1
|
Jiang K, Xu C, Yu H, Kong L, Liu S, Li Q. Transcriptomic and Physiological Analysis Reveal Melanin Synthesis-Related Genes and Pathways in Pacific Oysters (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:364-379. [PMID: 38483671 DOI: 10.1007/s10126-024-10302-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Shell color is one of the shell traits of molluscs, which has been regarded as an economic trait in some bivalves. Pacific oysters (Crassostrea gigas) are important aquaculture shellfish worldwide. In the past decade, several shell color strains of C. gigas were developed through selective breeding, which provides valuable materials for research on the inheritance pattern and regulation mechanisms of shell color. The inheritance patterns of different shell colors in C. gigas have been identified in certain research; however, the regulation mechanism of oyster pigmentation and shell color formation remains unclear. In this study, we performed transcriptomic and physiological analyses using black and white shell oysters to investigate the molecular mechanism of melanin synthesis in C. gigas. Several pigmentation-related pathways, such as cytochrome P450, melanogenesis, tyrosine metabolism, and the cAMP signaling pathway were found. The majority of differentially expressed genes and some signaling molecules from these pathways exhibited a higher level in the black shell oysters than in the white, especially after L-tyrosine feeding, suggesting that those differences may cause a variation of tyrosine metabolism and melanin synthesis. In addition, the in vitro assay using primary cells from mantle tissue showed that L-tyrosine incubation increased cAMP level, gene and protein expression, and melanin content. This study reveals the difference in tyrosine metabolism and melanin synthesis in black and white shell oysters and provides evidence for the potential regulatory mechanism of shell color in oysters.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Ponnimbaduge Perera P, Perez Guerra D, Riddle MR. The Mexican Tetra, Astyanax mexicanus, as a Model System in Cell and Developmental Biology. Annu Rev Cell Dev Biol 2023; 39:23-44. [PMID: 37437210 DOI: 10.1146/annurev-cellbio-012023-014003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Our understanding of cell and developmental biology has been greatly aided by a focus on a small number of model organisms. However, we are now in an era where techniques to investigate gene function can be applied across phyla, allowing scientists to explore the diversity and flexibility of developmental mechanisms and gain a deeper understanding of life. Researchers comparing the eyeless cave-adapted Mexican tetra, Astyanax mexicanus, with its river-dwelling counterpart are revealing how the development of the eyes, pigment, brain, cranium, blood, and digestive system evolves as animals adapt to new environments. Breakthroughs in our understanding of the genetic and developmental basis of regressive and constructive trait evolution have come from A. mexicanus research. They include understanding the types of mutations that alter traits, which cellular and developmental processes they affect, and how they lead to pleiotropy. We review recent progress in the field and highlight areas for future investigations that include evolution of sex differentiation, neural crest development, and metabolic regulation of embryogenesis.
Collapse
Affiliation(s)
| | | | - Misty R Riddle
- Department of Biology, University of Nevada, Reno, Nevada, USA;
| |
Collapse
|
3
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
4
|
Pierre C, Pradère N, Froc C, Ornelas-García P, Callebert J, Rétaux S. A mutation in monoamine oxidase (MAO) affects the evolution of stress behavior in the blind cavefish Astyanax mexicanus. J Exp Biol 2020; 223:jeb226092. [PMID: 32737213 DOI: 10.1242/jeb.226092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 08/26/2023]
Abstract
The neurotransmitter serotonin controls a variety of physiological and behavioral processes. In humans, mutations affecting monoamine oxidase (MAO), the serotonin-degrading enzyme, are highly deleterious. Yet, blind cavefish of the species Astyanax mexicanus carry a partial loss-of-function mutation in MAO (P106L) and thrive in their subterranean environment. Here, we established four fish lines, corresponding to the blind cave-dwelling and the sighted river-dwelling morphs of this species, with or without the mutation, in order to decipher the exact contribution of mao P106L in the evolution of cavefish neurobehavioral traits. Unexpectedly, although mao P106L appeared to be an excellent candidate for the genetic determinism of the loss of aggressive and schooling behaviors in cavefish, we demonstrated that it was not the case. Similarly, the anatomical variations in monoaminergic systems observed between cavefish and surface fish brains were independent from mao P106L, and rather due to other, morph-dependent developmental processes. However, we found that mao P106L strongly affected anxiety-like behaviors. Cortisol measurements showed lower basal levels and an increased amplitude of stress response after a change of environment in fish carrying the mutation. Finally, we studied the distribution of the P106L mao allele in wild populations of cave and river A. mexicanus, and discovered that the mutant allele was present - and sometimes fixed - in all populations inhabiting caves of the Sierra de El Abra. The possibility that this partial loss-of-function mao allele evolves under a selective or a neutral regime in the particular cave environment is discussed.
Collapse
Affiliation(s)
- Constance Pierre
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Naomie Pradère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Cynthia Froc
- Amatrace platform, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Patricia Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Autónoma de México, CP 04510, Mexico City, Mexico
| | - Jacques Callebert
- Service Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75475 Paris, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Abstract
The small teleost fish Astyanax mexicanus has emerged as an outstanding model for studying many biological topics in the context of evolution. A major attribute is conspecific surface dwelling (surface fish) and blind cave dwelling (cavefish) morphs that can be raised in the laboratory and spawn large numbers of transparent and synchronously developing embryos. More than 30 cavefish populations have been discovered, mostly in northeastern Mexico, and some are thought to have evolved independently from surface fish ancestors, providing excellent models of parallel and convergent evolution. Cavefish have evolved eye and pigmentation regression, as well as modifications in brain morphology, behaviors, heart regenerative capacity, metabolic processes, and craniofacial organization. Thus, the Astyanax model provides researchers with natural "mutants" to study life in the challenging cave environment. The application of powerful genetic approaches based on hybridization between the two morphs and between the different cavefish populations are key advantages for deciphering the developmental and genetic mechanisms regulating trait evolution. QTL analysis has revealed the genetic architectures of gained and lost traits. In addition, some cavefish traits resemble human diseases, offering novel models for biomedical research. Astyanax research is supported by genome assemblies, transcriptomes, tissue and organ transplantation, gene manipulation and editing, and stable transgenesis, and benefits from a welcoming and interactive research community that conducts integrated community projects and sponsors the International Astyanax Meeting (AIM).
Collapse
Affiliation(s)
- William R. Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
6
|
Riddle MR, Tabin CJ. Little Fish, Big Questions: A Collection of Modern Techniques for Mexican Tetra Research. J Vis Exp 2020. [PMID: 32092048 PMCID: PMC7373155 DOI: 10.3791/60592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Articles Discussed: Stahl, B. A. et al. Manipulation of Gene Function in Mexican Cavefish. Journal of Visualized Experiments. (146) (2019). Peuß, R. et al. Gamete Collection and In Vitro Fertilization of Astyanax mexicanus. Journal of Visualized Experiments. (147) (2019). Worsham, M. et al. Behavioral Tracking and Neuromast Imaging of Mexican Cavefish.Journal of Visualized Experiments. (147) (2019). Jaggard, J.B., Lloyd, E., Lopatto, A., Duboue, E.R., Keene, A.C. Automated Measurements of Sleep and Locomotor Activity in Mexican Cavefish. Journal of Visualized Experiments. (145) (2019). Luc, H., Sears, C., Raczka, A., Gross, J.B. Wholemount In Situ Hybridization for Astyanax Embryos. Journal of Visualized Experiments. (145) (2019). Riddle, M., Martineau, B., Peavey, M., Tabin, C. Raising the Mexican Tetra Astyanax mexicanus for Analysis of Post-larval Phenotypes and Whole-mount Immunohistochemistry. Journal of Visualized Experiments. (142) (2018).
