1
|
Zhang SM, Wei CY, Wang Q, Wang L, Lu L, Qi FZ. M2-polarized macrophages mediate wound healing by regulating connective tissue growth factor via AKT, ERK1/2, and STAT3 signaling pathways. Mol Biol Rep 2021; 48:6443-6456. [PMID: 34398425 DOI: 10.1007/s11033-021-06646-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Timely and sufficient M1 recruitment and M2 polarization are necessary for fibrosis during wound healing. The mechanism of how M2 mediates wound healing is worth exploring. Abnormally up-regulated connective tissue growth factor (CTGF) influences multiple organ fibrosis, including cardiac, pulmonary, hepatic, renal, and cutaneous fibrosis. Previous studies reported that M2 contributed to hepatic and renal fibrosis by secreting CTGF. It is worth discussing if M2 regulates fibrosis through secreting CTGF in wound healing. METHODS AND RESULTS We established the murine wound model and inhibited macrophages during proliferation phase with clodronate liposomes in vivo. Macrophages depletion led to down-regulation of wound healing rates, collagen deposition, as well as expression of collagen 1/3 and Ki67. M2 was induced by interleukin-4 (IL-4) and measured by flow cytometry in vitro. Secreted pro-fibrotic and anti-fibrotic factors were tested by enzyme-linked immunosorbent assay (ELISA). M2 was polarized, which producing more CTGF, transforming growth factor-beta1 (TGF-β1), and IL-6, as well as less tumor necrosis factor-α (TNF-α) and IL-10. M2 CTGF gene was blocked using siCTGF. Effects of M2 on fibroblasts activities were detected by cell counting kit 8 (CCK8) and cellular wound healing assay. Expressions of related signaling pathway were assessed by western blotting. Blockade of CTGF in M2 deactivated fibroblasts proliferation and migration by regulating AKT, ERK1/2, and STAT3 pathway. Recombinant CTGF restored these effects. CONCLUSIONS Our research, for the first time, indicated that M2 promoted wound healing by secreting CTGF, which further mediating proliferation and migration of fibroblasts via AKT, ERK1/2, and STAT3 pathway.
Collapse
Affiliation(s)
- Si-Min Zhang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Chuan-Yuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Qiang Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Lu Lu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Fa-Zhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
2
|
Mussa BM, Khan AA, Srivastava A, Abdallah SH. Differentiated PDGFRα-Positive Cells: A Novel In-Vitro Model for Functional Studies of Neuronal Nitric Oxide Synthase. Int J Mol Sci 2021; 22:ijms22073514. [PMID: 33805311 PMCID: PMC8037384 DOI: 10.3390/ijms22073514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
It is evident that depletion of interstitial cells and dysfunction of nitric oxide (NO) pathways are key players in development of several gastrointestinal (GI) motility disorders such as diabetic gastroparesis (DGP). One of the main limitations of DGP research is the lack of isolation methods that are specific to interstitial cells, and therefore conducting functional studies is not feasible. The present study aims (i) to differentiate telomerase transformed mesenchymal stromal cells (iMSCs) into platelet-derived growth factor receptor-α-positive cells (PDGFRα-positive cells) using connective tissue growth factor (CTGF) and L-ascorbic acids; (ii) to investigate the effects of NO donor and inhibitor on the survival rate of differentiated PDGFRα-positive cells; and (iii) to evaluate the impact of increased glucose concentrations, mimicking diabetic hyperglycemia, on the gene expression of neuronal nitric oxide synthase (nNOS). A fibroblastic differentiation-induction medium supplemented with connective tissue growth factor was used to differentiate iMSCs into PDGFRα-positive cells. The medium was changed every day for 21 days to maintain the biological activity of the growth factors. Gene and protein expression, scanning electron and confocal microscopy, and flow cytometry analysis of several markers were conducted to confirm the differentiation process. Methyl tetrazolium cell viability, nitrite measurement assays, and immunostaining were used to investigate the effects of NO on PDGFRα-positive cells. The present study, for the first time, demonstrated the differentiation of iMSCs into PDGFRα-positive cells. The outcomes of the functional studies showed that SNAP (NO donor) increased the survival rate of differentiated PDGFRα-positive cells whereas LNNA (NO inhibitor) attenuated these effects. Further experimentations revealed that hyperglycemia produced a significant increase in expression of nNOS in PDGFRα-positive cells. Differentiation of iMSCs into PDGFRα-positive cells is a novel model to conduct functional studies and to investigate the involvement of NO pathways. This will help in identifying new therapeutic targets for treatment of DGP.
Collapse
Affiliation(s)
- Bashair M. Mussa
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-65057220
| | - Amir Ali Khan
- Department of Applied Biology, College of Science, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Ankita Srivastava
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Sallam Hasan Abdallah
- Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates;
| |
Collapse
|
3
|
Abstract
Significance: Fibrosis is a stereotypic, multicellular tissue response to diverse types of injuries that fundamentally result from a failure of cell/tissue regeneration. This complex tissue remodeling response disrupts cellular/matrix composition and homeostatic cell-cell interactions, leading to loss of normal tissue architecture and progressive loss of organ structure/function. Fibrosis is a common feature of chronic diseases that may affect the lung, kidney, liver, and heart. Recent Advances: There is emerging evidence to support a combination of genetic, environmental, and age-related risk factors contributing to susceptibility and/or progression of fibrosis in different organ systems. A core pathway in fibrogenesis involving these organs is the induction and activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX) family enzymes. Critical Issues: We explore current pharmaceutical approaches to targeting NOX enzymes, including repurposing of currently U.S. Food and Drug Administration (FDA)-approved drugs. Specific inhibitors of various NOX homologs will aid establishing roles of NOXs in the various organ fibroses and potential efficacy to impede/halt disease progression. Future Directions: The discovery of novel and highly specific NOX inhibitors will provide opportunities to develop NOX inhibitors for treatment of fibrotic pathologies.
