1
|
Cherepanov G, Danilov I. Thecal and Epithecal Ossifications of the Turtle Shell: Ontogenetic And Phylogenetic Aspects. J Morphol 2024; 285:e21768. [PMID: 39223904 DOI: 10.1002/jmor.21768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The problem of the origin of the bony shell in turtles has a two-century history and still has not lost its relevance. First, this concerns the issues of the homology, the sources of formation and the ratio of bones of different nature, that is, thecal and epithecal, in particular. This article analyzes various views on the nature of the shell elements, and proposes their typification, based on modern data on developmental biology. It is proposed that the defining characteristic of the types of shell ossifications is not the level of their anlage in the dermis (thecality or epithecality), but, first of all, the primary sources of their formation: (1) neural crest (nuchal and plastral plates); (2) vertebral and rib periosteum (neural and costal plates); and (3) dermal mesenchyme (peripheral, suprapygal and pygal plates, as well as epithecal elements). In addition, there is complete correspondence between these types of ossifications and the sequence of their appearance in the turtle ontogenesis. The data show fundamental coincidence of the modifications of the ontogenetic development and evolutionary formation of the shell ossifications and are in agreement with a stepwise model for the origin of the turtle body plan. Particular attention is paid to the origin of the epithecal elements of the turtle shell, which correspond to the additional or supernumerary ossifications and seem to have wider distribution among turtles, than previously thought.
Collapse
Affiliation(s)
- Gennady Cherepanov
- Department of Vertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Igor Danilov
- Laboratory of Herpetology, Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
2
|
Schneider RF, Gunter HM, Salewski I, Woltering JM, Meyer A. Growth dynamics and molecular bases of evolutionary novel jaw extensions in halfbeaks and needlefishes (Beloniformes). Mol Ecol 2023; 32:5798-5811. [PMID: 37750351 DOI: 10.1111/mec.17143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
Evolutionary novelties-derived traits without clear homology found in the ancestors of a lineage-may promote ecological specialization and facilitate adaptive radiations. Examples for such novelties include the wings of bats, pharyngeal jaws of cichlids and flowers of angiosperms. Belonoid fishes (flying fishes, halfbeaks and needlefishes) feature an astonishing diversity of extremely elongated jaw phenotypes with undetermined evolutionary origins. We investigate the development of elongated jaws in a halfbeak (Dermogenys pusilla) and a needlefish (Xenentodon cancila) using morphometrics, transcriptomics and in situ hybridization. We confirm that these fishes' elongated jaws are composed of distinct base and novel 'extension' portions. These extensions are morphologically unique to belonoids, and we describe the growth dynamics of both bases and extensions throughout early development in both studied species. From transcriptomic profiling, we deduce that jaw extension outgrowth is guided by populations of multipotent cells originating from the anterior tip of the dentary. These cells are shielded from differentiation, but proliferate and migrate anteriorly during the extension's allometric growth phase. Cells left behind at the tip leave the shielded zone and undergo differentiation into osteoblast-like cells, which deposit extracellular matrix with both bone and cartilage characteristics that mineralizes and thereby provides rigidity. Such bone has characteristics akin to histological observations on the elongated 'kype' process on lower jaws of male salmon, which may hint at common conserved regulatory underpinnings. Future studies will evaluate the molecular pathways that govern the anterior migration and proliferation of these multipotent cells underlying the belonoids' evolutionary novel jaw extensions.
Collapse
Affiliation(s)
- Ralf F Schneider
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Marine Ecology, GEOMAR, Kiel, Germany
| | - Helen M Gunter
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Inken Salewski
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Joost M Woltering
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Gene Regulation during Carapacial Ridge Development of Mauremys reevesii: The Development of Carapacial Ridge, Ribs and Scutes. Genes (Basel) 2022; 13:genes13091676. [PMID: 36140843 PMCID: PMC9498798 DOI: 10.3390/genes13091676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The unique topological structure of a turtle shell, including the special ribs-scapula relationship, is an evolutionarily novelty of amniotes. The carapacial ridge is a key embryonic tissue for inducing turtle carapace morphologenesis. However, the gene expression profiles and molecular regulatory mechanisms that occur during carapacial ridge development, including the regulation mechanism of rib axis arrest, the development mechanism of the carapacial ridge, and the differentiation between soft-shell turtles and hard-shell turtles, are not fully understood. In this study, we obtained genome-wide gene expression profiles during the carapacial ridge development of Mauremys reevesii using RNA-sequencing by using carapacial ridge tissues from stage 14, 15 and 16 turtle embryos. In addition, a differentially expressed genes (DEGs) analysis and a gene set enrichment analysis (GSEA) of three comparison groups were performed. Furthermore, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to analyze the pathway enrichment of the differentially expressed genes of the three comparative groups. The result displayed that the Wnt signaling pathway was substantially enriched in the CrTK14 vs. the CrTK15 comparison group, while the Hedgehog signaling pathway was significantly enriched in the CrTK15 vs. the CrTK16 group. Moreover, the regulatory network of the Wnt signaling pathway showed that Wnt signaling pathways might interact with Fgfs, Bmps, and Shh to form a regulatory network to regulate the carapacial ridge development. Next, WGCNA was used to cluster and analyze the expression genes during the carapacial ridge development of M. reevesii and P. sinensis. Further, a KEGG functional enrichment analysis of the carapacial ridge correlation gene modules was performed. Interesting, these results indicated that the Wnt signaling pathway and the MAPK signaling pathway were significantly enriched in the gene modules that were highly correlated with the stage 14 and stage 15 carapacial ridge samples of the two species. The Hedgehog signaling pathway was significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of M. reevesii, however, the PI3K-Akt signaling and the TGF-β signaling pathways were significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of P. sinensis. Furthermore, we found that those modules that were strongly correlated with the stage 14 carapacial ridge samples of M. reevesii and P. sinensis contained Wnts and Lef1. While the navajo white 3 module which was strongly correlated with the stage 16 carapacial ridge samples of M. reevesii contained Shh and Ptchs. The dark green module strongly correlated with the stage 16 carapacial ridge samples of P. sinensis which contained Col1a1, Col1a2, and Itga8. Consequently, this study systematically revealed the signaling pathways and genes that regulate the carapacial ridge development of M. reevesii and P. sinensis, which provides new insights for revealing the molecular mechanism that is underlying the turtle's body structure.