Collapse
Affiliation(s)
- Misty R Riddle
- Genetics Department, Blavatnik Institute, Harvard Medical School
| | - Clifford J Tabin
- Genetics Department, Blavatnik Institute, Harvard Medical School;
| |
Collapse
|
7
|
Ma L, Ng M, van der Weele CM, Yoshizawa M, Jeffery WR. Dual roles of the retinal pigment epithelium and lens in cavefish eye degeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:438-449. [PMID: 31930686 DOI: 10.1002/jez.b.22923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/04/2019] [Accepted: 12/21/2019] [Indexed: 01/03/2023]
Abstract
Astyanax mexicanus consists of two forms, a sighted surface dwelling form (surface fish) and a blind cave-dwelling form (cavefish). Embryonic eyes are initially formed in cavefish but they are subsequently arrested in growth and degenerate during larval development. Previous lens transplantation studies have shown that the lens plays a central role in cavefish eye loss. However, several lines of evidence suggest that additional factors, such as the retinal pigment epithelium (RPE), which is morphologically altered in cavefish, could also be involved in the eye regression process. To explore the role of the RPE in cavefish eye degeneration, we generated an albino eyed (AE) strain by artificial selection for hybrid individuals with large eyes and a depigmented RPE. The AE strain exhibited an RPE lacking pigment granules and showed reduced expression of the RPE specific enzyme retinol isomerase, allowing eye development to be studied by lens ablation in an RPE background resembling cavefish. We found that lens ablation in the AE strain had stronger negative effects on eye growth than in surface fish, suggesting that an intact RPE is required for normal eye development. We also found that the AE strain develops a cartilaginous sclera lacking boney ossicles, a trait similar to cavefish. Extrapolation of the results to cavefish suggests that the RPE and lens have dual roles in eye degeneration, and that deficiencies in the RPE may be associated with evolutionary changes in scleral ossification.
Collapse
Affiliation(s)
- Li Ma
- Department of Biology, University of Maryland, College Park, Maryland
| | - Mandy Ng
- Department of Biology, University of Maryland, College Park, Maryland
| | | | - Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, Maryland
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
8
|
Grempel RG, Trajano E, Visconti MA. Regression of dark color in subterranean fishes involves multiple mechanisms: response to hormones and neurotransmitters. NEOTROPICAL ICHTHYOLOGY 2020. [DOI: 10.1590/1982-0224-2019-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Organisms with source-populations restricted to the subterranean biotope (troglobites) are excellent models for comparative evolutionary studies, due to their specialization to permanent absence of light. Eye and dark pigment regression are characteristics of most troglobites. In spite of the advance in knowledge on the mechanisms behind eye regression in cave fishes, very little is known about pigmentation changes. Studies were focused on three species of the genus Pimelodella. Exemplars of the troglobitic P. spelaea and P. kronei were compared with the epigean (surface) P. transitoria, putative sister-species of the latter. Melanophore areas and densities are significantly lower in the troglobitic species. Evaluating the in vitro response of these cells to adrenaline, acetylcholine and MCH, we observed a reduced response in both troglobites to adrenaline. The same trend was observed with MCH, but not statistically significant. No response to acetilcholine was detected in all the three. Contrary to expectations, even though eye-regression in P. spelaea was much lower than in P. kronei, pigmentation regression was more advanced. Multiple mechanisms of loss showing a mosaic of traits in troglobitic fishes are discussed here.
Collapse
|
9
|
Bilandžija H, Abraham L, Ma L, Renner KJ, Jeffery WR. Behavioural changes controlled by catecholaminergic systems explain recurrent loss of pigmentation in cavefish. Proc Biol Sci 2019; 285:rspb.2018.0243. [PMID: 29720416 DOI: 10.1098/rspb.2018.0243] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
Multiple cave populations of the teleost Astyanax mexicanus have repeatedly reduced or lost eye and body pigmentation during adaptation to dark caves. Albinism, the complete absence of melanin pigmentation, is controlled by loss-of-function mutations in the oca2 gene. The mutation is accompanied by an increase in the melanin synthesis precursor l-tyrosine, which is also a precursor for catecholamine synthesis. In this study, we show a relationship between pigmentation loss, enhanced catecholamine synthesis and responsiveness to anaesthesia, determined as a proxy for catecholamine-related behaviours. We demonstrate that anaesthesia resistance (AR) is enhanced in multiple depigmented and albino cavefish (CF), inversely proportional to the degree of pigmentation loss, controlled by the oca2 gene, and can be modulated by experimental manipulations of l-tyrosine or the catecholamine norepinephrine (NE). Moreover, NE is increased in the brains of multiple albino and depigmented CF relative to surface fish. The results provide new insights into the evolution of pigment modification because NE controls a suite of adaptive behaviours similar to AR that may represent a target of natural selection. Thus, understanding the relationship between loss of pigmentation and AR may provide insight into the role of natural selection in the evolution of albinism via a melanin-catecholamine trade-off.
Collapse
Affiliation(s)
- Helena Bilandžija
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Molecular Biology, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Lindsey Abraham
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Li Ma
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Yoshizawa M, Hixon E, Jeffery WR. Neural Crest Transplantation Reveals Key Roles in the Evolution of Cavefish Development. Integr Comp Biol 2019; 58:411-420. [PMID: 29718239 DOI: 10.1093/icb/icy006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Evolutionary changes in Astyanax mexicanus cavefish with respect to conspecific surface fish, including the regression of eyes, loss of pigmentation, and modification of the cranial skeleton, involve derivatives of the neural crest. However, the role of neural crest cells in cavefish evolution and development is poorly understood. One of the reasons is that experimental methods for neural crest analysis are not well developed in the Astyanax system. Here we describe neural crest transplantation between Astyanax surface fish and cavefish embryos. We found differences in the migration of cranial neural crest cells transplanted from the surface fish anterior hindbrain to the same region of surface fish or cavefish hosts. Cranial neural crest cells migrated extensively throughout the head, and to a lesser extent the trunk, in surface fish hosts but their migration was mostly restricted to the anterior and dorsal head regions in cavefish hosts. Cranial neural crest cells derived from the surface fish transplants invaded the degenerating eyes of cavefish hosts, resulting in increased eye size and suggesting that cavefish neural crest cells are defective in forming optic derivatives. We found that melanophores were formed in albino cavefish from grafts of surface fish trunk neural crest cells, showing that the cavefish tissue environment is conducive for pigment cell development, and implicating intrinsic changes in cavefish neural crest cells in loss of body pigmentation. It is concluded that changes in neural crest cells play key roles in the evolution of cavefish development.