Collapse
Affiliation(s)
- Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Laskar YB, Mazumder PB. Insight into the molecular evidence supporting the remarkable chemotherapeutic potential of Hibiscus sabdariffa L. Biomed Pharmacother 2020; 127:110153. [PMID: 32344257 DOI: 10.1016/j.biopha.2020.110153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023] Open
Abstract
Hibiscus sabdariffa or roselle tea is popular around the globe for its antioxidant capability along with various other health benefits. Besides, it has uses in Ayurvedic and Chinese herbal medicines for the treatment of several diseases. However, the investigation for the anticancer potential of the plant began roughly in the last decade that emerged with encouraging results. Both crude extracts and pure compounds of the plant were reported to induce chemoprevention, selective cytotoxicity, cell cycle arrest, apoptosis, autophagy and anti-metastasis effects in varied types of human cancer cells. The plant contains a high quantity of polyphenolic compounds and at least two of them were proven to induce potent anticancer effects. Although, the molecular mechanism underlying the anticancer activity was roughly estimated in several studies. The present review aimed to assemble all ambiguous information to report the molecular evidence establishing the potent anticancer activity of Hibiscus sabdariffa and its implication for cancer therapy. This study suggests that Hibiscus sabdariffa is an ideal candidate to investigate its role as a herbal supplement for cancer prevention and treatment. With excellent safety and tolerability record, polyphenolic compounds from the plant need better designed clinical trials.
Collapse
Affiliation(s)
- Yahyea Baktiar Laskar
- Natural Product & Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, 788011, India
| | - Pranab Behari Mazumder
- Natural Product & Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, 788011, India.
| |
Collapse
|
5
|
Musikant D, Sato H, Capobianco E, White V, Jawerbaum A, Higa R. Altered FOXO1 activation in the programming of cardiovascular alterations by maternal diabetes. Mol Cell Endocrinol 2019; 479:78-86. [PMID: 30217602 DOI: 10.1016/j.mce.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022]
Abstract
Maternal diabetes programs cardiovascular alterations in the adult offspring but the mechanisms involved remain unclarified. Here, we addresed whether maternal diabetes programs cardiac alterations related to extracellular matrix remodeling in the adult offspring, as well as the role of forkhead box transcription factor 1 (FOXO1) in the induction of these alterations. The heart from adult offspring from control and streptozotocin-induced diabetic rats was evaluated. Increased glycemia, triglyceridemia and insulinemia and markers of cardiomyopathy were found in the offspring from diabetic rats. In the heart, an increase in active FOXO1 and mRNA levels of its target genes, Mmp-2 and Ctgf, genes related to an altered extracellular matrix remodeling, together with an increase in collagen deposition and a decrease in the connexin43 levels, were found in the offspring from diabetic rats. Altogether, these results suggest an important role of FOXO1 activation in the cardiac alterations induced by intrauterine programming in maternal diabetes.
Collapse
Affiliation(s)
- Daniel Musikant
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Hugo Sato
- Universidad de Buenos Aires, Facultad de Medicina, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Evangelina Capobianco
- Universidad de Buenos Aires, Facultad de Medicina, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Verónica White
- Universidad de Buenos Aires, Facultad de Medicina, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires, Facultad de Medicina, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Romina Higa
- Universidad de Buenos Aires, Facultad de Medicina, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Derangeon M, Montnach J, Cerpa CO, Jagu B, Patin J, Toumaniantz G, Girardeau A, Huang CLH, Colledge WH, Grace AA, Baró I, Charpentier F. Transforming growth factor β receptor inhibition prevents ventricular fibrosis in a mouse model of progressive cardiac conduction disease. Cardiovasc Res 2017; 113:464-474. [PMID: 28339646 DOI: 10.1093/cvr/cvx026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/16/2017] [Indexed: 01/12/2023] Open
Abstract
Aims Loss-of-function mutations in SCN5A, the gene encoding NaV1.5 channel, have been associated with inherited progressive cardiac conduction disease (PCCD). We have proposed that Scn5a heterozygous knock-out (Scn5a+/-) mice, which are characterized by ventricular fibrotic remodelling with ageing, represent a model for PCCD. Our objectives were to identify the molecular pathway involved in fibrosis development and prevent its activation. Methods and results Our study shows that myocardial interstitial fibrosis occurred in Scn5a+/- mice only after 45 weeks of age. Fibrosis was triggered by transforming growth factor β (TGF-β) pathway activation. Younger Scn5a+/- mice were characterized by a higher connexin 43 expression than wild-type (WT) mice. After the age of 45 weeks, connexin 43 expression decreased in both WT and Scn5a+/- mice, although the decrease was larger in Scn5a+/- mice. Chronic inhibition of cardiac sodium current with flecainide (50 mg/kg/day p.o) in WT mice from the age of 6 weeks to the age of 60 weeks did not lead to TGF-β pathway activation and fibrosis. Chronic inhibition of TGF-β receptors with GW788388 (5 mg/kg/day p.o.) in Scn5a+/- mice from the age of 45 weeks to the age of 60 weeks prevented the occurrence of fibrosis. However, current data could not detect reduction in QRS duration with GW788388. Conclusion Myocardial fibrosis secondary to a loss of NaV1.5 is triggered by TGF-β signalling pathway. Those events are more likely secondary to the decreased NaV1.5 sarcolemmal expression rather than the decreased Na+ current per se. TGF-β receptor inhibition prevents age-dependent development of ventricular fibrosis in Scn5a+/- mouse.
