin is the primary barrier from the outside environment, protecting the host from injury, infectious pathogens, water loss and solar ultraviolet radiation. In this role, it is supported by a highly organized system comprising elements of innate and adaptive immunity, responsive to inflammatory stimuli. The cutaneous immune system is regulated by mediators such as cytokines and bioactive lipids that can initiate rapid immune responses with controlled inflammation, followed by efficient resolution. However, when immune responses are inadequate or mounted against non-infectious agents, these mediators contribute to skin pathologies involving unresolved or chronic inflammation. Skin is characterized by active lipid metabolism and fatty acids play crucial roles both in terms of structural integrity and functionality, in particular when transformed to bioactive mediators. Eicosanoids, endocannabinoids and sphingolipids are such key bioactive lipids, intimately involved in skin biology, inflammation and immunity. We discuss their origins, role and influence over various cells of the epidermis, dermis and cutaneous immune system and examine their function in examples of inflammatory skin conditions. We focus on psoriasis, atopic and contact dermatitis, acne vulgaris, wound healing and photodermatology that demonstrate dysregulation of bioactive lipid metabolism and examine ways of using this insight to inform novel therapeutics.
Collapse
Affiliation(s)
- Alexandra C Kendall
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | | |
Collapse
|
45
|
Deng YL, Xiong XZ, Cheng NS. Organ fibrosis inhibited by blocking transforming growth factor-β signaling via peroxisome proliferator-activated receptor γ agonists. Hepatobiliary Pancreat Dis Int 2012; 11:467-78. [PMID: 23060391 DOI: 10.1016/s1499-3872(12)60210-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Organ fibrosis has been viewed as one of the major medical problems, which can lead to progressive dysfunction of the liver, lung, kidney, skin, heart, and eventually death of patients. Fibrosis is initiated by a variety of pathological, physiological, biochemical, and physical factors. Regardless of their different etiologies, they all share a common pathogenetic process: excessive activation of the key profibrotic cytokine, transforming growth factor-beta (TGF-beta). Peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand-activated transcription factor of the nuclear receptor superfamily, has received particular attention in recent years, because the activation of PPARgamma by both natural and synthetic agonists could effectively inhibit TGF-beta-induced profibrotic effects in many organs. DATA SOURCES The English-language medical databases, PubMed, Elsevier and SpringerLink were searched for articles on PPARgamma, TGF-beta, and fibrosis, and related topics. RESULTS TGF-beta is recognized as a key profibrotic cytokine. Excessive activation of TGF-beta increases synthesis of extracellular matrix proteins and decreases their degradation, associated with a gradual destruction of normal tissue architecture and function, whereas PPARgamma agonists inhibit TGF-beta signal transduction and are effective antifibrogenic agents in many organs including the liver, lung, kidney, skin and heart. CONCLUSIONS The main antifibrotic activity of PPARgamma agonists is to suppress the TGF-beta signaling pathway by so-called PPARgamma-dependent effect. In addition, PPARgamma agonists, especially 15d-PGJ2, also exert potentially antifibrotic activity independent of PPARgamma activation. TGF-beta1/Smads signaling not only plays many essential roles in multiple developmental processes, but also forms cross-talk networks with other signal pathways, and their inhibition by PPARgamma agonists certainly affects the cytokine networks and causes non-suspected side-effects. Anti-TGF-beta therapies with PPARgamma agonists may have to be carefully tailored to be tissue- and target gene-specific to minimize side-effects, indicating a great challenge to the medical research at present.
Collapse
Affiliation(s)
- Yi-Lei Deng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | |
Collapse
|
46
|
Basile L, Alvarez S, Blanco A, Santagati A, Granata G, Di Pietro P, Guccione S, Muñoz-Fernández MÁ. Sulfonilamidothiopyrimidone and thiopyrimidone derivatives as selective COX-2 inhibitors: synthesis, biological evaluation, and docking studies. Eur J Med Chem 2012; 57:149-61. [PMID: 23047231 DOI: 10.1016/j.ejmech.2012.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 01/22/2023]
Abstract
Newly synthesized sulfonilamidothiopyrimidone derivatives and a subset of 14 sulfonilamidothiopyrimidones and thiopyrimidones selected by an MTT assays cell viability guided selection from an in house collection were evaluated to determine the inhibitory effect on the PGE(2) formation in human peripheral blood lymphocytes (PBLs) using commercial ELISA. The newly synthesized sulfonilamidothiopyrimidone derivatives showed interesting pharmacological activities. Preliminary in vitro assays showed that compounds 2-5 are endowed with very high activity. Compound 2 was the most active as hCOX-2 inhibitor. The observed effects were not due to an inhibition of cell proliferation as proved by the BrdU assay. Western blot of COX-2 confirmed the inhibition on the PGE(2) secretion. Further evidence on the inhibitory potential and selectivity as COX-2 inhibitors of the selected compounds came from the in vitro screening. In order to better rationalize the action and the binding mode of these compounds, docking studies were carried out. These studies were in agreement with the biological data. Compounds 2-5 were able to fit into the active site of COX-2 with highest scores and interaction energies. Furthermore, compound 2, which showed an inhibition of around 50% on PGE(2) production, was the best scored in all the docking calculations carried out.