Collapse
Affiliation(s)
- Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Biology, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Ernest Hixon
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Soares D, Niemiller ML. Extreme Adaptation in Caves. Anat Rec (Hoboken) 2018; 303:15-23. [PMID: 30537183 DOI: 10.1002/ar.24044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022]
Abstract
Cave adaptation leads to unique anatomical specializations in many taxonomic groups. As the role of vision is reduced or disappears in a subterranean environment, other specializations arise to allow the organism to successfully detect and interact with their environment. A suite of unique, convergent phenotypes associated with subterranean adaptation has emerged (termed troglomorphy), with reduction or loss of pigmentation and eyes being the most conspicuous. Two vertebrate groups that have successfully colonized and adapted to subterranean environments are cavefishes and cave salamanders. There are many shared troglomorphic anatomical characters shared between these two groups, and we describe herein the morphological traits that are unique to fishes and salamanders that are adapted to caves and other subterranean habitats. Troglobionts, animals strictly bound and adapted to underground habitats, are outcomes of not just regressive evolution, but also constructive adaptation. There are skeletal changes, such as broadening and flattening of the head, as well as hypertrophy of non-visual modalities. Cavefishes and salamanders have lost eyes and pigmentation, but also enhanced mechanosenzation, chemosenzation and, in some cases, electroreception. Both cavefishes and cave salamanders have become important models in the study of the ecology, behavior, and evolution of subterranean colonization and adaptation. However, our knowledge is primarily limited to a few taxa and many questions remain to be studied. Anat Rec, 2018. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Daphne Soares
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama
| |
Collapse
|
12
|
Mojaddidi H, Fernandez FE, Erickson PA, Protas ME. Embryonic origin and genetic basis of cave associated phenotypes in the isopod crustacean Asellus aquaticus. Sci Rep 2018; 8:16589. [PMID: 30409988 PMCID: PMC6224564 DOI: 10.1038/s41598-018-34405-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Characteristics common to animals living in subterranean environments include the reduction or absence of eyes, lessened pigmentation and enhanced sensory systems. How these characteristics have evolved is poorly understood for the majority of cave dwelling species. In order to understand the evolution of these changes, this study uses an invertebrate model system, the freshwater isopod crustacean, Asellus aquaticus, to examine whether adult differences between cave and surface dwelling individuals first appear during embryonic development. We hypothesized that antennal elaboration, as well as eye reduction and pigment loss, would be apparent during embryonic development. We found that differences in pigmentation, eye formation, and number of segments of antenna II were all present by the end of embryonic development. In addition, we found that cave and surface hatchlings do not significantly differ in the relative size of antenna II and the duration of embryonic development. To investigate whether the regions responsible for eye and pigment differences could be genetically linked to differences in article number, we genotyped F2 hybrids for the four previously mapped genomic regions associated with eye and pigment differences and phenotyped these F2 hybrids for antenna II article number. We found that the region previously known to be responsible for both presence versus absence of pigment and eye size also was significantly associated with article number. Future experiments will address whether pleiotropy and/or genetic linkage play a role in the evolution of cave characteristics in Asellus aquaticus.
Collapse
Affiliation(s)
- Hafasa Mojaddidi
- Dominican University of California, 50 Acacia Ave, San Rafael, CA, 94901, USA
| | - Franco E Fernandez
- Dominican University of California, 50 Acacia Ave, San Rafael, CA, 94901, USA
| | | | - Meredith E Protas
- Dominican University of California, 50 Acacia Ave, San Rafael, CA, 94901, USA.
| |
Collapse
|
13
|
Espinasa L, Robinson J, Espinasa M. Mc1r gene in Astroblepus pholeter and Astyanax mexicanus: Convergent regressive evolution of pigmentation across cavefish species. Dev Biol 2018; 441:305-310. [DOI: 10.1016/j.ydbio.2018.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 12/28/2022]
|
14
|
Klaassen H, Wang Y, Adamski K, Rohner N, Kowalko JE. CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Dev Biol 2018; 441:313-318. [DOI: 10.1016/j.ydbio.2018.03.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 01/02/2023]
|
15
|
Espinasa L, Robinson J, Soares D, Hoese G, Toulkeridis T, Toomey III R. Troglomorphic features of Astroblepus pholeter, a cavefish from Ecuador, and possible introgressive hybridization. SUBTERRANEAN BIOLOGY 2018. [DOI: 10.3897/subtbiol.27.27098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cave organisms are often characterized by reduced pigmentation, eyesight, and enhanced mechanosensory functions. The stygobitic catfish Astroblepuspholeter is found within some subterranean drainages in Ecuador. The species was first described in 1962 with specimens that were all highly depigmented and troglomorphic. The next observations in the field occurred until 2011, 2015 and 2018. At such dates, specimens examined progressively displayed more surface-like appearance. Appendages in these individuals were progressively shorter and pigmentation levels are now as high as some surface Astroblepus. Based on sampled specimens, it would appear that since 1962, the population has been progressively composed of less troglomorphic individuals. One possibility is that the population has undergone introgressive hybridization in recent years as surface Astroblepus are known to enter the caves and cohabitate with the troglomorphic Astroblepus. Lastly, we report that Individuals are able to detect and respond to light. Histological analyses show that A.pholeter’s eyes have all of the major ocular structures (lens, optic nerve, and all retinal layers).
Collapse
|
16
|
The developmental origin of heart size and shape differences in Astyanax mexicanus populations. Dev Biol 2018; 441:272-284. [PMID: 29940142 PMCID: PMC6142174 DOI: 10.1016/j.ydbio.2018.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 11/22/2022]
Abstract
Regulation of heart size and shape is one of the least understood processes in developmental biology. We have for the first time analysed the hearts of Astyanax mexicanus and identified several differences in heart morphology between the surface (epigean morph) and cave-dwelling (troglomorph) morphs. Examination of the adult revealed that the troglomorph possesses a smaller heart with a rounder ventricle in comparison to the epigean morph. The size differences identified appear to arise early in development, as early as 24 h post-fertilisation (hpf), while shape differences begin to appear at 2 days post-fertilisation. The heart of the first-generation cross between the cave-dwelling and river-dwelling morph shows uncoupling of different phenotypes observed in the parental populations and indicates that the cardiac differences have become embedded in the genome during evolution. The differences in heart morphology are accompanied by functional changes between the two morphs, with the cave-dwelling morph exhibiting a slower heart rate than the river-dwelling morph. The identification of morphological and functional differences in the A. mexicanus heart could allow us to gain more insight into how such parameters are regulated during cardiac development, with potential relevance to cardiac pathologies in humans. Differences in heart size, shape and tissue structure between Astyanax populations. Furthermore, differences in cardiac melanophore and adipocyte numbers. Heart size and shape differences are apparent early in development. Surface and Pachón show differences in heart rate during development and adulthood. F1 hybrids show uncoupling of features observed in surface and Pachón populations.
Collapse
|
17
|
Zhu W, Liu L, Wang X, Gao X, Jiang J, Wang B. Transcriptomics reveals the molecular processes of light-induced rapid darkening of the non-obligate cave dweller Oreolalax rhodostigmatus (Megophryidae, Anura) and their genetic basis of pigmentation strategy. BMC Genomics 2018; 19:422. [PMID: 29855256 PMCID: PMC5984452 DOI: 10.1186/s12864-018-4790-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vertebrates use different pigmentation strategies to adapt to various environments. A large amount of research has been done on disclosing the mechanisms of pigmentation strategies in vertebrates either under light, or, living in constant darkness. However, less attention has been paid to non-obligate, darkness dwellers. Red-spotted toothed toads Oreolalax rhodostigmatus (Megophryidae; Anura) from the karst mountainous region of southwestern China are non-obligate cave dwellers. Most tadpoles of the species possess transparent skin as they inhabit the dark karst caves. But remarkably, the transparent tadpoles can darken just within 15 h once exposed to light. Obviously, it is very significant to reveal molecular mechanisms of the unexpected rapid-darkening phenomenon. RESULTS We compared the transcriptomes of O. rhodostigmatus tadpoles with different durations of light exposure to investigate the cellular processes and potential regulation signals for their light-induced rapid darkening. Genes involved in melanogenesis (i.e. TYR, TYRP1 and DCT) and melanocyte proliferation, as well as their transcriptional factor (MITF), showed light-induced transcription, suggesting a dominating role of morphological color change (MCC) in this process. Transcription of genes related to growth factor, MAPK and PI3K-Akt pathways increased with time of light exposure, suggesting that light could induce significant growth signal, which might facilitate the rapid skin darkening. Most importantly, an in-frame deletion of four residues was identified in O. rhodostigmatus melanocortin-1 receptor (MC1R), a critical receptor in MCC. This deletion results in a more negatively charged ligand pocket with three stereo-tandem aspartate residues. Such structural changes likely decrease the constitutive activity of MC1R, but increase its ligands-dependent activity, thus coordinating pigment regression and rapid melanogenesis in the dark and light, respectively. CONCLUSION Our study suggested that rapid MCC was responsible for the light-induced rapid darkening of O. rhodostigmatus tadpoles. Genetic mutations of MC1R in them could explain how these non-obligate cave dwellers coordinate pigment regression and robust melanogenesis in darkness and light, respectively. To our knowledge, this is the first study that reports the association between pigmentation phenotype adaptation and MC1R mutations in amphibians and/or in non-obligate cave dwellers.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Lusha Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xungang Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
18
|
Xu T, Deng H, Zhou J. The Cavefish Oreonectes jiarongensis can be Induced to Differentiate and Recover under the Light Condition. TRANSYLVANIAN REVIEW OF SYSTEMATICAL AND ECOLOGICAL RESEARCH 2017. [DOI: 10.1515/trser-2017-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This research indicated that one cave fish species of Oreonectes jiarongensis can recover the transparent to black under the light condition, this species belongs to the Oreonectes, Nemacheilinae, and distributes in Libo County, Guizhou Province, China. The changing process time was 14 days. This is the first time that suggests the cave vertebrates which lived in the dark environment not longer time could change the body color in the light environment, and has a new adaptive strategy for the darkness condition. The result may indicate that this species entrance the underground river not so long time, and the genes not mutation, which control the melanin express, it still has the physiological regulation mechanism under the light condition.