Collapse
Affiliation(s)
- Mickael Derangeon
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Jérôme Montnach
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Cynthia Ore Cerpa
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Benoit Jagu
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Justine Patin
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Gilles Toumaniantz
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Aurore Girardeau
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Christopher L H Huang
- The Section of Cardiovascular Biology, Departments of Biochemistry and Physiology, University of Cambridge, Downing street, Cambridge CB23EG, UK
| | - William H Colledge
- The Section of Cardiovascular Biology, Departments of Biochemistry and Physiology, University of Cambridge, Downing street, Cambridge CB23EG, UK
| | - Andrew A Grace
- The Section of Cardiovascular Biology, Departments of Biochemistry and Physiology, University of Cambridge, Downing street, Cambridge CB23EG, UK
| | - Isabelle Baró
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Flavien Charpentier
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France.,CHU Nantes, Alexis Ricordeau, Nantes F-44000, France
| |
Collapse
|
7
|
Park H, An E, Cho Lee AR. Effect of Palmitoyl-Pentapeptide (Pal-KTTKS) on Wound Contractile Process in Relation with Connective Tissue Growth Factor and α-Smooth Muscle Actin Expression. Tissue Eng Regen Med 2017; 14:73-80. [PMID: 30603464 DOI: 10.1007/s13770-016-0017-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/24/2016] [Accepted: 12/11/2016] [Indexed: 12/28/2022] Open
Abstract
To evaluate whether Palmitoyl-pentapeptide (Pal-KTTKS), a lipidated subfragment of type 1 pro-collagen (residues 212-216), plays a role in fibroblast contractility, the effect of Pal-KTTKS on the expression of pro-fibrotic mediators in hypertropic scarring were investigated in relation with trans-differentiation of fibroblast to myofibroblast, an icon of scar formation. α-SMA was visualized by immunofluorescence confocal microscopy with a Cy-3-conjugated monoclonal antibody. The extent of α-SMA-positive fibroblasts was determined in collagen lattices and in cell culture study. Pal-KTTKS (0-0.5 µM) induced CTGF and α-SMA protein levels were determined by western blot analysis and fibroblast contractility was assessed in three-dimensional collagen lattice contraction assay. In confocal analysis, fibroblasts were observed as elongated and spindle shapes while myofibroblast observed as squamous, enlarged cells with pronounced stress fibers. Without Pal-KTTKS treatment, three quarters of the fibroblasts differentiates into the myofibroblast; α-SMA-positive stress fibers per field decreased twofold with 0.1 µM Pal-KTTKS treatment (75 ± 7.1 vs 38.6 ± 16.1%, n = 3, p < 0.05). The inhibitory effect was not significant in 0.5 µM Pal-KTTKS treatment. Stress fiber level and collagen contractility correlates with α-SMA expression level. In conclusion, Pal-KTTKS (0.1 µM) reduces α-SMA expression and trans-differentiation of fibroblasts to myofibroblast. The degree of reduction is dose-dependent. An abundance of myofibroblast and fibrotic scarring is correlated with excessive levels of α-SMA and collagen contractility. Delicate balance between the wound healing properties and pro-fibrotic abilities of pentapeptide KTTKS should be considered for selecting therapeutic dose for scar prevention.
Collapse
Affiliation(s)
- Hyunju Park
- College of Pharmacy, Duksung Women's University, 33 Samyang-ro144-gil, Dobong-gu, Seoul, 01369 Korea
| | - Eunjin An
- College of Pharmacy, Duksung Women's University, 33 Samyang-ro144-gil, Dobong-gu, Seoul, 01369 Korea
| | - Ae-Ri Cho Lee
- College of Pharmacy, Duksung Women's University, 33 Samyang-ro144-gil, Dobong-gu, Seoul, 01369 Korea
| |
Collapse
|
8
|
Emlet DR, Pastor-Soler N, Marciszyn A, Wen X, Gomez H, Humphries WH, Morrisroe S, Volpe JK, Kellum JA. Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: differential expression and secretion in human kidney tubule cells. Am J Physiol Renal Physiol 2016; 312:F284-F296. [PMID: 28003188 DOI: 10.1152/ajprenal.00271.2016] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 01/04/2023] Open
Abstract
We have characterized the expression and secretion of the acute kidney injury (AKI) biomarkers insulin-like growth factor binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in human kidney epithelial cells in primary cell culture and tissue. We established cell culture model systems of primary kidney cells of proximal and distal tubule origin and observed that both proteins are indeed expressed and secreted in both tubule cell types in vitro. However, TIMP-2 is both expressed and secreted preferentially by cells of distal tubule origin, while IGFBP7 is equally expressed across tubule cell types yet preferentially secreted by cells of proximal tubule origin. In human kidney tissue, strong staining of IGFBP7 was seen in the luminal brush-border region of a subset of proximal tubule cells, and TIMP-2 stained intracellularly in distal tubules. Additionally, while some tubular colocalization of both biomarkers was identified with the injury markers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin, both biomarkers could also be seen alone, suggesting the possibility for differential mechanistic and/or temporal profiles of regulation of these early AKI biomarkers from known markers of injury. Last, an in vitro model of ischemia-reperfusion demonstrated enhancement of secretion of both markers early after reperfusion. This work provides a rationale for further investigation of these markers for their potential role in the pathogenesis of acute kidney injury.
Collapse
Affiliation(s)
- David R Emlet
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nuria Pastor-Soler
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Allison Marciszyn
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Xiaoyan Wen
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hernando Gomez
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Seth Morrisroe
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jacob K Volpe
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; .,Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| |
Collapse
|
9
|
An E, Park H, Lee ARC. Inhibition of fibrotic contraction by C-phycocyanin through modulation of connective tissue growth factor and α-smooth muscle actin expression. Tissue Eng Regen Med 2016; 13:388-395. [PMID: 30603420 DOI: 10.1007/s13770-015-0104-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
The effects of C-phycocyanin (C-pc), a phycobiliprotein, on the expression of pro-fibrotic mediators in hyper-tropic scarring such as connective tissue growth factor (CTGF) and α-smooth muscle actins (α-SMA) were investigated in relation to trans-differentiation of fibroblast to myo-fibroblast, an icon of scar formation. C-pc was isolated from Spirulina Platensis extract using sonication method and C-pc concentration was determined by Bennet and Bogorad equation. α-SMA and CTGF levels in wounded primary human dermal fibroblasts were determined by western blot analysis and immuno-fluorescence confocal microscope was employed. Fibroblast contractility was examined by three-dimensional collagen lattice contraction assay. There was an elevation of α-SMA (121%) and CTGF (143%) levels in wound cells as compared with non-wound cells. The does-response profiles of down regulation demonstrated that the maximum inhibitions of α-SMA by 63% (p<0.05) and CTGF by 50% (p<0.1) were achieved by C-pc (6 nM) treated cells. In confocal assay, non-wound fibroblasts exhibited basal level of α-SMA staining, while wounded cells without C-pc treatment showed strong up-regulation of α-SMA by 147% (p<0.05). C-pc (6 nM) inhibited α-SMA expression by 70% (p<0.05) and reduced collagen contraction by 29% (p<0.05). C-pc seemed to lessen the over expression of CTGF, α-SMA, subsequently alleviating the fibrotic contracture. This study suggests the potential application of C-pc to regulation of the expression of pro-fibrotic mediators in scarring process and its potential usage as an efficient means for anti-fibrosis therapy.