Collapse
|
4
|
Global Analysis of Transcriptome and Translatome Revealed That Coordinated WNT and FGF Regulate the Carapacial Ridge Development of Chinese Soft-Shell Turtle. Int J Mol Sci 2021; 22:ijms222212441. [PMID: 34830331 PMCID: PMC8621500 DOI: 10.3390/ijms222212441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
The turtle carapace is composed of severely deformed fused dorsal vertebrae, ribs, and bone plates. In particular, the lateral growth in the superficial layer of turtle ribs in the dorsal trunk causes an encapsulation of the scapula and pelvis. The recent study suggested that the carapacial ridge (CR) is a new model of epithelial–mesenchymal transition which is essential for the arrangement of the ribs. Therefore, it is necessary to explore the regulatory mechanism of carapacial ridge development to analyze the formation of the turtle shell. However, the current understanding of the regulatory network underlying turtle carapacial ridge development is poor due to the lack of both systematic gene screening at different carapacial ridge development stages and gene function verification studies. In this study, we obtained genome-wide gene transcription and gene translation profiles using RNA sequencing and ribosome nascent-chain complex mRNA sequencing from carapacial ridge tissues of Chinese soft-shell turtle at different development stages. A correlation analysis of the transcriptome and translatome revealed that there were 129, 670, and 135 codifferentially expressed genes, including homodirection and opposite-direction differentially expressed genes, among three comparison groups, respectively. The pathway enrichment analysis of codifferentially expressed genes from the Kyoto Encyclopedia of Genes and Genomes showed dynamic changes in signaling pathways involved in carapacial ridge development. Especially, the results revealed that the Wnt signaling pathway and MAPK signaling pathway may play important roles in turtle carapacial ridge development. In addition, Wnt and Fgf were expressed during the carapacial ridge development. Furthermore, we discovered that Wnt5a regulated carapacial ridge development through the Wnt5a/JNK pathway. Therefore, our studies uncover that the morphogenesis of the turtle carapace might function through the co-operation between conserved WNT and FGF signaling pathways. Consequently, our findings revealed the dynamic signaling pathways acting on the carapacial ridge development of Chinese soft-shell turtle and provided new insights into uncover the molecular mechanism underlying turtle shell morphogenesis.
Collapse
|
5
|
Lyson TR, Bever GS. Origin and Evolution of the Turtle Body Plan. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of turtles and their uniquely shelled body plan is one of the longest standing problems in vertebrate biology. The unfulfilled need for a hypothesis that both explains the derived nature of turtle anatomy and resolves their unclear phylogenetic position among reptiles largely reflects the absence of a transitional fossil record. Recent discoveries have dramatically improved this situation, providing an integrated, time-calibrated model of the morphological, developmental, and ecological transformations responsible for the modern turtle body plan. This evolutionary trajectory was initiated in the Permian (>260 million years ago) when a turtle ancestor with a diapsid skull evolved a novel mechanism for lung ventilation. This key innovation permitted the torso to become apomorphically stiff, most likely as an adaption for digging and a fossorial ecology. The construction of the modern turtle body plan then proceeded over the next 100 million years following a largely stepwise model of osteological innovation.
Collapse
Affiliation(s)
- Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
| | - Gabriel S. Bever
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
6
|
Cordeiro IR, Yu R, Tanaka M. Regulation of the limb shape during the development of the Chinese softshell turtles. Evol Dev 2020; 22:451-462. [PMID: 32906209 PMCID: PMC7757393 DOI: 10.1111/ede.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Interdigital cell death is an important mechanism employed by amniotes to shape their limbs; inhibiting this process leads to the formation of webbed fingers, as seen in bats and ducks. The Chinese softshell turtle Pelodiscus sinensis (Reptilia: Testudines: Trionychidae) has a distinctive limb morphology: the anterior side of the limbs has partially webbed fingers with claw‐like protrusions, while the posterior fingers are completely enclosed in webbings. Here, P. sinensis embryos were investigated to gain insights on the evolution of limb‐shaping mechanisms in amniotes. We found cell death and cell senescence in their interdigital webbings. Spatial or temporal modulation of these processes were correlated with the appearance of indentations in the webbings, but not a complete regression of this tissue. No differences in interdigital cell proliferation were found. In subsequent stages, differential growth of the finger cartilages led to a major difference in limb shape. While no asymmetry in bone morphogenetic protein signaling was evident during interdigital cell death stages, some components of this pathway were expressed exclusively in the clawed digit tips, which also had earlier ossification. In addition, a delay and/or truncation in the chondrogenesis of the posterior digits was found in comparison with the anterior digits of P. sinensis, and also when compared with the previously published pattern of digit skeletogenesis of turtles without posterior webbings. In conclusion, modulation of cell death, as well as a heterochrony in digit chondrogenesis, may contribute to the formation of the unique limbs of the Chinese softshell turtles. Cell death and senescence shape the interdigital webbings of Pelodiscus sinensis. Delayed chondrogenesis/ossification and truncated tips are found in posterior digits, as well as differential expression of bone morphogenetic proteins and Msh homeobox 1 transcription factors.
Collapse
Affiliation(s)
- Ingrid R Cordeiro
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Reiko Yu
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
7
|
Cordero GA. Transcriptomic similarities and differences between the limb bud AER and unique carapacial ridge of turtle embryos. Evol Dev 2020; 22:370-383. [PMID: 32862496 DOI: 10.1111/ede.12351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 08/02/2020] [Indexed: 01/04/2023]
Abstract
Evolutionary innovation may arise via major departures from an ancestral condition. Turtle shell morphogenesis depends on a unique structure known as the carapacial ridge (CR). This lateral tissue protrusion in turtle embryos exhibits similar properties as the apical ectodermal ridge (AER)-a well-known molecular signaling center involved in limb development. Still, how the CR influences shell morphogenesis is not entirely clear. The present study aimed to describe the CR transcriptome shortly before ribs were halted within its mesenchyme, as required for shell development. Analyses exposed that the mesenchymal marker VIM was one of the most highly co-expressed genes and numerous appendage formation genes were situated within the core of CR and AER co-expression networks. However, there were tissue-specific differences in the activity of these genes. For instance, WNT5A was most frequently assigned to appendage-related annotations of the CR network core, but not in the AER. Several homeobox transcription factors known to regulate limb bud patterning exhibited their highest expression levels in the AER, but were underexpressed in the CR. The results of this study corroborate that novel body plans often originate via alterations of pre-existing genetic networks. Altogether, this exploratory study enhances the groundwork for future experiments on the molecular underpinnings of turtle shell development and evolution.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
Smith Paredes D, Lord A, Meyer D, Bhullar BS. A developmental staging system and musculoskeletal development sequence of the common musk turtle (
Sternotherus odoratus
). Dev Dyn 2020; 250:111-127. [DOI: 10.1002/dvdy.210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Daniel Smith Paredes
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Arianna Lord
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Dalton Meyer
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Bhart‐Anjan S. Bhullar
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| |
Collapse
|
9
|
Vonica A, Bhat N, Phan K, Guo J, Iancu L, Weber JA, Karger A, Cain JW, Wang ECE, DeStefano GM, O'Donnell-Luria AH, Christiano AM, Riley B, Butler SJ, Luria V. Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Dev Biol 2020; 464:71-87. [PMID: 32320685 PMCID: PMC7307705 DOI: 10.1016/j.ydbio.2020.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
Abstract
Animal development and homeostasis depend on precise temporal and spatial intercellular signaling. Components shared between signaling pathways, generally thought to decrease specificity, paradoxically can also provide a solution to pathway coordination. Here we show that the Bone Morphogenetic Protein (BMP) and Wnt signaling pathways share Apcdd1 as a common inhibitor and that Apcdd1 is a taxon-restricted gene with novel domains and signaling functions. Previously, we showed that Apcdd1 inhibits Wnt signaling (Shimomura et al., 2010), here we find that Apcdd1 potently inhibits BMP signaling in body axis formation and neural differentiation in chicken, frog, zebrafish. Furthermore, we find that Apcdd1 has an evolutionarily novel protein domain. Our results from experiments and modeling suggest that Apcdd1 may coordinate the outputs of two signaling pathways that are central to animal development and human disease.