Collapse
Affiliation(s)
- Tielong Xu
- School of Life Sciences-Guizhou Normal University , Yunyan District, Baoshan Beilu Street 116, Guiyang , China , CN-550001
| | - Huaiqing Deng
- School of Life Sciences-Guizhou Normal University , Yunyan District, Baoshan Beilu Street 116, Guiyang , China , CN-550001
| | - Jiang Zhou
- School of Life Sciences-Guizhou Normal University , Yunyan District, Baoshan Beilu Street 116, Guiyang , China , CN-550001
| |
Collapse
|
19
|
Espinasa L, Collins E, Finocchiaro A, Kopp J, Robinson J, Rutkowski J. Incipient regressive evolution of the circadian rhythms of a cave amphipod. SUBTERRANEAN BIOLOGY 2016. [DOI: 10.3897/subtbiol.20.10010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Jeffery WR. The Comparative Organismal Approach in Evolutionary Developmental Biology: Insights from Ascidians and Cavefish. Curr Top Dev Biol 2016; 116:489-500. [PMID: 26970636 PMCID: PMC6143178 DOI: 10.1016/bs.ctdb.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Important contributions to evolutionary developmental biology have been made using the comparative organismal approach. As examples, I describe insights obtained from studies of Molgula ascidians and Astyanax cavefish.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
21
|
Gross JB, Stahl BA, Powers AK, Carlson BM. Natural bone fragmentation in the blind cave-dwelling fish, Astyanax mexicanus: candidate gene identification through integrative comparative genomics. Evol Dev 2016; 18:7-18. [PMID: 26153732 PMCID: PMC5226847 DOI: 10.1111/ede.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animals that colonize dark and nutrient-poor subterranean environments evolve numerous extreme phenotypes. These include dramatic changes to the craniofacial complex, many of which are under genetic control. These phenotypes can demonstrate asymmetric genetic signals wherein a QTL is detected on one side of the face but not the other. The causative gene(s) underlying QTL are difficult to identify with limited genomic resources. We approached this task by searching for candidate genes mediating fragmentation of the third suborbital bone (SO3) directly inferior to the orbit of the eye. We integrated positional genomic information using emerging Astyanax resources, and linked these intervals to homologous (syntenic) regions of the Danio rerio genome. We identified a discrete, approximately 6 Mb, conserved region wherein the gene causing SO3 fragmentation likely resides. We interrogated this interval for genes demonstrating significant differential expression using mRNA-seq analysis of cave and surface morphs across life history. We then assessed genes with known roles in craniofacial evolution and development based on GO term annotation. Finally, we screened coding sequence alterations in this region, identifying two key genes: transforming growth factor β3 (tgfb3) and bone morphogenetic protein 4 (bmp4). Of these candidates, tgfb3 is most promising as it demonstrates significant differential expression across multiple stages of development, maps close (<1 Mb) to the fragmentation critical locus, and is implicated in a variety of other animal systems (including humans) in non-syndromic clefting and malformations of the cranial sutures. Both abnormalities are analogous to the failure-to-fuse phenotype that we observe in SO3 fragmentation. This integrative approach will enable discovery of the causative genetic lesions leading to complex craniofacial features analogous to human craniofacial disorders. This work underscores the value of cave-dwelling fish as a powerful evolutionary model of craniofacial disease, and demonstrates the power of integrative system-level studies for informing the genetic basis of craniofacial aberrations in nature.
Collapse
Affiliation(s)
- Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Bethany A. Stahl
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Amanda K. Powers
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Brian M. Carlson
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| |
Collapse
|
22
|
Cardoso JCR, Félix RC, Martins RST, Trindade M, Fonseca VG, Fuentes J, Power DM. PACAP system evolution and its role in melanophore function in teleost fish skin. Mol Cell Endocrinol 2015; 411:130-45. [PMID: 25933704 DOI: 10.1016/j.mce.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 01/12/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) administered to tilapia melanophores ex-vivo causes significant pigment aggregation and this is a newly identified function for this peptide in fish. The G-protein coupled receptors (GPCRs), adcyap1r1a (encoding Pac1a) and vipr2a (encoding Vpac2a), are the only receptors in melanophores with appreciable levels of expression and are significantly (p < 0.05) down-regulated in the absence of light. Vpac2a is activated exclusively by peptide histidine isoleucine (PHI), which suggests that Pac1a mediates the melanin aggregating effect of PACAP on melanophores. Paradoxically activation of Pac1a with PACAP caused a rise in cAMP, which in fish melanophores is associated with melanin dispersion. We hypothesise that the duplicate adcyap1ra and vipr2a genes in teleosts have acquired a specific role in skin and that the melanin aggregating effect of PACAP results from the interaction of Pac1a with Ramp that attenuates cAMP-dependent PKA activity and favours the Ca(2+)/Calmodulin dependent pathway.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rute S T Martins
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vera G Fonseca
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan Fuentes
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
23
|
Genome editing using TALENs in blind Mexican Cavefish, Astyanax mexicanus. PLoS One 2015; 10:e0119370. [PMID: 25774757 PMCID: PMC4361574 DOI: 10.1371/journal.pone.0119370] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/14/2015] [Indexed: 12/17/2022] Open
Abstract
Astyanax mexicanus, a teleost fish that exists in a river-dwelling surface form and multiple cave-dwelling forms, is an excellent system for studying the genetic basis of evolution. Cavefish populations, which independently evolved from surface fish ancestors multiple times, have evolved a number of morphological and behavioral traits. Quantitative trait loci (QTL) analyses have been performed to identify the genetic basis of many of these traits. These studies, combined with recent sequencing of the genome, provide a unique opportunity to identify candidate genes for these cave-specific traits. However, tools to test the requirement of these genes must be established to evaluate the role of candidate genes in generating cave-specific traits. To address this need, we designed transcription activator-like effector nucleases (TALENs) to target two genes that contain coding changes in cavefish relative to surface fish and map to the same location as QTL for pigmentation, oculocutaneous albinism 2 (oca2) and melanocortin 1 receptor (mc1r). We found that surface fish genes can be mutated using this method. TALEN-induced mutations in oca2 result in mosaic loss of melanin pigmentation visible as albino patches in F0 founder fish, suggesting biallelic gene mutations in F0s and allowing us to evaluate the role of this gene in pigmentation. The pigment cells in the albino patches can produce melanin upon treatment with L-DOPA, behaving similarly to pigment cells in albino cavefish and providing additional evidence that oca2 is the gene within the QTL responsible for albinism in cavefish. This technology has the potential to introduce a powerful tool for studying the role of candidate genes responsible for the evolution of cavefish traits.