Collapse
Affiliation(s)
- Eunjin An
- 1College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hyunju Park
- 1College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Ae-Ri Cho Lee
- 1College of Pharmacy, Duksung Women's University, Seoul, Korea.,2College of Pharmacy, Duksung Women's University, 33 Samyang-ro 144-gil, Dobong-gu, Seoul, 01369 Korea
| |
Collapse
|
10
|
Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biol 2015; 42:56-73. [PMID: 25572963 PMCID: PMC4409530 DOI: 10.1016/j.matbio.2014.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/06/2023]
Abstract
It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2.
Collapse
|
11
|
Yijing L, Liu H, Yuan C, Wang B, Ren M, Yan L, Wang X, Zhang J. The effects of qindan-capsule-containing serum on the TGF-β1/ERK signaling pathway, matrix metalloproteinase synthesis and cell function in adventitial fibroblasts. PHARMACEUTICAL BIOLOGY 2013; 51:712-721. [PMID: 23373709 DOI: 10.3109/13880209.2013.764328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Qindan capsule (QC), a compound used in traditional Chinese medicine, has been used as an anti-hypertensive agent in clinical settings for years. Our previous studies have shown that QC can improve the morphological index of the artery, down-regulate the collagen volume fraction in the media and inhibit the transformation of smooth muscle cells. However, the detailed mechanisms underlying its effects require further investigation, which might provide more scientific evidence for the clinical treatment of hypertensive vascular remodeling (VR). OBJECTIVE We investigated the effects of QC-containing serum on the TGF-β1/ERK signaling pathway, cell proliferation, migration, the cell cycle, apoptosis and matrix metalloproteinase synthesis (MMPs) in rat aortic adventitial fibroblasts (AFs). MATERIALS AND METHODS AFs were cultured through tissue explants in vitro. The levels of extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-ERK1/2 (p-ERK1/2), connective tissue growth factor (CTGF), MMP2 and MMP9 expression were measured by western blotting and RT-PCR. The proliferation and migration of AFs were measured by MTT and transwell migration assays. Cell cycle progression and apoptosis in AFs were analyzed by flow cytometry. RESULTS The proliferation and migration rates of AFs treated with transforming growth factor β1 (TGF-β1) for 24 h were 2.4 ± 0.75 and 2.2 ± 0.06 times higher than those of untreated AFs, and increases in the expression of p-ERK1/2 (3.7 ± 0.15 times), CTGF (3.3 ± 0.24 times), MMP2 (5.7 ± 0.37 times) and MMP9 (5.4 ± 0.46 times) (p < 0.05) were observed. Treatment with QC-containing serum significantly down-regulated cell proliferation (1.9 ± 0.06 times), migration (1.6 ± 0.05 times) and the expression of p-ERK1/2 (1.3 ± 0.75 times), CTGF (1.8 ± 0.64 times), MMP2 (1.6 ± 0.65 times) and MMP9 (1.4 ± 0.46 times) (p < 0.05). We also found that QC-containing serum down-regulated the percentage of cells in the G1 phase by 1.6 ± 0.43 times and increased early-phase apoptosis by 2.3 ± 0.33 times (p < 0.05) in AFs. CONCLUSIONS QC effectively inhibits the proliferation and migration of AFs and changes cell bioactivity and MMPs, possibly through the TGF-β/ERK/CTGF signaling pathway. Our findings may provide new insights into the potential function of QC in preventing or treating hypertension.
Collapse
Affiliation(s)
- Lv Yijing
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhu J, Nguyen D, Ouyang H, Zhang XH, Chen XM, Zhang K. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-β in ARPE-19. Int J Ophthalmol 2013; 6:8-14. [PMID: 23550216 DOI: 10.3980/j.issn.2222-3959.2013.01.02] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/28/2013] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the role of Rho-associated protein kinase (ROCK) inhibitor, Y27632, in mediating the production of extracellular matrix (ECM) components including fibronectin, matrix metallo-proteinase-2 (MMP-2) and type I collagen as induced by connective tissue growth factor (CTGF) or transforming growth factor-β (TGF-β) in a human retinal pigment epithelial cell line, ARPE-19. METHODS The effect of Y27632 on the CTGF or TGF-β induced phenotype in ARPE-19 cells was measured with immunocytochemistry as the change in F-actin. ARPE-19 cells were treated with CTGF (1, 10, 100ng/mL) and TGF-β (10ng/mL) in serum free media, and analyzed for fibronectin, laminin, and MMP-2 and type I collagen by RT-qPCR and immunocytochemistry. Cells were also pretreated with an ROCK inhibitor, Y27632, to analyze the signaling contributing to ECM production. RESULTS Treatment of ARPE-19 cells in culture with TGF-β or CTGF induced an ECM change from a cobblestone morphology to a more elongated swirl pattern indicating a mesenchymal phenotype. RT-qPCR analysis and different gene expression analysis demonstrated an upregulation in expression of genes associated with cytoskeletal structure and motility. CTGF or TGF-β significantly increased expression of fibronectin mRNA (P=0.006, P=0.003 respectively), laminin mRNA (P=0.006, P=0.005), MMP-2 mRNA (P= 0.006, P= 0.001), COL1A1 mRNA (P=0.001, P=0.001), COL1A2 mRNA (P=0.001, P=0.001). Preincubation of ARPE-19 with Y27632 (10mmol/L) significantly prevented CTGF or TGF- β induced fibronectin (P=0.005, P=0.003 respectively), MMP-2 (P= 0.003, P=0.002), COL1A1 (P=0.006, P=0.003), and COL1A2 (P=0.006, P=0.004) gene expression, but not laminin (P=0.375, P=0.516). CONCLUSION Our study demonstrated that both TGF-β and CTGF upregulate the expression of ECM components including fibronectin, laminin, MMP-2 and type I collagen by activating the RhoA/ROCK signaling pathway. During this process, ARPE-19 cells were shown to change from an epithelial to a mesenchymal phenotype in vitro. Y27632, a ROCK inhibitor, inhibited the transcription of fibronectin, MMP-2 and type I collagen, but not laminin. The data from our work suggest a role for CTGF as a profibrotic mediator. Inhibiting the RhoA/ROCK pathway represents a potential target to prevent the fibrosis of RPE cells. This might lead to a novel therapeutic approach to preventing the onset of early PVR.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