Collapse
Affiliation(s)
- Livia Basile
- EtnaLead s.r.l., c/o Etnabuilding, Scuola Superiore di Catania, via S. Nullo 5/i, I-95123 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Insel PA, Murray F, Yokoyama U, Romano S, Yun H, Brown L, Snead A, Lu D, Aroonsakool N. cAMP and Epac in the regulation of tissue fibrosis. Br J Pharmacol 2012; 166:447-56. [PMID: 22233238 DOI: 10.1111/j.1476-5381.2012.01847.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibrosis, the result of excess deposition of extracellular matrix (ECM), in particular collagen, leads to scarring and loss of function in tissues that include the heart, lung, kidney and liver. The second messenger cAMP can inhibit the formation and extent of ECM during this late phase of inflammation, but the mechanisms for these actions of cAMP and of agents that elevate tissue cAMP levels are not well understood. In this article, we review the fibrotic process and focus on two recently recognized aspects of actions of cAMP and its effector Epac (Exchange protein activated by cAMP): (a) blunting of epithelial-mesenchymal transformation (EMT) and (b) down-regulation of Epac expression by profibrotic agents (e.g. TGF-β, angiotensin II), which may promote tissue fibrosis by decreasing Epac-mediated antifibrotic actions. Pharmacological approaches that raise cAMP or blunt the decrease in Epac expression by profibrotic agents may thus be strategies to block or perhaps reverse tissue fibrosis. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2.
Collapse
Affiliation(s)
- Paul A Insel
- Departments of Pharmacology Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wu CS, Wu PH, Fang AH, Lan CCE. FK506 inhibits the enhancing effects of transforming growth factor (TGF)-β1 on collagen expression and TGF-β/Smad signalling in keloid fibroblasts: implication for new therapeutic approach. Br J Dermatol 2012; 167:532-41. [PMID: 22540338 DOI: 10.1111/j.1365-2133.2012.11023.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Keloid is a unique proliferative disorder of fibroblasts resulting from derailment of the typical wound healing process. Due to lack of animal models for therapeutic testing, treatment of keloids remains a clinical challenge. Transforming growth factor (TGF)-β1-related signalling plays a key role in keloid formation. As tacrolimus (FK506) has been reported to inhibit the effects of TGF-β1 on cultured fibroblasts, we hypothesized that FK506 may be useful in treating keloids. OBJECTIVES To explore the effects of FK506 on TGF-β1-stimulated keloid fibroblasts (KFs) in terms of proliferation, migration and collagen production and to investigate the regulatory pathways involved. METHODS Fibroblasts derived from keloids were treated with TGF-β1 with or without FK506. Relevant assays including 5-bromo-2'-deoxyuridine incorporation assay, in vitro scratch assay, reverse transcription-polymerase chain reaction (PCR), quantitative PCR and Western blotting were performed. RESULTS The proliferation and migration of KFs were significantly higher than those of normal fibroblasts. FK506 markedly inhibited KF proliferation, migration and collagen production enhanced by TGF-β1. The increase in TGF-β receptor I and II expression in TGF-β1-treated KFs was suppressed by FK506 treatment. TGF-β1 increased the phosphorylation of Smad2/3 and Smad4 in KFs, and this enhancing effect was abrogated by FK506. In addition, FK506 significantly increased the expression of Smad7 which was suppressed by TGF-β1 treatment. CONCLUSIONS Our results demonstrate that FK506 effectively blocks the TGF-β/Smad signalling pathway in KFs by downregulation of TGF-β receptors and suggest that FK506 may be included in the armamentarium for treating keloids.
Collapse
Affiliation(s)
- C-S Wu
- Department of Medical Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
49
|
Widgerow AD, Kalaria S. Pain mediators and wound healing--establishing the connection. Burns 2012; 38:951-9. [PMID: 22738827 DOI: 10.1016/j.burns.2012.05.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/25/2012] [Accepted: 05/30/2012] [Indexed: 01/10/2023]
Abstract
Pain accompanies every disruption of the skin surface in a normal sensate individual. The intensity and duration of the pain varies depending on the nature of trauma, the healing trajectory and various host factors. Pain mediator release is the mechanism for pain perception following peripheral stimulus and central interpretation. The various mediators may have promoting effects on wound healing in the short term, but it appears that protracted release of these mediators may well have detrimental effects on wound healing. The exaggerated release of pain mediators may result in nociceptor hypersensitization, hyperinflammatory cellular and extracellular matrix (ECM) changes, and in some cases, the potential for a fibrotic healing pattern. This relates to an imbalance between mediators with differing healing characteristics arising in certain pathological conditions. In this respect, it may be worth examining pain mediator agonists or antagonists, not only on compassionate grounds of pain control, but relating to the potential effects on overall wound healing.
Collapse
|
50
|
Kanzaki M, Yamato M, Takagi R, Kikkawa T, Isaka T, Okano T, Onuki T. Controlled collagen crosslinking process in tissue-engineered fibroblast sheets for preventing scar contracture on the surface of lungs. J Tissue Eng Regen Med 2012; 7:383-91. [DOI: 10.1002/term.533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 09/19/2011] [Accepted: 09/28/2011] [Indexed: 01/09/2023]
Affiliation(s)
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Japan
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Japan
| | - Takuma Kikkawa
- Department of Surgery I; Tokyo Women's Medical University School of Medicine; Japan
| | - Tamami Isaka
- Department of Surgery I; Tokyo Women's Medical University School of Medicine; Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Japan
| | - Takamasa Onuki
- Department of Surgery I; Tokyo Women's Medical University School of Medicine; Japan
| |
Collapse
|