Collapse
Affiliation(s)
- Alin Vonica
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Biology, The Nazareth College, Rochester, NY, 14618, USA
| | - Neha Bhat
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Keith Phan
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Jinbai Guo
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA
| | - Lăcrimioara Iancu
- Institut für Algebra und Zahlentheorie, Universität Stuttgart, D-70569, Stuttgart, Germany; Institute of Mathematics, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| | - Jessica A Weber
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, 02115, USA
| | - John W Cain
- Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA
| | - Etienne C E Wang
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Gina M DeStefano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Anne H O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Angela M Christiano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Bruce Riley
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA.
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA.
| | - Victor Luria
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat Ecol Evol 2018; 2:1761-1771. [PMID: 30297745 DOI: 10.1038/s41559-018-0673-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Modern cartilaginous fishes are divided into elasmobranchs (sharks, rays and skates) and chimaeras, and the lack of established whole-genome sequences for the former has prevented our understanding of early vertebrate evolution and the unique phenotypes of elasmobranchs. Here we present de novo whole-genome assemblies of brownbanded bamboo shark and cloudy catshark and an improved assembly of the whale shark genome. These relatively large genomes (3.8-6.7 Gbp) contain sparse distributions of coding genes and regulatory elements and exhibit reduced molecular evolutionary rates. Our thorough genome annotation revealed Hox C genes previously hypothesized to have been lost, as well as distinct gene repertories of opsins and olfactory receptors that would be associated with adaptation to unique underwater niches. We also show the early establishment of the genetic machinery governing mammalian homoeostasis and reproduction at the jawed vertebrate ancestor. This study, supported by genomic, transcriptomic and epigenomic resources, provides a foundation for the comprehensive, molecular exploration of phenotypes unique to sharks and insights into the evolutionary origins of vertebrates.
Collapse
|
11
|
Böhmer C, Werneburg I. Deep time perspective on turtle neck evolution: chasing the Hox code by vertebral morphology. Sci Rep 2017; 7:8939. [PMID: 28827543 PMCID: PMC5566328 DOI: 10.1038/s41598-017-09133-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/21/2017] [Indexed: 12/24/2022] Open
Abstract
The unparalleled ability of turtle neck retraction is possible in three different modes, which characterize stem turtles, living side-necked (Pleurodira), and hidden-necked (Cryptodira) turtles, respectively. Despite the conservatism in vertebral count among turtles, there is significant functional and morphological regionalization in the cervical vertebral column. Since Hox genes play a fundamental role in determining the differentiation in vertebra morphology and based on our reconstruction of evolutionary genetics in deep time, we hypothesize genetic differences among the turtle groups and between turtles and other land vertebrates. We correlated anterior Hox gene expression and the quantifiable shape of the vertebrae to investigate the morphological modularity in the neck across living and extinct turtles. This permitted the reconstruction of the hypothetical ancestral Hox code pattern of the whole turtle clade. The scenario of the evolution of axial patterning in turtles indicates shifts in the spatial expression of HoxA-5 in relation to the reduction of cervical ribs in modern turtles and of HoxB-5 linked with a lower morphological differentiation between the anterior cervical vertebrae observed in cryptodirans. By comparison with the mammalian pattern, we illustrate how the fixed count of eight cervical vertebrae in turtles resulted from the emergence of the unique turtle shell.
Collapse
Affiliation(s)
- Christine Böhmer
- UMR 7179 CNRS/MNHN, Muséum National d'Histoire Naturelle, 57 rue Cuvier CP-55, 75005, Paris, France.
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Palaeoenvironment at Eberhard Karls Universität, Sigwartstr, 10, 72076, Tübingen, Germany.
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Hölderlinstraße 12, D-72074, Tübingen, Germany.
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115, Berlin, Germany.
| |
Collapse
|
12
|
Moustakas-Verho JE, Cebra-Thomas J, Gilbert SF. Patterning of the turtle shell. Curr Opin Genet Dev 2017; 45:124-131. [DOI: 10.1016/j.gde.2017.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022]
|
13
|
Pham T, Day SM, Glassford WJ, Williams TM, Rebeiz M. The evolutionary origination of a novel expression pattern through an extreme heterochronic shift. Evol Dev 2017; 19:43-55. [PMID: 28116844 DOI: 10.1111/ede.12215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The evolutionary origins of morphological structures are thought to often depend upon the redeployment of old genes into new developmental settings. Although many examples of cis-regulatory divergence have shown how pre-existing patterns of gene expression have been altered, only a small number of case studies have traced the origins of cis-regulatory elements that drive new expression domains. Here, we elucidate the evolutionary history of a novel expression pattern of the yellow gene within the Zaprionus genus of fruit flies. We observed a unique pattern of yellow transcript accumulation in the wing disc during the third larval instar, a stage that precedes its typical expression pattern associated with cuticular melanization by about a week. The region of the Zaprionus wing disc that expresses yellow subsequently develops into a portion of the thorax, a tissue for which yellow expression has been reported for several fruit fly species. Tests of GFP reporter transgenes containing the Zaprionus yellow regulatory region revealed that the wing disc pattern arose by changes in the cis-regulatory region of yellow. Moreover, the wing disc enhancer activity of yellow depends upon a short conserved sequence with ancestral thoracic functions, suggesting that the pupal thorax regulatory sequence was genetically reprogrammed to drive expression that commences much earlier during development. These results highlight how novel domains of gene expression may arise by extreme shifts in timing during the origins of novel traits.
Collapse
Affiliation(s)
- Thomas Pham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie M Day
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Glassford
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Morandin C, Tin MMY, Abril S, Gómez C, Pontieri L, Schiøtt M, Sundström L, Tsuji K, Pedersen JS, Helanterä H, Mikheyev AS. Comparative transcriptomics reveals the conserved building blocks involved in parallel evolution of diverse phenotypic traits in ants. Genome Biol 2016; 17:43. [PMID: 26951146 PMCID: PMC4780134 DOI: 10.1186/s13059-016-0902-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/12/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Reproductive division of labor in eusocial insects is a striking example of a shared genetic background giving rise to alternative phenotypes, namely queen and worker castes. Queen and worker phenotypes play major roles in the evolution of eusocial insects. Their behavior, morphology and physiology underpin many ecologically relevant colony-level traits, which evolved in parallel in multiple species. RESULTS Using queen and worker transcriptomic data from 16 ant species we tested the hypothesis that conserved sets of genes are involved in ant reproductive division of labor. We further hypothesized that such sets of genes should also be involved in the parallel evolution of other key traits. We applied weighted gene co-expression network analysis, which clusters co-expressed genes into modules, whose expression levels can be summarized by their 'eigengenes'. Eigengenes of most modules were correlated with phenotypic differentiation between queens and workers. Furthermore, eigengenes of some modules were correlated with repeated evolution of key phenotypes such as complete worker sterility, the number of queens per colony, and even invasiveness. Finally, connectivity and expression levels of genes within the co-expressed network were strongly associated with the strength of selection. Although caste-associated sets of genes evolve faster than non-caste-associated, we found no evidence for queen- or worker-associated co-expressed genes evolving faster than one another. CONCLUSIONS These results identify conserved functionally important genomic units that likely serve as building blocks of phenotypic innovation, and allow the remarkable breadth of parallel evolution seen in ants, and possibly other eusocial insects as well.