13
|
Roberts-Pilgrim AM, Makareeva E, Myles MH, Besch-Williford CL, Brodeur AC, Walker AL, Leikin S, Franklin CL, Phillips CL. Deficient degradation of homotrimeric type I collagen, α1(I)3 glomerulopathy in oim mice. Mol Genet Metab 2011; 104:373-82. [PMID: 21855382 PMCID: PMC3205245 DOI: 10.1016/j.ymgme.2011.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 01/15/2023]
Abstract
Col1a2-deficient (oim) mice synthesize homotrimeric type I collagen due to nonfunctional proα2(I) collagen chains. Our previous studies revealed a postnatal, progressive type I collagen glomerulopathy in this mouse model, but the mechanism of the sclerotic collagen accumulation within the renal mesangium remains unclear. The recent demonstration of the resistance of homotrimeric type I collagen to cleavage by matrix metalloproteinases (MMPs), led us to investigate the role of MMP-resistance in the glomerulosclerosis of Col1a2-deficient mice. We measured the pre- and post-translational expression of type I collagen and MMPs in glomeruli from heterozygous and homozygous animals. Both the heterotrimeric and homotrimeric isotypes of type I collagen were equally present in whole kidneys of heterozygous mice by immunohistochemistry and biochemical analysis, but the sclerotic glomerular collagen was at least 95-98% homotrimeric, suggesting homotrimeric type I collagen is the pathogenic isotype of type I collagen in glomerular disease. Although steady-state MMP and Col1a1 mRNA levels increased with the disease progression, we found these changes to be a secondary response to the deficient clearance of MMP-resistant homotrimers. Increased renal MMP expression was not sufficient to prevent homotrimeric type I collagen accumulation.
Collapse
Affiliation(s)
- Anna M. Roberts-Pilgrim
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
| | - Elena Makareeva
- NICHD, National Institutes of Health, Bethesda, MD 20892, USA. ,
| | - Matthew H. Myles
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA. , ,
| | | | - Amanda C. Brodeur
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
- Department of Child Health, University of Missouri, Columbia, Missouri 65212, USA. ,
| | - Andrew L. Walker
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
| | - Sergey Leikin
- NICHD, National Institutes of Health, Bethesda, MD 20892, USA. ,
| | - Craig L. Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA. , ,
| | - Charlotte L. Phillips
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
- Department of Child Health, University of Missouri, Columbia, Missouri 65212, USA. ,
- Correspondence and Reprint Requests: Charlotte L. Phillips, Ph.D., Associate Professor, Departments of Biochemistry and Child Health, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211 USA, Phone: 1-573-882-5122, Fax: 1-573-882-5635,
| |
Collapse
|
14
|
Ghanem AA, Arafa LF, El-Baz A. Connective tissue growth factor and tissue inhibitor of matrix metalloproteinase-2 in patients with exfoliative glaucoma. Curr Eye Res 2011; 36:540-5. [PMID: 21591863 DOI: 10.3109/02713683.2011.565541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the aqueous humor levels of connective tissue growth factor (CTGF), matrix metalloprotinease-2 (MMP-2), and tissue inhibitor of matrix metalloprotinease-2 (TIMP-2) in human eyes with exfoliative glaucoma, primary open-angle glaucoma, and senile cataract patients. PATIENTS AND METHODS This was a prospective, comparative study. Sixty patients with glaucomas and 25 patients with senile cataract of matched age and gender were enrolled in this study. Patients were classified into three groups: group I comprised 30 patients with exfoliative glaucoma (XFG), group II comprised 30 patients with primary open-angle glaucoma (POAG), and group III comprised 25 patients with senile cataract (controls). Aqueous humor samples were obtained by paracentesis at the time of elective surgery for glaucomatous and cataractous patients. CTGF, MMP-2, and TIMP-2 were measured in aqueous humor by specific enzyme linked immunosorbent assay (ELISA) kits, and total aqueous humor protein content was assessed by the Lowry method. RESULTS There were significant increases in aqueous humor levels of CTGF and TIMP-2 in XFG patients compared to the corresponding values of POAG patients or controls. The MMP-2 aqueous humor level was significantly increased in the XFG patients when compared with controls (P < 0.001). Moreover, the total protein level in the aqueous humor of eyes of the XFG patients was significantly higher than in POAG patients or controls (P < 0.001). A positive correlation was found between CTGF and MMP-2 in aqueous humor samples of XFG patients (P < 0.001). CONCLUSION Increased levels of aqueous humor of CTGF and TIMP-2 may promote the abnormal extracellular matrix accumulation and may be involved in the pathogenesis of XFG.