Collapse
|
24
|
Protas M, Jeffery WR. Evolution and development in cave animals: from fish to crustaceans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:823-45. [PMID: 23580903 DOI: 10.1002/wdev.61] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cave animals are excellent models to study the general principles of evolution as well as the mechanisms of adaptation to a novel environment: the perpetual darkness of caves. In this article, two of the major model systems used to study the evolution and development (evo-devo) of cave animals are described: the teleost fish Astyanax mexicanus and the isopod crustacean Asellus aquaticus. The ways in which these animals match the major attributes expected of an evo-devo cave animal model system are described. For both species, we enumerate the regressive and constructive troglomorphic traits that have evolved during their adaptation to cave life, the developmental and genetic basis of these traits, the possible evolutionary forces responsible for them, and potential new areas in which these model systems could be used for further exploration of the evolution of cave animals. Furthermore, we compare the two model cave animals to investigate the mechanisms of troglomorphic evolution. Finally, we propose a few other cave animal systems that would be suitable for development as additional models to obtain a more comprehensive understanding of the developmental and genetic mechanisms involved in troglomorphic evolution.
Collapse
Affiliation(s)
- Meredith Protas
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| | | |
Collapse
|
25
|
Bilandžija H, Ma L, Parkhurst A, Jeffery WR. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One 2013; 8:e80823. [PMID: 24282555 PMCID: PMC3840000 DOI: 10.1371/journal.pone.0080823] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/14/2013] [Indexed: 12/15/2022] Open
Abstract
Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment.
Collapse
Affiliation(s)
- Helena Bilandžija
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Biology, University of Maryland, Maryland, United States of America
| | - Li Ma
- Department of Biology, University of Maryland, Maryland, United States of America
| | - Amy Parkhurst
- Department of Biology, University of Maryland, Maryland, United States of America
| | - William R. Jeffery
- Department of Biology, University of Maryland, Maryland, United States of America
- *
| |
Collapse
|
26
|
Bibliowicz J, Alié A, Espinasa L, Yoshizawa M, Blin M, Hinaux H, Legendre L, Père S, Rétaux S. Differences in chemosensory response between eyed and eyeless Astyanax mexicanus of the Rio Subterráneo cave. EvoDevo 2013; 4:25. [PMID: 24007672 PMCID: PMC3766224 DOI: 10.1186/2041-9139-4-25] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/26/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In blind cave-dwelling populations of Astyanax mexicanus, several morphological and behavioral shifts occurred during evolution in caves characterized by total and permanent darkness. Previous studies have shown that sensory systems such as the lateral line (mechanosensory) and taste buds (chemosensory) are modified in cavefish. It has long been hypothesized that another chemosensory modality, the olfactory system, might have evolved as well to provide an additional mechanism for food-searching in troglomorphic Astyanax populations. FINDINGS During a March 2013 cave expedition to the Sierra de El Abra region of San Luís Potosi, Mexico, we tested chemosensory capabilities of the Astyanax mexicanus of the Rio Subterráneo cave. This cave hosts a hybrid population presenting a wide range of troglomorphic and epigean mixed phenotypes. During a behavioral test performed in situ in the cave, a striking correlation was observed between the absence of eyes and an increased attraction to food extract. In addition, eyeless troglomorphic fish possessed significantly larger naris size than their eyed, nontroglomorphic counterparts. CONCLUSIONS Our findings suggest that chemosensory capabilities might have evolved in cave-dwelling Astyanax mexicanus and that modulation of naris size might at least partially underlie this likely adaptive change.
Collapse
Affiliation(s)
- Jonathan Bibliowicz
- Equipe Développement Evolution du Cerveau Antérieur, UPR3294 N&D, CNRS, Institut Alfred Fessard, Gif-sur-Yvette F-91198, France
| | - Alexandre Alié
- Equipe Développement Evolution du Cerveau Antérieur, UPR3294 N&D, CNRS, Institut Alfred Fessard, Gif-sur-Yvette F-91198, France
| | - Luis Espinasa
- School of Science, Marist College, Poughkeepsie, NY, USA
| | - Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Maryline Blin
- Equipe Développement Evolution du Cerveau Antérieur, UPR3294 N&D, CNRS, Institut Alfred Fessard, Gif-sur-Yvette F-91198, France
| | - Hélène Hinaux
- Equipe Développement Evolution du Cerveau Antérieur, UPR3294 N&D, CNRS, Institut Alfred Fessard, Gif-sur-Yvette F-91198, France
| | - Laurent Legendre
- Equipe Développement Evolution du Cerveau Antérieur, UPR3294 N&D, CNRS, Institut Alfred Fessard, Gif-sur-Yvette F-91198, France
| | - Stéphane Père
- Equipe Développement Evolution du Cerveau Antérieur, UPR3294 N&D, CNRS, Institut Alfred Fessard, Gif-sur-Yvette F-91198, France
| | - Sylvie Rétaux
- Equipe Développement Evolution du Cerveau Antérieur, UPR3294 N&D, CNRS, Institut Alfred Fessard, Gif-sur-Yvette F-91198, France
| |
Collapse
|
27
|
Meng F, Braasch I, Phillips JB, Lin X, Titus T, Zhang C, Postlethwait JH. Evolution of the eye transcriptome under constant darkness in Sinocyclocheilus cavefish. Mol Biol Evol 2013; 30:1527-43. [PMID: 23612715 PMCID: PMC3684860 DOI: 10.1093/molbev/mst079] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms.
Collapse
Affiliation(s)
- Fanwei Meng
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Bilandžija H, Cetković H, Jeffery WR. Evolution of albinism in cave planthoppers by a convergent defect in the first step of melanin biosynthesis. Evol Dev 2013; 14:196-203. [PMID: 23017027 DOI: 10.1111/j.1525-142x.2012.00535.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Albinism, the reduction or loss of melanin pigment, is found in many diverse cave-dwelling animals. The mechanisms responsible for loss of melanin pigment are poorly understood. In this study we use a melanogenic substrate assay to determine the position where melanin synthesis is blocked in independently evolved cave planthoppers from Hawaii and Croatia. In this assay, substrates of enzymes responsible for melanin biosynthesis are added to fixed specimens in vitro and their ability to rescue black melanin pigmentation is determined. L-tyrosine, the first substrate in the pathway, did not produce melanin pigment, whereas L-DOPA, the second substrate, restored black pigment. Substrates in combination with enzyme inhibitors were used to test the possibility of additional downstream defects in the pathway. The results showed that downstream reactions leading from L-DOPA and dopamine to DOPA-melanin and dopamine-melanin, the two types of insect melanin, are functional. It is concluded that albinism is caused by a defect in the first step of the melanin synthesis pathway in cave-adapted planthoppers from widely separated parts of the world. However, Western blots indicated that tyrosine hydroxylase (TH), the only enzyme shown to operate at the first step in insects, is present in Hawaiian cave planthoppers. Thus, an unknown factor(s) operating at this step may be important in the evolution of planthopper albinism. In the cavefish Astyanax mexicanus, a genetic defect has also been described at the first step of melanin synthesis suggesting convergent evolution of albinism in both cave-adapted insects and teleosts.