Collapse
Affiliation(s)
- Claire Morandin
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland. .,Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900, Hanko, Finland.
| | - Mandy M Y Tin
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Sílvia Abril
- Department of Environmental Sciences, University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Crisanto Gómez
- Department of Environmental Sciences, University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Luigi Pontieri
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Liselotte Sundström
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900, Hanko, Finland
| | - Kazuki Tsuji
- Department of Subtropical Agro-Environmental Sciences, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Jes Søe Pedersen
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900, Hanko, Finland
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan. .,Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia.
| |
Collapse
|
15
|
Vedanayagam JP, Garrigan D. The effects of natural selection across molecular pathways in Drosophila melanogaster. BMC Evol Biol 2015; 15:203. [PMID: 26391223 PMCID: PMC4578789 DOI: 10.1186/s12862-015-0472-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/30/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Whole-genome RNA interference post-transcriptional silencing (RNAi) is a widely used method for studying the phenotypic effects of knocking down individual genes. In this study, we use a population genomic approach to characterize the rate of evolution for proteins affecting 26 RNAi knockdown phenotypes in Drosophila melanogaster. RESULTS We find that only two of the 26 RNAi knockdown phenotypes are enriched for rapidly evolving proteins: innate immunity and regulation of Hedgehog signaling. Among all genes associated with an RNAi knockdown phenotype, we note examples in which the adaptively evolving proteins play a well-defined role in a given molecular pathway. However, most adaptively evolving proteins are found to perform more general cellular functions. When RNAi phenotypes are grouped into categories according to cellular function, we find that genes involved in the greatest number of phenotypic categories are also significantly more likely to have a history of rapid protein evolution. CONCLUSIONS We show that genes that have been demonstrated to have a measurable effect on multiple molecular phenotypes show higher rates of protein evolution than genes having an effect on a single category of phenotype. Defining pleiotropy in this way yields very different results than previous studies that define pleiotropy by the number of physical interactions, which show highly connected proteins tend to evolve more slowly than lowly connected proteins. We suggest that a high degree of pleiotropy may increase the likelihood of compensatory substitution, consistent with modern theoretical work on adaptation.
Collapse
Affiliation(s)
| | - Daniel Garrigan
- Department of Biology, University of Rochester, Rochester, New York, 14627, USA.
| |
Collapse
|
16
|
Glassford WJ, Johnson WC, Dall NR, Smith SJ, Liu Y, Boll W, Noll M, Rebeiz M. Co-option of an Ancestral Hox-Regulated Network Underlies a Recently Evolved Morphological Novelty. Dev Cell 2015; 34:520-31. [PMID: 26343453 DOI: 10.1016/j.devcel.2015.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 12/29/2022]
Abstract
The evolutionary origins of complex morphological structures such as the vertebrate eye or insect wing remain one of the greatest mysteries of biology. Recent comparative studies of gene expression imply that new structures are not built from scratch, but rather form by co-opting preexisting gene networks. A key prediction of this model is that upstream factors within the network will activate their preexisting targets (i.e., enhancers) to form novel anatomies. Here, we show how a recently derived morphological novelty present in the genitalia of D. melanogaster employs an ancestral Hox-regulated network deployed in the embryo to generate the larval posterior spiracle. We demonstrate how transcriptional enhancers and constituent transcription factor binding sites are used in both ancestral and novel contexts. These results illustrate network co-option at the level of individual connections between regulatory genes and highlight how morphological novelty may originate through the co-option of networks controlling seemingly unrelated structures.
Collapse
Affiliation(s)
- William J Glassford
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Winslow C Johnson
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Natalie R Dall
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sarah Jacquelyn Smith
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Yang Liu
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Werner Boll
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Markus Noll
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
17
|
Rice R, Riccio P, Gilbert SF, Cebra-Thomas J. Emerging from the rib: resolving the turtle controversies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:208-20. [PMID: 25675951 DOI: 10.1002/jez.b.22600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022]
Abstract
Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes.
Collapse
Affiliation(s)
- Ritva Rice
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
18
|
Nagashima H, Shibata M, Taniguchi M, Ueno S, Kamezaki N, Sato N. Comparative study of the shell development of hard- and soft-shelled turtles. J Anat 2014; 225:60-70. [PMID: 24754673 PMCID: PMC4089346 DOI: 10.1111/joa.12189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/23/2022] Open
Abstract
The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| | - Masahiro Shibata
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| | - Mari Taniguchi
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Shintaro Ueno
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Naoki Kamezaki
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| |
Collapse
|
19
|
Feiner N, Meyer A, Kuraku S. Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene. Genome Biol Evol 2014; 6:1635-51. [PMID: 24951566 PMCID: PMC4122933 DOI: 10.1093/gbe/evu135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The members of the paired box (Pax) family regulate key developmental pathways in many metazoans as tissue-specific transcription factors. Vertebrate genomes typically possess nine Pax genes (Pax1-9), which are derived from four proto-Pax genes in the vertebrate ancestor that were later expanded through the so-called two-round (2R) whole-genome duplication. A recent study proposed that pax6a genes of a subset of teleost fishes (namely, acanthopterygians) are remnants of a paralog generated in the 2R genome duplication, to be renamed pax6.3, and reported one more group of vertebrate Pax genes (Pax6.2), most closely related to the Pax4/6 class. We propose to designate this new member Pax10 instead and reconstruct the evolutionary history of the Pax4/6/10 class with solid phylogenetic evidence. Our synteny analysis showed that Pax4, -6, and -10 originated in the 2R genome duplications early in vertebrate evolution. The phylogenetic analyses of relationships between teleost pax6a and other Pax4, -6, and -10 genes, however, do not support the proposed hypothesis of an ancient origin of the acanthopterygian pax6a genes in the 2R genome duplication. Instead, we confirmed the traditional scenario that the acanthopterygian pax6a is derived from the more recent teleost-specific genome duplication. Notably, Pax6 is present in all vertebrates surveyed to date, whereas Pax4 and -10 were lost multiple times in independent vertebrate lineages, likely because of their restricted expression patterns: Among Pax6-positive domains, Pax10 has retained expression in the adult retina alone, which we documented through in situ hybridization and quantitative reverse transcription polymerase chain reaction experiments on zebrafish, Xenopus, and anole lizard.