Collapse
Affiliation(s)
- Asaad A Ghanem
- Ophthalmology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | |
Collapse
|
15
|
Yuan Q, Wang R, Peng Y, Fu X, Wang W, Wang L, Zhang F, Peng Z, Ning W, Hu G, Wang Z, Tao L. Fluorofenidone attenuates tubulointerstitial fibrosis by inhibiting TGF-β(1)-induced fibroblast activation. Am J Nephrol 2011; 34:181-94. [PMID: 21791914 DOI: 10.1159/000329080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/30/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND Novel therapeutic agents are urgently needed to combat renal fibrosis. The purpose of this study was to assess, using complete unilateral ureteral obstruction (UUO) in rats, whether fluorofenidone (AKF-PD) [1-(3-fluorophenyl)-5-methyl-2-(1H)-pyridone] inhibits renal fibrosis, and to determine whether it exerts its inhibitory function on renal fibroblast activation. METHODS Sprague-Dawley rats were randomly divided into 3 groups: sham operation, UUO and UUO/AKF-PD (500 mg/kg/day). Renal function, tubulointerstitium damage index score, extracellular matrix (ECM) deposition, and the expressions of TGF-β(1), collagen III, α-SMA, p-Smad2, p-Smad3, p-ERK1/2, p-JNK and p-p38 were measured. In addition, the expressions of α-SMA, fibronectin, CTGF, p-Smad2/3, p-ERK1/2, p-p38 and p-JNK were measured in TGF-β(1)-stimulated normal rat renal fibroblasts (NRK-49F). RESULTS AKF-PD treatment significantly attenuated tubulointerstitium damage, ECM deposition, the expressions of TGF-β(1), collagen III, α-SMA, p-ERK1/2, p-p38 and p-JNK in vivo. In vitro, AKF-PD dose-dependently inhibited expressions of α-SMA, fibronectin and CTGF. Furthermore, AKF-PD did not inhibit Smad2/3 phosphorylation or nuclear accumulation, but rather attenuated ERK, p38 and JNK activation. CONCLUSION AKF-PD treatment inhibits the progression of renal interstitial fibrosis in obstructed kidneys; this is potentially achieved by suppressing fibroblast activation. Therefore, AKF-PD is a special candidate for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Qiongjing Yuan
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Knowles JP, Shi-Wen X, Haque SU, Bhalla A, Dashwood MR, Yang S, Taylor I, Winslet MC, Abraham DJ, Loizidou M. Endothelin-1 stimulates colon cancer adjacent fibroblasts. Int J Cancer 2011; 130:1264-72. [PMID: 21445967 DOI: 10.1002/ijc.26090] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/08/2011] [Indexed: 12/25/2022]
Abstract
Endothelin-1 (ET-1) is produced by and stimulates colorectal cancer cells. Fibroblasts produce tumour stroma required for cancer development. We investigated whether ET-1 stimulated processes involved in tumour stroma production by colonic fibroblasts. Primary human fibroblasts, isolated from normal tissues adjacent to colon cancers, were cultured with or without ET-1 and its antagonists. Cellular proliferation, migration and contraction were measured. Expression of enzymes involved in tumour stroma development and alterations in gene transcription were determined by Western blotting and genome microarrays. ET-1 stimulated proliferation, contraction and migration (p < 0.01 v control) and the expression of matrix degrading enzymes TIMP-1 and MMP-2, but not MMP-3. ET-1 upregulated genes for profibrotic growth factors and receptors, signalling molecules, actin modulators and extracellular matrix components. ET-1 stimulated colonic fibroblast cellular processes in vitro that are involved in developing tumour stroma. Upregulated genes were consistent with these processes. By acting as a strong stimulus for tumour stroma creation, ET-1 is proposed as a target for adjuvant cancer therapy.
Collapse
Affiliation(s)
- Jonathan P Knowles
- Department of Surgery, UCL Division of Surgery and Interventional Science, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Tang Z, Xue R, Singh GK, Lv Y, Shi K, Cai K, Deng L, Yang L. TGF-β1 promoted MMP-2 mediated wound healing of anterior cruciate ligament fibroblasts through NF-κB. Connect Tissue Res 2011; 52:218-25. [PMID: 20932173 DOI: 10.3109/03008207.2010.516849] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adult human anterior cruciate ligament (ACL) has poor functional healing response. Transforming growth factor (TGF)-β1 enhances the wound repair by stimulating matrix proteins deposition as well as the proliferation and migration of cells. However, the function of the TGF-β1-induced matrix metalloproteinases' (MMPs) activities in the wound healing process is poorly understood. In this study, exogenous MMP-2 is added to mimic the TGF-β1-induced MMP-2 expression. Role of NF-κB pathway is further examined. Our results show that TGF-β1 induces dramatic elevation of MMP-2 activities and the MMP-2/tissue inhibitors of metalloproteinases ratio. Furthermore, the exogenous MMP-2 significantly promoted in vitro wound healing abilities of ACL fibroblasts that are significantly blocked with the addition of its inhibitors. TGF-β1 also increases the proliferation of ACL fibroblasts whereas MMP-2 alone does not, indicating that MMP-2 activities are not involved in the proliferation. TGF-β1-induced MMP-2 activity is inhibited by Bay11-7082 and Bay11-7085 (NF-κB inhibitors). Our results demonstrate that increased TGF-β1 facilitates the ACL healing process by promoting the fibroblasts migration and proliferation. The migration process is mediated by MMP-2 and NF-κB pathway is involved in TGF-β1-mediated MMP-2 release.
Collapse
Affiliation(s)
- Yequan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University , Chongqing , PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Possible mechanism of betel-quid-extract-induced expression of matrix metalloproteinase-2. J Formos Med Assoc 2011; 109:838-47. [PMID: 21126656 DOI: 10.1016/s0929-6646(10)60129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/09/2009] [Accepted: 12/30/2009] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND/PURPOSE Betel quid extract (BQE) has been demonstrated to induce matrix metalloproteinase (MMP)-2 expression. This study aimed to establish the possible mechanism involved in this event. METHODS Western blotting, reverse-transcription polymerase chain reaction, and gelatin zymography were used to study the expression level of MMP-2. LY294002, PD98059, U0126, N-acetyl-L-cysteine, SB203580, SP600125, and Bay 11-7082 were used to pretreat OECM-1 cells before BQE treatment and MMP-2 detection. RESULTS OECM-1 cells were subjected to short-term (10 minutes) or long-term (24 hours) BQE treatment (designated as SBT and LBT, respectively), and we found that both treatments increased MMP-2 protein and extracellular signal-regulated kinase (ERK) phosphorylation levels in a concentration- and time-dependent manner. LBT also increased MMP-2 mRNA level. LBT-induced MMP-2 secretion was not inhibited by PD98059 (up to 50 μM) when ERK was effectively blocked, but was attenuated by LY294002 (0-10 μM) in a concentration-dependent manner. This LBT effect was inhibited strongly by SB203580 (10 μM), SP600125 (10 μM), and Bay 11-7082 (10 μM) and mildly by N-acetyl-L-cysteine (5 mM), but not by U0126 (10 μM). CONCLUSION Both SBT and LBT upregulate MMP-2 expression, and LBT-induced MMP-2 expression might be mediated by phosphoinositide 3-kinase, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and nuclear factor-κB, and to a lesser extent, by reactive oxygen species, rather than by ERK.