Collapse
Affiliation(s)
- Helena Bilandžija
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička, 54, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
29
|
Hoke K, Schwartz A, Soares D. Evolution of the fast start response in the cavefish Astyanax mexicanus. Behav Ecol Sociobiol 2012. [DOI: 10.1007/s00265-012-1368-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Riesch R, Schlupp I, Langerhans RB, Plath M. Shared and unique patterns of embryo development in extremophile poeciliids. PLoS One 2011; 6:e27377. [PMID: 22087302 PMCID: PMC3210165 DOI: 10.1371/journal.pone.0027377] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Closely related lineages of livebearing fishes have independently adapted to two extreme environmental factors: toxic hydrogen sulphide (H(2)S) and perpetual darkness. Previous work has demonstrated in adult specimens that fish from these extreme habitats convergently evolved drastically increased head and offspring size, while cave fish are further characterized by reduced pigmentation and eye size. Here, we traced the development of these (and other) divergent traits in embryos of Poecilia mexicana from benign surface habitats ("surface mollies") and a sulphidic cave ("cave mollies"), as well as in embryos of the sister taxon, Poecilia sulphuraria from a sulphidic surface spring ("sulphur mollies"). We asked at which points during development changes in the timing of the involved processes (i.e., heterochrony) would be detectible. METHODS AND RESULTS Data were extracted from digital photographs taken of representative embryos for each stage of development and each type of molly. Embryo mass decreased in convergent fashion, but we found patterns of embryonic fat content and ovum/embryo diameter to be divergent among all three types of mollies. The intensity of yellow colouration of the yolk (a proxy for carotenoid content) was significantly lower in cave mollies throughout development. Moreover, while relative head size decreased through development in surface mollies, it increased in both types of extremophile mollies, and eye growth was arrested in mid-stage embryos of cave mollies but not in surface or sulphur mollies. CONCLUSION Our results clearly demonstrate that even among sister taxa convergence in phenotypic traits is not always achieved by the same processes during embryo development. Furthermore, teleost development is crucially dependent on sufficient carotenoid stores in the yolk, and so we discuss how the apparent ability of cave mollies to overcome this carotenoid-dependency may represent another potential mechanism explaining the lack of gene flow between surface and cave mollies.
Collapse
Affiliation(s)
- Rüdiger Riesch
- Department of Biology & W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | |
Collapse
|
31
|
Gross JB, Borowsky R, Tabin CJ. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet 2009; 5:e1000326. [PMID: 19119422 PMCID: PMC2603666 DOI: 10.1371/journal.pgen.1000326] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 12/02/2008] [Indexed: 12/23/2022] Open
Abstract
The evolution of degenerate characteristics remains a poorly understood phenomenon. Only recently has the identification of mutations underlying regressive phenotypes become accessible through the use of genetic analyses. Focusing on the Mexican cave tetra Astyanax mexicanus, we describe, here, an analysis of the brown mutation, which was first described in the literature nearly 40 years ago. This phenotype causes reduced melanin content, decreased melanophore number, and brownish eyes in convergent cave forms of A. mexicanus. Crosses demonstrate non-complementation of the brown phenotype in F2 individuals derived from two independent cave populations: Pachón and the linked Yerbaniz and Japonés caves, indicating the same locus is responsible for reduced pigmentation in these fish. While the brown mutant phenotype arose prior to the fixation of albinism in Pachón cave individuals, it is unclear whether the brown mutation arose before or after the fixation of albinism in the linked Yerbaniz/Japonés caves. Using a QTL approach combined with sequence and functional analyses, we have discovered that two distinct genetic alterations in the coding sequence of the gene Mc1r cause reduced pigmentation associated with the brown mutant phenotype in these caves. Our analysis identifies a novel role for Mc1r in the evolution of degenerative phenotypes in blind Mexican cavefish. Further, the brown phenotype has arisen independently in geographically separate caves, mediated through different mutations of the same gene. This example of parallelism indicates that certain genes are frequent targets of mutation in the repeated evolution of regressive phenotypes in cave-adapted species. As we approach the 150th year since publication of On the Origin of Species, understanding the genetic architecture underlying evolutionary change remains an important challenge. When an organism enters a completely new environment or ecological niche, certain traits are no longer necessary for survival, while other new traits become critical for maintaining fitness. An example of such a transition is provided by cave animals. Many disparate taxa (e.g., crustaceans, salamanders, fish) have colonized caves, presumably to escape predation or expand populations into an unexploited niche. Strikingly, similar traits evolve convergently despite significant phylogenetic distance between these organisms. Caves provide a unique environment including the absence of light, few predators, few sources of food, etc. Under these conditions, one observes striking changes in morphology including reduction in eyes, expansion of non-visual sensory systems, and a suite of metabolic and behavioral changes. To understand the genetic underpinnings of these shifts, we have established the blind Mexican cave tetra, A. mexicanus, as a genetic system. In this paper, we use this system to investigate a classic morphological feature in these animals, depigmentation. We identify the gene Mc1r as being responsible for reduction in melanin content in multiple caves.
Collapse
Affiliation(s)
- Joshua B. Gross
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Borowsky
- Cave Biology Research Group, Department of Biology, New York University, New York, New York, United States of America
| | - Clifford J. Tabin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
The teleost Astyanax mexicanus is a single species consisting of two radically different forms: a sighted pigmented surface-dwelling form (surface fish) and a blind depigmented cave-dwelling form (cavefish). The two forms of Astyanax have favorable attributes, including descent from a common ancestor, ease of laboratory culture, and the ability to perform genetic analysis, permitting their use as a model system to explore questions in evolution and development. Here, we review current research on the molecular, cellular, and developmental mechanisms underlying the loss of eyes and pigmentation in Astyanax cavefish. Although functional eyes are lacking in adults, cavefish embryos begin to develop eye primordia, which subsequently degenerate. The major cause of eye degeneration appears to be apoptotic cell death of the lens, which prevents the growth of other optic tissues, including the retina. Ultimately, the loss of the eye is the cause of craniofacial differences between cavefish and surface fish. Lens apoptosis is induced by enhanced activity of the Hedgehog signaling system along the cavefish embryonic midline. The absence of melanin pigmentation in cavefish is due to a block in the ability of undifferentiated melanoblasts to accumulate L-tyrosine, the precursor of L-DOPA and melanin, in melanosomes. Genetic analysis has shown that this defect is caused by a hypomorphic mutation in the p/oca2 gene encoding an integral melanosomal membrane protein. We discuss how current studies of eye and pigment regression have revealed some of the mechanisms in which cavefish development has been changed during evolution.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
33
|
Abstract
A diverse group of animals, including members of most major phyla, have adapted to life in the perpetual darkness of caves. These animals are united by the convergence of two regressive phenotypes, loss of eyes and pigmentation. The mechanisms of regressive evolution are poorly understood. The teleost Astyanax mexicanus is of special significance in studies of regressive evolution in cave animals. This species includes an ancestral surface dwelling form and many con-specific cave-dwelling forms, some of which have evolved their recessive phenotypes independently. Recent advances in Astyanax development and genetics have provided new information about how eyes and pigment are lost during cavefish evolution; namely, they have revealed some of the molecular and cellular mechanisms involved in trait modification, the number and identity of the underlying genes and mutations, the molecular basis of parallel evolution, and the evolutionary forces driving adaptation to the cave environment.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
34
|
Felice V, Visconti MA, Trajano E. Mechanisms of pigmentation loss in subterranean fishes. NEOTROPICAL ICHTHYOLOGY 2008. [DOI: 10.1590/s1679-62252008000400015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Troglobitic (exclusively subterranean) organisms usually present, among their apomorphies related to the subterranean life (troglomorphisms), the regression of eyes and melanic pigmentation. The degree of regression varies among species, from a slight reduction to the complete loss of eyes and dark pigmentation, without a taxonomic correlation. While mechanisms of eye reduction have been intensively investigated in some troglobites such as the Mexican blind tetra characins, genus Astyanax, and the European salamander, Proteus anguinus, few studies have focused on pigmentation. The Brazilian subterranean ichthyofauna distinguishes not only by the species richness (23 troglobitic fishes so far known) but also by the variation in the degree of reduction of eyes and pigmentation. This study focused on Brazilian fishes completely devoid of melanic pigmentation: the characiform Stygichthys typhlops (Characidae) and the siluriforms Ancistrus formoso (Loricariidae), Rhamdiopsis sp.1 (Heptapteridae; from caves in the Chapada Diamantina, Bahia) and Rhamdiopsis sp. 2 (cave in Campo Formoso, Bahia). In order to investigate if such depigmentation is the result of blockage in some step in the melanogenesis, in vitro tests of administration of L-DOPA were done, using caudal-fin fragments extracted from living fish. Except for Rhamdiopsis sp. 2, all the studied species were DOPA(+), i.e., melanin was synthesized after L-DOPA administration. This indicates these fish do have melanophores but they are unable to convert L-tyrosine to L-DOPA. On the other hand, Rhamdiopsis sp. 2, like the albino specimens of Trichomycterus itacarambiensis previously studied (which correspond to one third of the population), are DOPA(-), either because the block of melanin synthesis occurs downstream in melanogenesis, which is probably the case with T. itacarambiensis (monogenic system in view of the phenotypic discontinuity), or because the so-called albinos do no possess melanophores. The physiological loss in the ability to synthesize melanin, apparently caused by different genetic processes in DOPA(+) and in DOPA(-) fishes, may co-exist in subterranean populations with a decrease in the density of melanophores, as observed in the pigmented two thirds of T. itacarambiensis population, a morphological reduction apparently controlled by polygenic systems producing a continuous phenotypic variation.