Collapse
Affiliation(s)
- Nathalie Feiner
- Department of Biology, University of Konstanz, GermanyInternational Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, GermanyPresent address: Department of Zoology, University of Oxford, United Kingdom
| | - Axel Meyer
- Department of Biology, University of Konstanz, GermanyInternational Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Germany
| | - Shigehiro Kuraku
- Department of Biology, University of Konstanz, GermanyInternational Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, GermanyPresent address: Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo, Japan
| |
Collapse
|
20
|
Hirasawa T, Pascual-Anaya J, Kamezaki N, Taniguchi M, Mine K, Kuratani S. The evolutionary origin of the turtle shell and its dependence on the axial arrest of the embryonic rib cage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:194-207. [PMID: 24898540 DOI: 10.1002/jez.b.22579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022]
Abstract
Turtles are characterized by their possession of a shell with dorsal and ventral moieties: the carapace and the plastron, respectively. In this review, we try to provide answers to the question of the evolutionary origin of the carapace, by revising morphological, developmental, and paleontological comparative analyses. The turtle carapace is formed through modification of the thoracic ribs and vertebrae, which undergo extensive ossification to form a solid bony structure. Except for peripheral dermal elements, there are no signs of exoskeletal components ontogenetically added to the costal and neural bones, and thus the carapace is predominantly of endoskeletal nature. Due to the axial arrest of turtle rib growth, the axial part of the embryo expands laterally and the shoulder girdle becomes encapsulated in the rib cage, together with the inward folding of the lateral body wall in the late phase of embryogenesis. Along the line of this folding develops a ridge called the carapacial ridge (CR), a turtle-specific embryonic structure. The CR functions in the marginal growth of the carapacial primordium, in which Wnt signaling pathway might play a crucial role. Both paleontological and genomic evidence suggest that the axial arrest is the first step toward acquisition of the turtle body plan, which is estimated to have taken place after the divergence of a clade including turtles from archosaurs. The developmental relationship between the CR and the axial arrest remains a central issue to be solved in future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Li YI, Kong L, Ponting CP, Haerty W. Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles. Genome Biol Evol 2013; 5:923-33. [PMID: 23576313 PMCID: PMC3673632 DOI: 10.1093/gbe/evt060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles.
Collapse
Affiliation(s)
- Yang I Li
- Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
22
|
Retinoic acid is involved in the metamorphosis of the anal fin into an intromittent organ, the gonopodium, in the green swordtail (Xiphophorus hellerii). PLoS One 2013; 8:e77580. [PMID: 24204880 PMCID: PMC3808415 DOI: 10.1371/journal.pone.0077580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023] Open
Abstract
In poeciliid fish the male anal fin has been transformed into a gonopodium, an intromittent organ required for internal fertilization. Elevated testosterone levels induce metamorphosis of a subset of anal fin rays to grow and form the specialized terminal structures of the gonopodium. The molecular mechanisms underlying these processes are largely unknown. Here, we investigated whether retinoic acid (RA) signaling is involved in gonopodium development in the swordtail Xiphophorus hellerii. We showed that aldh1a2, a RA synthesizing enzyme, and the RA receptors, rar-ga and rar-gb, are expressed in anal fins during metamorphosis. aldh1a2 expression is regulated by testosterone in a concentration-dependent manner and is up-regulated in both hormone-induced and naturally developing gonopodia. Androgen receptor (ar), a putative regulator of gonopodial development, is co-expressed with aldh1a2 and the RA receptors in gonopodial rays. Importantly, experimental increase of RA signaling promoted growth of the gonopodium and increased the number of new segments. Based on gene expression analyses and pharmacological manipulation of gonopodium development, we show that the RA signaling pathway is activated in response to androgen signaling and promotes fin ray growth and development during the metamorphosis of the anal fin into the gonopodium.
Collapse
|
23
|
Kaplinsky NJ, Gilbert SF, Cebra-Thomas J, Lilleväli K, Saare M, Chang EY, Edelman HE, Frick MA, Guan Y, Hammond RM, Hampilos NH, Opoku DSB, Sariahmed K, Sherman EA, Watson R. The Embryonic Transcriptome of the Red-Eared Slider Turtle (Trachemys scripta). PLoS One 2013; 8:e66357. [PMID: 23840449 PMCID: PMC3686863 DOI: 10.1371/journal.pone.0066357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/03/2013] [Indexed: 11/28/2022] Open
Abstract
The bony shell of the turtle is an evolutionary novelty not found in any other group of animals, however, research into its formation has suggested that it has evolved through modification of conserved developmental mechanisms. Although these mechanisms have been extensively characterized in model organisms, the tools for characterizing them in non-model organisms such as turtles have been limited by a lack of genomic resources. We have used a next generation sequencing approach to generate and assemble a transcriptome from stage 14 and 17 Trachemys scripta embryos, stages during which important events in shell development are known to take place. The transcriptome consists of 231,876 sequences with an N50 of 1,166 bp. GO terms and EC codes were assigned to the 61,643 unique predicted proteins identified in the transcriptome sequences. All major GO categories and metabolic pathways are represented in the transcriptome. Transcriptome sequences were used to amplify several cDNA fragments designed for use as RNA in situ probes. One of these, BMP5, was hybridized to a T. scripta embryo and exhibits both conserved and novel expression patterns. The transcriptome sequences should be of broad use for understanding the evolution and development of the turtle shell and for annotating any future T. scripta genome sequences.
Collapse
Affiliation(s)
- Nicholas J. Kaplinsky
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Judith Cebra-Thomas
- Department of Biology, Millersville University, Millersville, Pennsylvania, United States of America
| | - Kersti Lilleväli
- Department of Developmental biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Merly Saare
- Department of Developmental biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Eric Y. Chang
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Hannah E. Edelman
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Melissa A. Frick
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Yin Guan
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Rebecca M. Hammond
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Nicholas H. Hampilos
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - David S. B. Opoku
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Karim Sariahmed
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Eric A. Sherman
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Ray Watson
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| |
Collapse
|
24
|
The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 2013; 45:701-706. [PMID: 23624526 PMCID: PMC4000948 DOI: 10.1038/ng.2615] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 03/27/2013] [Indexed: 12/23/2022]
Abstract
The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.
Collapse
|
25
|
Chen Q, Pugno NM. Bio-mimetic mechanisms of natural hierarchical materials: A review. J Mech Behav Biomed Mater 2013; 19:3-33. [DOI: 10.1016/j.jmbbm.2012.10.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 10/22/2012] [Accepted: 10/27/2012] [Indexed: 01/06/2023]
|
26
|
Angielczyk KD, Feldman CR. Are diminutive turtles miniaturized? The ontogeny of plastron shape in emydine turtles. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kenneth D. Angielczyk
- Department of Geology; Field Museum of Natural History; 1400 South Lake Shore Drive; Chicago; IL; 60605; USA
| | - Chris R. Feldman
- Department of Biology; University of Nevada, Reno; 1664 North Virginia Street; Reno; NV; 89557; USA
| |
Collapse
|
27
|
Origin of the Turtle Body Plan: The Folding Theory to Illustrate Turtle-Specific Developmental Repatterning. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2013. [DOI: 10.1007/978-94-007-4309-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
28
|
Rieppel O. The Evolution of the Turtle Shell. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2013. [DOI: 10.1007/978-94-007-4309-0_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Feiner N, Murakami Y, Breithut L, Mazan S, Meyer A, Kuraku S. Saltatory evolution of the ectodermal neural cortex gene family at the vertebrate origin. Genome Biol Evol 2013; 5:1485-502. [PMID: 23843192 PMCID: PMC3762194 DOI: 10.1093/gbe/evt104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
Abstract
The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates.