Collapse
|
19
|
Schievenbusch S, Strack I, Scheffler M, Wennhold K, Maurer J, Nischt R, Dienes HP, Odenthal M. Profiling of anti-fibrotic signaling by hepatocyte growth factor in renal fibroblasts. Biochem Biophys Res Commun 2009; 385:55-61. [PMID: 19426716 DOI: 10.1016/j.bbrc.2009.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 05/03/2009] [Indexed: 01/16/2023]
Abstract
Hepatocyte growth factor (HGF) is a multifunctional growth factor affecting cell proliferation and differentiation. Due to its mitogenic potential, HGF plays an important role in tubular repair and regeneration after acute renal injury. However, recent reports have shown that HGF also acts as an anti-inflammatory and anti-fibrotic factor, affecting various cell types such as renal fibroblasts and triggering tubulointerstitial fibrosis of the kidney. The present study provides evidence that HGF stimulation of renal fibroblasts results in the activation of both the Erk1/2 and the Akt pathways. As previously shown, Erk1/2 phosphorylation results in Smad-linker phosphorylation, thereby antagonizing cellular signals induced by TGFbeta. By siRNA mediated silencing of the Erk1/2-Smad linkage, however, we now demonstrate that Akt signaling acts as an auxiliary pathway responsible for the anti-fibrotic effects of HGF. In order to define the anti-fibrotic function of HGF we performed comprehensive expression profiling of HGF-stimulated renal fibroblasts by microarray hybridization. Functional cluster analyses and quantitative PCR assays indicate that the HGF-stimulated pathways transfer the anti-fibrotic effects in renal interstitial fibroblasts by reducing expression of extracellular matrix proteins, various chemokines, and members of the CCN family.
Collapse
Affiliation(s)
- Stephanie Schievenbusch
- Institute for Pathology, University Hospital Cologne, Kerpener Str. 62, 50924 Koeln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang CN, Chan KC, Lin WT, Su SL, Wang CJ, Peng CH. Hibiscus sabdariffa inhibits vascular smooth muscle cell proliferation and migration induced by high glucose--a mechanism involves connective tissue growth factor signals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3073-3079. [PMID: 19301817 DOI: 10.1021/jf803911n] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recently, the herbal extract of Hibiscus sabdariffa was shown to have multiple bioactive effects, including anti-atherosclerosis. On the basis of this, we aimed to examine whether the polyphenolic isolate of H. sabdariffa (HPI) could protect high-glucose-treated vascular smooth muscle cell (VSMC) and its putative transduction signals. Results showed that HPI dose- and time-dependently reduced the high-glucose-stimulated cell proliferation and migration. HPI suppressed the proliferating cell nuclear antigen (PCNA) level and matrix metalloproteinase (MMP)-2 activation. In addition, the expressions of connective tissue growth factor (CTGF) and receptor of advanced glycation end product (RAGE) enhanced by high glucose were prominently suppressed by HPI. The proliferation signal mediated by high glucose was demonstrated via CTGF/RAGE, while MMP-2 was regulated by CTGF but not RAGE. Conclusively, the results suggest that HPI potentially can be a promising adjuvant herbal therapy for diabetic patients.
Collapse
Affiliation(s)
- Chien-Ning Huang
- Department of Internal Medicine, Chung-Shan Medical University Hospital, School of Medicine, Chung-Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Garbacki N, Di Valentin E, Piette J, Cataldo D, Crahay C, Colige A. Matrix metalloproteinase 12 silencing: a therapeutic approach to treat pathological lung tissue remodeling? Pulm Pharmacol Ther 2009; 22:267-78. [PMID: 19327406 DOI: 10.1016/j.pupt.2009.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/17/2009] [Indexed: 01/10/2023]
Abstract
Among the large matrix metalloproteinases (MMPs) family, MMP-12, also referred to as macrophage elastase, plays a significant role in chronic pulmonary pathologies characterized by an intense tissue remodeling such as asthma and COPD. This review will summarize knowledge about MMP-12 structure, functions and mechanisms of activation and regulation, including potential MMP-12 modulation by microRNA. As MMP-12 is involved in many tissue remodeling diseases, efforts have been made to develop specific synthetic inhibitors. However, at this time, very few chemical inhibitors have proved to be efficient and specific to a particular MMP. The relevance of silencing MMP-12 by RNA interference is highlighted. The specificity of this approach using siRNA or shRNA and the strategies to deliver these molecules in the lung are discussed.