Collapse
|
35
|
Abstract
Cavefish and their conspecific surface-dwelling ancestors (Astyanax mexicanus) are emerging as a model system to study the microevolution of development. Here we describe attributes that make this system highly promising for such studies. We review how the Astyanax system is being used to understand evolutionary forces underlying loss of eyes and pigmentation in cavefish. Pigment regression is probably explained by neutral mutations, whereas natural selection is a likely mechanism for loss of eyes. Finally, we discuss several research frontiers in which Astyanax is poised to make significant contributions in the future: evolution of constructive traits, the craniofacial skeleton, the central nervous system, and behavior.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
36
|
Streelman J, Peichel C, Parichy D. Developmental Genetics of Adaptation in Fishes: The Case for Novelty. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.38.091206.095537] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J.T. Streelman
- School of Biology, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230;
| | - C.L. Peichel
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024;
| | - D.M. Parichy
- Department of Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195-1800;
| |
Collapse
|
37
|
Di Palma F, Kidd C, Borowsky R, Kocher TD. Construction of Bacterial Artificial Chromosome Libraries for The Lake Malawi Cichlid (Metriaclima Zebra), And The Blind Cavefish (Astyanax Mexicanus). Zebrafish 2007; 4:41-7. [DOI: 10.1089/zeb.2006.9996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Federica Di Palma
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire
| | - Celeste Kidd
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire
| | | | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
38
|
Mills MG, Nuckels RJ, Parichy DM. Deconstructing evolution of adult phenotypes: genetic analyses of kit reveal homology and evolutionary novelty during adult pigment pattern development of Danio fishes. Development 2007; 134:1081-90. [PMID: 17287252 DOI: 10.1242/dev.02799] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cellular bases for evolutionary changes in adult form remain largely unknown. Pigment patterns of Danio fishes are a convenient system for studying these issues because of their diversity and accessibility and because one species, the zebrafish D. rerio, is a model organism for biomedical research. Previous studies have shown that in zebrafish, stripes form by migration and differentiation of distinct populations of melanophores: early metamorphic (EM) melanophores arise widely dispersed and then migrate into stripes, whereas late metamorphic (LM) melanophores arise already within stripes. EM melanophores require the kit receptor tyrosine kinase, as kit mutants lack these cells but retain LM melanophores, which form a residual stripe pattern. To see if similar cell populations and genetic requirements are present in other species, we examined D. albolineatus, which has relatively few, nearly uniform melanophores. We isolated a D. albolineatus kit mutant and asked whether residual, LM melanophores develop in this species, as in D. rerio. We found that kit mutant D. albolineatus lack EM melanophores, yet retain LM melanophores. Histological analyses further show that kit functions during a late step in metamorphic melanophore development in both species. Interestingly, kit mutant D. albolineatus develop a striped melanophore pattern similar to kit mutant D. rerio, revealing latent stripe-forming potential in this species, despite its normally uniform pattern. Comparisons of wild types and kit mutants of the two species further show that species differences in pigment pattern reflect: (1) changes in the behavior of kit-dependent EM melanophores that arise in a dispersed pattern and then migrate into stripes in D. rerio, but fail to migrate in D. albolineatus; and (2) a change in the number of kit-independent LM melanophores that arise already in stripes and are numerous in D. rerio, but few in D. albolineatus. Our results show how genetic analyses of a species closely related to a biomedical model organism can reveal both conservatism and innovation in developmental mechanisms underlying evolutionary changes in adult form.
Collapse
Affiliation(s)
- Margaret G Mills
- Department of Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Box 351800, Seattle WA 98195-1800, USA
| | | | | |
Collapse
|
39
|
Plath M, Hauswaldt JS, Moll K, Tobler M, García De León FJ, Schlupp I, Tiedemann R. Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide. Mol Ecol 2006; 16:967-76. [PMID: 17305854 DOI: 10.1111/j.1365-294x.2006.03212.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated genetic differentiation and migration patterns in a small livebearing fish, Poecilia mexicana, inhabiting a sulfidic Mexican limestone cave (Cueva del Azufre). We examined fish from three different cave chambers, the sulfidic surface creek draining the cave (El Azufre) and a nearby surface creek without the toxic hydrogen sulphide (Arroyo Cristal). Using microsatellite analysis of 10 unlinked loci, we found pronounced genetic differentiation among the three major habitats: Arroyo Cristal, El Azufre and the cave. Genetic differentiation was also found within the cave between different pools. An estimation of first-generation migrants suggests that (i) migration is unidirectional, out of the cave, and (ii) migration among different cave chambers occurs to some extent. We investigated if the pattern of genetic differentiation is also reflected in a morphological trait, eye size. Relatively large eyes were found in surface habitats, small eyes in the anterior cave chambers, and the smallest eyes were detected in the innermost cave chamber (XIII). This pattern shows some congruence with a previously proposed morphocline in eye size. However, our data do not support the proposed mechanism for this morphocline, namely that it would be maintained by migration from both directions into the middle cave chambers. This would have led to an increased variance in eye size in the middle cave chambers, which we did not find. Restricted gene flow between the cave and the surface can be explained by local adaptations to extreme environmental conditions, namely H2S and absence of light. Within the cave system, habitat properties are patchy, and genetic differentiation between cave chambers despite migration could indicate local adaptation at an even smaller scale.