Collapse
Affiliation(s)
- Nathalie Feiner
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Germany
| | - Yasunori Murakami
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan
| | - Lisa Breithut
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
| | - Sylvie Mazan
- Développement et Evolution des Vertébrés, UMR7150 CNRS and Université Paris 6, Station Biologique, Roscoff, France
| | - Axel Meyer
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Germany
| | - Shigehiro Kuraku
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Germany
- Present address: Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| |
Collapse
|
30
|
|
31
|
Lyson TR, Joyce WG. Evolution of the turtle bauplan: the topological relationship of the scapula relative to the ribcage. Biol Lett 2012; 8:1028-31. [PMID: 22809725 PMCID: PMC3497105 DOI: 10.1098/rsbl.2012.0462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/21/2012] [Indexed: 11/12/2022] Open
Abstract
The turtle shell and the relationship of the shoulder girdle inside or 'deep' to the ribcage have puzzled neontologists and developmental biologists for more than a century. Recent developmental and fossil data indicate that the shoulder girdle indeed lies inside the shell, but anterior to the ribcage. Developmental biologists compare this orientation to that found in the model organisms mice and chickens, whose scapula lies laterally on top of the ribcage. We analyse the topological relationship of the shoulder girdle relative to the ribcage within a broader phylogenetic context and determine that the condition found in turtles is also found in amphibians, monotreme mammals and lepidosaurs. A vertical scapula anterior to the thoracic ribcage is therefore inferred to be the basal amniote condition and indicates that the condition found in therian mammals and archosaurs (which includes both developmental model organisms: chickens and mice) is derived and not appropriate for studying the developmental origin of the turtle shell. Instead, among amniotes, either monotreme mammals or lepidosaurs should be used.
Collapse
Affiliation(s)
- Tyler R Lyson
- Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA.
| | | |
Collapse
|
32
|
Monteiro A. Gene regulatory networks reused to build novel traits: co-option of an eye-related gene regulatory network in eye-like organs and red wing patches on insect wings is suggested by optix expression. Bioessays 2012; 34:181-6. [PMID: 22223407 DOI: 10.1002/bies.201100160] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Co-option of the eye developmental gene regulatory network may have led to the appearance of novel functional traits on the wings of flies and butterflies. The first trait is a recently described wing organ in a species of extinct midge resembling the outer layers of the midge's own compound eye. The second trait is red pigment patches on Heliconius butterfly wings connected to the expression of an eye selector gene, optix. These examples, as well as others, are discussed regarding the type of empirical evidence and burden of proof that have been used to infer gene network co-option underlying the origin of novel traits. A conceptual framework describing increasing confidence in inference of network co-option is proposed. Novel research directions to facilitate inference of network co-option are also highlighted, especially in cases where the pre-existent and novel traits do not resemble each other.
Collapse
Affiliation(s)
- Antónia Monteiro
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
33
|
Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S. Body plan of turtles: an anatomical, developmental and evolutionary perspective. Anat Sci Int 2011; 87:1-13. [DOI: 10.1007/s12565-011-0121-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
34
|
Frazzetta TH. Flatfishes, Turtles, and Bolyerine Snakes: Evolution by Small Steps or Large, or Both? Evol Biol 2011. [DOI: 10.1007/s11692-011-9142-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Tzika AC, Helaers R, Schramm G, Milinkovitch MC. Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles. EvoDevo 2011; 2:19. [PMID: 21943375 PMCID: PMC3192992 DOI: 10.1186/2041-9139-2-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 09/26/2011] [Indexed: 12/05/2022] Open
Abstract
Background Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. Results Here, we use 454 technology to sequence the brain transcriptome of four divergent reptilian and one reference avian species: the Nile crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. Using an in-house pipeline for recursive similarity searches of >3,000,000 reads against multiple databases from 7 reference vertebrates, we compile a reptilian comparative transcriptomics dataset, with homology assignment for 20,000 to 31,000 transcripts per species and a cumulated non-redundant sequence length of 248.6 Mbases. Our approach identifies the majority (87%) of chicken brain transcripts and about 50% of de novo assembled reptilian transcripts. In addition to 57,502 microsatellite loci, we identify thousands of SNP and indel polymorphisms for population genetic and linkage analyses. We also build very large multiple alignments for Sauropsida and mammals (two million residues per species) and perform extensive phylogenetic analyses suggesting that turtles are not basal living reptiles but are rather associated with Archosaurians, hence, potentially answering a long-standing question in the phylogeny of Amniotes. Conclusions The reptilian transcriptome (freely available at http://www.reptilian-transcriptomes.org) should prove a useful new resource as reptiles are becoming important new models for comparative genomics, ecology, and evolutionary developmental genetics.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Dept, of Genetics & Evolution, University of Geneva, Sciences III, 30, Quai Ernest-Ansermet, 1211 Genève 4, Switzerland.
| | | | | | | |
Collapse
|
36
|
Kawashima-Ohya Y, Narita Y, Nagashima H, Usuda R, Kuratani S. Hepatocyte growth factor is crucial for development of the carapace in turtles. Evol Dev 2011; 13:260-8. [PMID: 21535464 PMCID: PMC3121961 DOI: 10.1111/j.1525-142x.2011.00474.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Turtles are characterized by their shell, composed of a dorsal carapace and a ventral plastron. The carapace first appears as the turtle-specific carapacial ridge (CR) on the lateral aspect of the embryonic flank. Accompanying the acquisition of the shell, unlike in other amniotes, hypaxial muscles in turtle embryos appear as thin threads of fibrous tissue. To understand carapacial evolution from the perspective of muscle development, we compared the development of the muscle plate, the anlage of hypaxial muscles, between the Chinese soft-shelled turtle, Pelodiscus sinensis, and chicken embryos. We found that the ventrolateral lip (VLL) of the thoracic dermomyotome of P. sinensis delaminates early and produces sparse muscle plate in the lateral body wall. Expression patterns of the regulatory genes for myotome differentiation, such as Myf5, myogenin, Pax3, and Pax7 have been conserved among amniotes, including turtles. However, in P. sinensis embryos, the gene hepatocyte growth factor (HGF), encoding a regulatory factor for delamination of the dermomyotomal VLL, was uniquely expressed in sclerotome and the lateral body wall at the interlimb level. Implantation of COS-7 cells expressing a HGF antagonist into the turtle embryo inhibited CR formation. We conclude that the de novo expression of HGF in the turtle mesoderm would have played an innovative role resulting in the acquisition of the turtle-specific body plan.