Collapse
Affiliation(s)
- Nancy Garbacki
- GIGA-Research, Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Droppelmann CA, Gutiérrez J, Vial C, Brandan E. Matrix metalloproteinase-2-deficient fibroblasts exhibit an alteration in the fibrotic response to connective tissue growth factor/CCN2 because of an increase in the levels of endogenous fibronectin. J Biol Chem 2009; 284:13551-13561. [PMID: 19276073 DOI: 10.1074/jbc.m807352200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Matrix metalloproteinase-2 (MMP-2) is an important extracellular matrix remodeling enzyme, and it has been involved in different fibrotic disorders. The connective tissue growth factor (CTGF/CCN2), which is increased in these pathologies, induces the production of extracellular matrix proteins. To understand the fibrotic process observed in diverse pathologies, we analyzed the fibroblast response to CTGF when MMP-2 activity is inhibited. CTGF increased fibronectin (FN) amount, MMP-2 mRNA expression, and gelatinase activity in 3T3 cells. When MMP-2 activity was inhibited either by the metalloproteinase inhibitor GM-6001 or in MMP-2-deficient fibroblasts, an increase in the basal amount of FN together with a decrease of its levels in response to CTGF was observed. This paradoxical effect could be explained by the fact that the excess of FN could block the access to other ligands, such as CTGF, to integrins. This effect was emulated in fibroblasts by adding exogenous FN or RGDS peptides or using anti-integrin alpha(V) subunit-blocking antibodies. Additionally, in MMP-2-deficient cells CTGF did not induce the formation of stress fibers, focal adhesion sites, and ERK phosphorylation. Anti-integrin alpha(V) subunit-blocking antibodies inhibited ERK phosphorylation in control cells. Finally, in MMP-2-deficient cells, FN mRNA expression was not affected by CTGF, but degradation of (125)I-FN was increased. These results suggest that expression, regulation, and activity of MMP-2 can play an important role in the initial steps of fibrosis and shows that FN levels can regulate the cellular response to CTGF.
Collapse
Affiliation(s)
- Cristian A Droppelmann
- Centro de Regulación Celular y Patología, Centro de Regeneración y Envejecimiento, Departamento de Biología Celular y Molecular, Millenium Institute for Fundamental and Applied Biology, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Jaime Gutiérrez
- Centro de Regulación Celular y Patología, Centro de Regeneración y Envejecimiento, Departamento de Biología Celular y Molecular, Millenium Institute for Fundamental and Applied Biology, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Cecilia Vial
- Centro de Regulación Celular y Patología, Centro de Regeneración y Envejecimiento, Departamento de Biología Celular y Molecular, Millenium Institute for Fundamental and Applied Biology, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Enrique Brandan
- Centro de Regulación Celular y Patología, Centro de Regeneración y Envejecimiento, Departamento de Biología Celular y Molecular, Millenium Institute for Fundamental and Applied Biology, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| |
Collapse
|
23
|
Current World Literature. Curr Opin Nephrol Hypertens 2009; 18:91-3. [DOI: 10.1097/mnh.0b013e32831fd875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Nagai N, Klimava A, Lee WH, Izumi-Nagai K, Handa JT. CTGF is increased in basal deposits and regulates matrix production through the ERK (p42/p44mapk) MAPK and the p38 MAPK signaling pathways. Invest Ophthalmol Vis Sci 2008; 50:1903-10. [PMID: 19011018 DOI: 10.1167/iovs.08-2383] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Matrix expansion is an early change in age-related maculopathy. The aim of this study was to determine whether connective tissue growth factor (CTGF) regulates the production of extracellular matrix components by retinal pigmented epithelial (RPE) cells. METHODS ARPE-19 cells were treated with CTGF and analyzed for fibronectin, laminin, and MMP-2 by RT-qPCR, Western blot analysis, or zymography. Cells were also pretreated with an MEK-1/2 inhibitor (PD98059) or a p38 inhibitor (SB203580) and an anti-CTGF antibody to analyze the signaling contributing to fibronectin, laminin, and MMP-2 production. Human maculas were analyzed for mRNA using laser capture microdissected RPE cells and by immunohistochemistry for the topographic distribution of CTGF. RESULTS CTGF induced fibronectin mRNA (P=0.006) and protein (P=0.006), and laminin mRNA (P=0.006) and protein (P=0.02) by ARPE-19 cells. CTGF also induced MMP-2 mRNA (P=0.002) and protein secretion (P=0.04). Using zymography, CTGF increased the latent and active forms of MMP-2 compared to controls (P=0.02). An anti-CTGF antibody inhibited fibronectin, laminin, and MMP-2 after CTGF stimulation. CTGF increased the phosphorylation of p38 and ERK1/2. Fibronectin and MMP-2 mRNA and protein were suppressed by a MEK-1/2 inhibitor, but not with a p38 inhibitor. Laminin expression was suppressed by both inhibitors. RT-qPCR analysis showed that macular RPE cells from human donors express CTGF. Immunohistochemistry of human maculas showed strong labeling of CTGF in Bruch membrane, including basal deposits and drusen. CONCLUSIONS CTGF is increased in basal deposits and drusen of AMD specimens, and it induces matrix protein production in ARPE-19 cells through the ERK (p42/p44(mapk)) and p38(mapk) signaling pathways.
Collapse
Affiliation(s)
- Norihiro Nagai
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | |
Collapse
|
25
|
Gao X, Li J, Huang H, Li X. Connective tissue growth factor stimulates renal cortical myofibroblast-like cell proliferation and matrix protein production. Wound Repair Regen 2008; 16:408-15. [PMID: 18471259 DOI: 10.1111/j.1524-475x.2008.00380.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Myofibroblasts primarily contribute to the pathogenesis of renal interstitial fibrosis by unregulated cell proliferation and synthesis of excessive amounts of extracellular matrix (ECM) proteins. We used cultured myofibroblast-like cells obtained by outgrowth from explants of rat kidney cortex to study the effects and relevant signaling pathway of connective tissue growth factor (CTGF) on cell proliferation and ECM production. Exogenous CTGF stimulated proliferation of myofibroblast-like cells in a dose- and time-dependent manner. CTGF also increased the secretion of fibronectin and collagen I protein in the supernatant medium. Nevertheless, CTGF did not affect matrix-degrading metalloproteinases-2 and -9 activities in supernatant medium measured by gelatin zymography. CTGF induced activation of extracellular signal-regulated protein kinase (ERK)1/2 mitogen-activated protein kinase pathway as early as 5 minutes. Inhibition of ERK1/2 activation with PD98059 completely blocked CTGF-induced cell proliferation as well as secretion of fibronectin and collagen I protein. The above results indicate that CTGF triggers cell proliferation and production of ECM proteins in cultured myofibroblast-like cells through the ERK1/2 mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Xuxia Gao
- Division of Nephrology, First Hospital and Institute of Nephrology, Peking University, Beijing, China
| | | | | | | |
Collapse
|