Collapse
Affiliation(s)
- M Plath
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Many cave animals are colorless due to loss of pigment cells. Here, we review recent progress on how and why pigmentation has disappeared inAstyanax mexicanus, a single teleost species with conspecific surface-dwelling (surface fish) and many different cave-dwelling (cavefish) forms. During surface fish development, migratory neural crest cells form three types of pigment cells: silver iridophores, orange xanthophores, and black melanophores. Cavefish have eliminated or substantially reduced their complement of melanophores and exhibit albinism, loss of the capacity to synthesize melanin. Cell tracing, immunolocalization, and neural tube explant cultures show that cavefish have retained a colorless pre-melanophore (melanoblast) lineage derived from the neural crest. Thus, the cavefish neural crest produces melanoblasts that migrate normally but are blocked in differentiation and show defective melanogenesis. Cavefish melanoblasts can convert exogenous L-DOPA into melanin and therefore have active tyrosinase, the key enzyme in melanogenesis. In contrast, cavefish melanoblasts are unable to convert L-tyrosine to L-DOPA (and melanin), although this reaction is also catalyzed by tyrosinase. Thus, cavefish are tyrosinase-positive albinos that have a deficiency in L-tyrosine transport or utilization within the melanosome, the organelle in which melanin is synthesized. At least five different types ofAstyanaxcavefish show the same defect in melanogenesis. Genetic analysis shows that cavefish albinism is caused by loss of function mutations in a single gene,p/oca2, which encodes a large protein that probably spans the melanosome membrane. Different deletions in thep/oca2 protein-coding region are responsible for loss of function in at least two different cavefish populations, suggesting that albinism evolved by convergence. Based on current understanding of the genetic basis of albinism, we discuss potential mechanisms for regressive evolution of cavefish pigmentation.
Collapse
|
41
|
Abstract
Mexican tetra (Astyanax mexicanus) exist as two morphs: a sighted (surface) form and a blind (cavefish) form. In the cavefish, some modules are lost, such as the eye and pigment modules, whereas others are expanded, such as the taste bud and cranial neuromast modules. We suggest that modularity can be viewed as being nested in a manner similar to Baupläne so that modules express unique sets of genes, cells, and processes. In terms of evolution, we conclude that natural selection can act on any of these hierarchical levels within modules or on all the sensory modules as a whole. We discuss interactions within and between modules with reference to the blind cavefish from both genetic and developmental perspectives. The cavefish represents an illuminating example of module interaction, uncoupling of modules, and module expansion.
Collapse
|
42
|
Abstract
Regressive evolution of morphological features is a common evolutionary event. However, the relationship between structural degeneration and loss of physiological function is often unclear because the ancestral and derived states of a character are usually not available for comparison. Here, we report studies on retinomotor rhythms during development of the blind cavefish Astyanax mexicanus, a single teleost species consisting of a sighted surface-dwelling form (surface fish) and several blind cave-dwelling (cavefish) forms. The eyed and blind forms of Astyanax diverged from a common sighted ancestor within the past million years. Despite the absence of functional eyes in cavefish adults, optic primordia are formed in embryos, but then gradually arrest in development, degenerate, and sink into the orbits. Although a layered retina is formed in cavefish embryos, it is deficient in photoreceptor cells, and in some cases the retinal pigment epithelium has lost its pigmentation. We show that the capacity to exhibit light-entrained retinomotor rhythms has been conserved in the degenerating embryonic eyes of two different Astyanax cavefish populations. The results indicate that loss of circadian retinal function does not precede and is therefore not required for eye degeneration in the blind cavefish.
Collapse
Affiliation(s)
- Luis Espinasa
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
43
|
Quigley IK, Manuel JL, Roberts RA, Nuckels RJ, Herrington ER, MacDonald EL, Parichy DM. Evolutionary diversification of pigment pattern in Danio fishes: differential fms dependence and stripe loss in D. albolineatus. Development 2004; 132:89-104. [PMID: 15563521 DOI: 10.1242/dev.01547] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The developmental bases for species differences in adult phenotypes remain largely unknown. An emerging system for studying such variation is the adult pigment pattern expressed by Danio fishes. These patterns result from several classes of pigment cells including black melanophores and yellow xanthophores, which differentiate during metamorphosis from latent stem cells of presumptive neural crest origin. In the zebrafish D. rerio, alternating light and dark horizontal stripes develop, in part, owing to interactions between melanophores and cells of the xanthophore lineage that depend on the fms receptor tyrosine kinase; zebrafish fms mutants lack xanthophores and have disrupted melanophore stripes. By contrast, the closely related species D. albolineatus exhibits a uniform pattern of melanophores, and previous interspecific complementation tests identified fms as a potential contributor to this difference between species. Here, we survey additional species and demonstrate marked variation in the fms-dependence of hybrid pigment patterns, suggesting interspecific variation in the fms pathway or fms requirements during pigment pattern formation. We next examine the cellular bases for the evolutionary loss of stripes in D. albolineatus and test the simplest model to explain this transformation, a loss of fms activity in D. albolineatus relative to D. rerio. Within D. albolineatus, we demonstrate increased rates of melanophore death and decreased melanophore migration, different from wild-type D. rerio but similar to fms mutant D. rerio. Yet, we also find persistent fms expression in D. albolineatus and enhanced xanthophore development compared with wild-type D. rerio, and in stark contrast to fms mutant D. rerio. These findings exclude the simplest model in which stripe loss in D. albolineatus results from a loss of fms-dependent xanthophores and their interactions with melanophores. Rather, our results suggest an alternative model in which evolutionary changes in pigment cell interactions themselves have contributed to stripe loss, and we test this model by manipulating melanophore numbers in interspecific hybrids. Together, these data suggest evolutionary changes in the fms pathway or fms requirements, and identify changes in cellular interactions as a likely mechanism of evolutionary change in Danio pigment patterns.
Collapse
Affiliation(s)
- Ian K Quigley
- Section of Integrative Biology, Section of Molecular, Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Quigley IK, Turner JM, Nuckels RJ, Manuel JL, Budi EH, MacDonald EL, Parichy DM. Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes. Development 2004; 131:6053-69. [PMID: 15537688 DOI: 10.1242/dev.01526] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Latent precursors or stem cells of neural crest origin are present in a variety of post-embryonic tissues. Although these cells are of biomedical interest for roles in human health and disease, their potential evolutionary significance has been underappreciated. As a first step towards elucidating the contributions of such cells to the evolution of vertebrate form, we investigated the relative roles of neural crest cells and post-embryonic latent precursors during the evolutionary diversification of adult pigment patterns in Danio fishes. These pigment patterns result from the numbers and arrangements of embryonic melanophores that are derived from embryonic neural crest cells, as well as from post-embryonic metamorphic melanophores that are derived from latent precursors of presumptive neural crest origin. In the zebrafish D. rerio, a pattern of melanophore stripes arises during the larval-to-adult transformation by the recruitment of metamorphic melanophores from latent precursors. Using a comparative approach in the context of new phylogenetic data, we show that adult pigment patterns in five additional species also arise from metamorphic melanophores, identifying this as an ancestral mode of adult pigment pattern development. By contrast, superficially similar adult stripes of D. nigrofasciatus (a sister species to D. rerio) arise by the reorganization of melanophores that differentiated at embryonic stages, with a diminished contribution from metamorphic melanophores. Genetic mosaic and molecular marker analyses reveal evolutionary changes that are extrinsic to D. nigrofasciatus melanophore lineages, including a dramatic reduction of metamorphic melanophore precursors. Finally, interspecific complementation tests identify a candidate genetic pathway for contributing to the evolutionary reduction in metamorphic melanophores and the increased contribution of early larval melanophores to D. nigrofasciatus adult pigment pattern development. These results demonstrate an important role for latent precursors in the diversification of pigment patterns across danios. More generally, differences in the deployment of post-embryonic neural crest-derived stem cells or their specified progeny may contribute substantially to the evolutionary diversification of adult form in vertebrates, particularly in species that undergo a metamorphosis.
Collapse
Affiliation(s)
- Ian K Quigley
- Section of Integrative Biology, Section of Molecular, Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|