Collapse
Affiliation(s)
- Yoshie Kawashima-Ohya
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
37
|
Feiner N, Ericsson R, Meyer A, Kuraku S. Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:515-25. [PMID: 21815265 DOI: 10.1002/jez.b.21426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/10/2011] [Accepted: 06/18/2011] [Indexed: 01/08/2023]
Abstract
Bilaterian Hox genes play pivotal roles in the specification of positional identities along the anteroposterior axis. Particularly in vertebrates, their regulation is tightly coordinated by tandem arrays of genes [paralogy groups (PGs)] in four gene clusters (HoxA-D). Traditionally, the uninterrupted Hox cluster (Hox1-14) of the invertebrate chordate amphioxus was regarded as an archetype of the vertebrate Hox clusters. In contrast to Hox1-13 that are globally regulated by the "Hox code" and are often phylogenetically conserved, vertebrate Hox14 members were only recently revealed to be present in an African lungfish, a coelacanth, chondrichthyans and a lamprey, and decoupled from the Hox code. In this study we performed a PCR-based search of Hox14 members from diverse vertebrates, and identified one in the Australian lungfish, Neoceratodus forsteri. Based on a molecular phylogenetic analysis, this gene was designated NfHoxA14. Our real-time RT-PCR suggested its hindgut-associated expression, previously observed also in cloudy catshark HoxD14 and lamprey Hox14α. It is likely that this altered expression scheme was established before the Hox cluster quadruplication, probably at the base of extant vertebrates. To investigate the origin of vertebrate Hox14, by including this sarcopterygian Hox14 member, we performed focused phylogenetic analyses on its relationship with other vertebrate posterior Hox PGs (Hox9-13) as well as amphioxus posterior Hox genes. Our results confirmed the hypotheses previously proposed by other studies that vertebrate Hox14 does not have any amphioxus ortholog, and that none of 1-to-1 pairs of vertebrate and amphioxus posterior Hox genes, based on their relative location in the clusters, is orthologous.
Collapse
Affiliation(s)
- Nathalie Feiner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | |
Collapse
|
38
|
Gerlach J. Development of Distinct Morphotypes in Captive Seychelles–Aldabra Giant Tortoises. CHELONIAN CONSERVATION AND BIOLOGY 2011. [DOI: 10.2744/ccb-0828.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Kuratani S, Kuraku S, Nagashima H. Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 2011; 13:1-14. [DOI: 10.1111/j.1525-142x.2010.00451.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Ancestral and derived attributes of the dlx gene repertoire, cluster structure and expression patterns in an African cichlid fish. EvoDevo 2011; 2:1. [PMID: 21205289 PMCID: PMC3024246 DOI: 10.1186/2041-9139-2-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 01/04/2011] [Indexed: 01/03/2023] Open
Abstract
Background Cichlid fishes have undergone rapid, expansive evolutionary radiations that are manifested in the diversification of their trophic morphologies, tooth patterning and coloration. Understanding the molecular mechanisms that underlie the cichlids' unique patterns of evolution requires a thorough examination of genes that pattern the neural crest, from which these diverse phenotypes are derived. Among those genes, the homeobox-containing Dlx gene family is of particular interest since it is involved in the patterning of the brain, jaws and teeth. Results In this study, we characterized the dlx genes of an African cichlid fish, Astatotilapia burtoni, to provide a baseline to later allow cross-species comparison within Cichlidae. We identified seven dlx paralogs (dlx1a, -2a, -4a, -3b, -4b, -5a and -6a), whose orthologies were validated with molecular phylogenetic trees. The intergenic regions of three dlx gene clusters (dlx1a-2a, dlx3b-4b, and dlx5a-6a) were amplified with long PCR. Intensive cross-species comparison revealed a number of conserved non-coding elements (CNEs) that are shared with other percomorph fishes. This analysis highlighted additional lineage-specific gains/losses of CNEs in different teleost fish lineages and a novel CNE that had previously not been identified. Our gene expression analyses revealed overlapping but distinct expression of dlx orthologs in the developing brain and pharyngeal arches. Notably, four of the seven A. burtoni dlx genes, dlx2a, dlx3b, dlx4a and dlx5a, were expressed in the developing pharyngeal teeth. Conclusion This comparative study of the dlx genes of A. burtoni has deepened our knowledge of the diversity of the Dlx gene family, in terms of gene repertoire, expression patterns and non-coding elements. We have identified possible cichlid lineage-specific changes, including losses of a subset of dlx expression domains in the pharyngeal teeth, which will be the targets of future functional studies.
Collapse
|
41
|
Bonnet X, Delmas V, El-Mouden H, Slimani T, Sterijovski B, Kuchling G. Is sexual body shape dimorphism consistent in aquatic and terrestrial chelonians? ZOOLOGY 2010; 113:213-20. [PMID: 20832271 DOI: 10.1016/j.zool.2010.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 02/18/2010] [Accepted: 03/15/2010] [Indexed: 11/27/2022]
Abstract
Comparisons between aquatic and terrestrial species provide an opportunity to examine how sex-specific adaptations interact with the environment to influence body shape. In terrestrial female tortoises, selection for fecundity favors the development of a large internal abdominal cavity to accommodate the clutch; in conspecific males, sexual selection favors mobility with large openings in the shell. To examine to what extent such trends apply in aquatic chelonians we compared the body shape of males and females of two aquatic turtles (Chelodina colliei and Mauremys leprosa). In both species, females were larger than males. When controlled for body size, females exhibited a greater relative internal volume and a higher body condition index than males; both traits potentially correlate positively with fecundity. Males were more streamlined (hydrodynamic), and exhibited larger openings in the shell providing more space to move their longer limbs; such traits probably improve mobility and copulation ability (the males chase and grab the female for copulation). Overall, although the specific constraints imposed by terrestrial and aquatic locomotion shape the morphology of chelonians differently (aquatic turtles were flatter, hence more hydrodynamic than terrestrial tortoises), the direction for sexual shape dimorphism remained unaffected. Our main conclusion is that the direction of sexual shape dimorphism is probably more consistent than sexual size dimorphism in the animal kingdom.
Collapse
Affiliation(s)
- Xavier Bonnet
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, UPR 1934, F-79360 Beauvoir sur Niort, France.
| | | | | | | | | | | |
Collapse
|
42
|
Kuraku S, Takio Y, Sugahara F, Takechi M, Kuratani S. Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates. Dev Biol 2010; 341:315-23. [DOI: 10.1016/j.ydbio.2010.02.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 02/05/2010] [Accepted: 02/06/2010] [Indexed: 12/27/2022]
|
43
|
Sánchez-Villagra MR, Müller H, Sheil CA, Scheyer TM, Nagashima H, Kuratani S. Skeletal development in the Chinese soft-shelled turtlePelodiscus sinensis(Testudines: Trionychidae). J Morphol 2009; 270:1381-99. [DOI: 10.1002/jmor.10766] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Affiliation(s)
- Olivier Rieppel
- Rowe Family Curator of Evolutionary Biology, Department of Geology, Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA.
| |
Collapse
|
45
|
Nagashima H, Sugahara F, Takechi M, Ericsson R, Kawashima-Ohya Y, Narita Y, Kuratani S. Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 2009; 325:193-6. [PMID: 19590000 DOI: 10.1126/science.1173826] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The turtle shell offers a fascinating case study of vertebrate evolution, based on the modification of a common body plan. The carapace is formed from ribs, which encapsulate the scapula; this stands in contrast to the typical amniote body plan and serves as a key to understanding turtle evolution. Comparative analyses of musculoskeletal development between the Chinese soft-shelled turtle and other amniotes revealed that initial turtle development conforms to the amniote pattern; however, during embryogenesis, lateral rib growth results in a shift of elements. In addition, some limb muscles establish new turtle-specific attachments associated with carapace formation. We propose that the evolutionary origin of the turtle body plan results from heterotopy based on folding and novel connectivities.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Offen N, Meyer A, Begemann G. Identification of novel genes involved in the development of the sword and gonopodium in swordtail fish. Dev Dyn 2009; 238:1674-87. [PMID: 19479949 DOI: 10.1002/dvdy.21983] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nils Offen
- Department of Biology, Lehrstuhl für Zoologie und Evolutionsbiologie, University of Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
47
|
Abstract
Interest in understanding the transition from prevertebrates to vertebrates at the molecular level has resulted in accumulating genomic and transcriptomic sequence data for the earliest groups of extant vertebrates, namely, hagfishes (Myxiniformes) and lampreys (Petromyzontiformes). Molecular phylogenetic studies on species phylogeny have revealed the monophyly of cyclostomes and the deep divergence between hagfishes and lampreys (more than 400 million years). In parallel, recent molecular phylogenetic studies have shed light on the complex evolution of the cyclostome genome. This consists of whole genome duplications, shared at least partly with gnathostomes (jawed vertebrates), and cyclostome lineage-specific secondary modifications of the genome, such as gene gains and losses. Therefore, the analysis of cyclostome genomes requires caution in distinguishing between orthology and paralogy in gene molecular phylogeny at the gene family scale, as well as between apomorphic and plesiomorphic genomic traits in larger-scale analyses. In this review, we propose possible ways of improving the resolvability of these evolutionary events, and discuss probable scenarios for cyclostome genome evolution, with special emphasis on the hypothesis that two-round (2R) genome duplication events occurred before the divergence between cyclostomes and gnathostomes, and therefore that a post-2R state is a genomic synapomorphy for all extant vertebrates.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
| |
Collapse
|
48
|
Joyce WG, Lucas SG, Scheyer TM, Heckert AB, Hunt AP. A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell. Proc Biol Sci 2009; 276:507-13. [PMID: 18842543 DOI: 10.1098/rspb.2008.1196] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new, thin-shelled fossil from the Upper Triassic (Revueltian: Norian) Chinle Group of New Mexico, Chinlechelys tenertesta, is one of the most primitive known unambiguous members of the turtle stem lineage. The thin-shelled nature of the new turtle combined with its likely terrestrial habitat preference hint at taphonomic filters that basal turtles had to overcome before entering the fossil record. Chinlechelys tenertesta possesses neck spines formed by multiple osteoderms, indicating that the earliest known turtles were covered with rows of dermal armour. More importantly, the primitive, vertically oriented dorsal ribs of the new turtle are only poorly associated with the overlying costal bones, indicating that these two structures are independent ossifications in basal turtles. These novel observations lend support to the hypothesis that the turtle shell was originally a complex composite in which dermal armour fused with the endoskeletal ribs and vertebrae of an ancestral lineage instead of forming de novo. The critical shell elements (i.e. costals and neurals) are thus not simple outgrowths of the bone of the endoskeletal elements as has been hypothesized from some embryological observations.
Collapse
Affiliation(s)
- Walter G Joyce
- Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|
49
|
Offen N, Blum N, Meyer A, Begemann G. Fgfr1 signalling in the development of a sexually selected trait in vertebrates, the sword of swordtail fish. BMC DEVELOPMENTAL BIOLOGY 2008; 8:98. [PMID: 18844994 PMCID: PMC2577654 DOI: 10.1186/1471-213x-8-98] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 10/09/2008] [Indexed: 11/10/2022]
Abstract
Background One of Darwin's chosen examples for his idea of sexual selection through female choice was the "sword", a colourful extension of the caudal fin of male swordtails of the genus Xiphophorus. Platyfish, also members of the genus Xiphophorus, are thought to have arisen from within the swordtails, but have secondarily lost the ability to develop a sword. The sustained increase of testosterone during sexual maturation initiates sword development in male swordtails. Addition of testosterone also induces sword-like fin extensions in some platyfish species, suggesting that the genetic interactions required for sword development may be dormant, rather than lost, within platyfish. Despite considerable interest in the evolution of the sword from a behavioural or evolutionary point of view, little is known about the developmental changes that resulted in the gain and secondary loss of the sword. Up-regulation of msxC had been shown to characterize the development of both swords and the gonopodium, a modified anal fin that serves as an intromittent organ, and prompted investigations of the regulatory mechanisms that control msxC and sword growth. Results By comparing both development and regeneration of caudal fins in swordtails and platyfish, we show that fgfr1 is strongly up-regulated in developing and regenerating sword and gonopodial rays. Characterization of the fin overgrowth mutant brushtail in a platyfish background confirmed that fin regeneration rates are correlated with the expression levels of fgfr1 and msxC. Moreover, brushtail re-awakens the dormant mechanisms of sword development in platyfish and activates fgfr1/msxC-signalling. Although both genes are co-expressed in scleroblasts, expression of msxC in the distal blastema may be independent of fgfr1. Known regulators of Fgf-signalling in teleost fins, fgf20a and fgf24, are transiently expressed only during regeneration and thus not likely to be required in developing swords. Conclusion Our data suggest that Fgf-signalling is involved upstream of msxC in the development of the sword and gonopodium in male swordtails. Activation of a gene regulatory network that includes fgfr1 and msxC is positively correlated with fin ray growth rates and can be re-activated in platyfish to form small sword-like fin extensions. These findings point towards a disruption between the fgfr1/msxC network and its regulation by testosterone as a likely developmental cause for sword-loss in platyfish.
Collapse
Affiliation(s)
- Nils Offen
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
50
|
Saenko SV, French V, Brakefield PM, Beldade P. Conserved developmental processes and the formation of evolutionary novelties: examples from butterfly wings. Philos Trans R Soc Lond B Biol Sci 2008; 363:1549-55. [PMID: 18192179 DOI: 10.1098/rstb.2007.2245] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The origin and diversification of evolutionary novelties-lineage-specific traits of new adaptive value-is one of the key issues in evolutionary developmental biology. However, comparative analysis of the genetic and developmental bases of such traits can be difficult when they have no obvious homologue in model organisms. The finding that the evolution of morphological novelties often involves the recruitment of pre-existing genes and/or gene networks offers the potential to overcome this challenge. Knowledge about shared developmental processes obtained from extensive studies in model organisms can then be used to understand the origin and diversification of lineage-specific structures. Here, we illustrate this approach in relation to eyespots on the wings of Bicyclus anynana butterflies. A number of spontaneous mutations isolated in the laboratory affect eyespots, lepidopteran-specific features, and also processes that are shared by most insects. We discuss how eyespot mutants with disturbed embryonic development may help elucidate the genetic pathways involved in eyespot formation, and how venation mutants with altered eyespot patterns might shed light on mechanisms of eyespot development.
Collapse
Affiliation(s)
- Suzanne V Saenko
- Institute of Biology, Leiden University, Kaiserstraat 63, 2311 GP Leiden, The Netherlands.
| | | | | | | |
Collapse
|