1
|
Ağaç DK, Oktay E, Onuk B, Kabak M, Gündemir O. Shape variation in cranium, mandible and teeth in selected mouse strains. Anat Histol Embryol 2024; 53:e13064. [PMID: 38841825 DOI: 10.1111/ahe.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
There are different strains of laboratory mouse used in many different fields. These strains differ anatomically. In order to determine these anatomical differences, shape analysis was conducted according to species. CD-1, C57bl/6 and Balb-c strains were preferred to study these differences. Forty-eight adult mouse strains belonging to these strains were utilized. The bones were photographed and geometric morphometry was applied to these photographs. Principal Component Analysis was applied to determine shape variations. In Principal component 1 for cranium, CD-1 and C57bl/6 strain groups showed different shape variations, while Balb-c strain group showed similar shape variations to the other strain groups. Principal Component 1 for the mandible separated the CD-1 and C57bl/6 strain groups in terms of shape variation. Principal Component 2 explained most of the variation between the C57bl/6 and CD-1 lineage groups. In PC1 for molars, the CD-1 group showed a different shape variation from the other groups. Mahalanobis distances and Procrustes distances were measured using Canonical variance analysis to explain the differences between the lineage groups. These measurements were statistically significant. For cranium, in canonical variate 1, CD-1 group of mouse and Balb-c group of mouse were separated from each other. In canonical variate 2, C57bl/6 group of mouse were separated from the other groups. For mandible, Balb-c group of mouse in canonical variate 1 and CD-1 group of mouse in canonical variate 2 were separated from the other groups. For molars, CD-1 group of mouse in canonical variate 1 and Balb-c group of mouse in canonical variate 2 were separated from the other groups. It was thought that these anatomical differences could be caused by genotypic factors as well as dietary differences and many different habits that would affect the way their muscles work.
Collapse
Affiliation(s)
- Duygu Küçük Ağaç
- Department of Veterinary, Şiran Mustafa Beyaz Vocational School, Gümüşhane University, Gumushane, Turkey
| | - Ece Oktay
- Institute of Graduate Studies, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Burcu Onuk
- Department of Anatomy, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Murat Kabak
- Department of Anatomy, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ozan Gündemir
- Department of Anatomy, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
2
|
Fang Z, Atukorallaya D. Count Me in, Count Me out: Regulation of the Tooth Number via Three Directional Developmental Patterns. Int J Mol Sci 2023; 24:15061. [PMID: 37894742 PMCID: PMC10606784 DOI: 10.3390/ijms242015061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Tooth number anomalies, including hyperdontia and hypodontia, are common congenital dental problems in the dental clinic. The precise number of teeth in a dentition is essential for proper speech, mastication, and aesthetics. Teeth are ectodermal organs that develop from the interaction of a thickened epithelium (dental placode) with the neural-crest-derived ectomesenchyme. There is extensive histological, molecular, and genetic evidence regarding how the tooth number is regulated in this serial process, but there is currently no universal classification for tooth number abnormalities. In this review, we propose a novel regulatory network for the tooth number based on the inherent dentition formation process. This network includes three intuitive directions: the development of a single tooth, the formation of a single dentition with elongation of the continual lamina, and tooth replacement with the development of the successional lamina. This article summarizes recent reports on early tooth development and provides an analytical framework to classify future relevant experiments.
Collapse
Affiliation(s)
| | - Devi Atukorallaya
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W2, Canada;
| |
Collapse
|
3
|
Chapple SA, Skinner MM. A tooth crown morphology framework for interpreting the diversity of primate dentitions. Evol Anthropol 2023; 32:240-255. [PMID: 37486115 DOI: 10.1002/evan.21994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
Variation in tooth crown morphology plays a crucial role in species diagnoses, phylogenetic inference, and the reconstruction of the evolutionary history of the primate clade. While a growing number of studies have identified developmental mechanisms linked to tooth size and cusp patterning in mammalian crown morphology, it is unclear (1) to what degree these are applicable across primates and (2) which additional developmental mechanisms should be recognized as playing important roles in odontogenesis. From detailed observations of lower molar enamel-dentine junction morphology from taxa representing the major primate clades, we outline multiple phylogenetic and developmental components responsible for crown patterning, and formulate a tooth crown morphology framework for the holistic interpretation of primate crown morphology. We suggest that adopting this framework is crucial for the characterization of tooth morphology in studies of dental development, discrete trait analysis, and systematics.
Collapse
Affiliation(s)
- Simon A Chapple
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Matthew M Skinner
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
4
|
Liu C, Guo H, Shi C, Sun H. BMP signaling in the development and regeneration of tooth roots: from mechanisms to applications. Front Cell Dev Biol 2023; 11:1272201. [PMID: 37779895 PMCID: PMC10540449 DOI: 10.3389/fcell.2023.1272201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Short root anomaly (SRA), along with caries, periodontitis, and trauma, can cause tooth loss, affecting the physical and mental health of patients. Dental implants have become widely utilized for tooth restoration; however, they exhibit certain limitations compared to natural tooth roots. Tissue engineering-mediated root regeneration offers a strategy to sustain a tooth with a physiologically more natural function by regenerating the bioengineered tooth root (bio-root) based on the bionic principle. While the process of tooth root development has been reported in previous studies, the specific molecular mechanisms remain unclear. The Bone Morphogenetic Proteins (BMPs) family is an essential factor regulating cellular activities and is involved in almost all tissue development. Recent studies have focused on exploring the mechanism of BMP signaling in tooth root development by using transgenic animal models and developing better tissue engineering strategies for bio-root regeneration. This article reviews the unique roles of BMP signaling in tooth root development and regeneration.
Collapse
Affiliation(s)
- Cangwei Liu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
5
|
Cabaña-Muñoz ME, Pelaz Fernández MJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Merino JJ. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023; 15:2109. [PMID: 37631323 PMCID: PMC10459416 DOI: 10.3390/pharmaceutics15082109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are cells of ectomesenchymal origin, they reveal a high capacity for complete regeneration of dental pulp, periodontal tissue, and other biomedical applications; their differentiation into other types of cells promotes repair in muscle tissue, cardiac, pancreatic, nervous, bone, cartilage, skin, and corneal tissues, among others, with a high predictability of success. Therefore, stem and progenitor cells, with their exosomes of dental origin and surrounding areas in the oral cavity due to their plasticity, are considered a fundamental pillar in medicine and regenerative dentistry. Tissue engineering (MSCs, scaffolds, and bioactive molecules) sustains and induces its multipotent and immunomodulatory effects. It is of vital importance to guarantee the safety and efficacy of the procedures designed for patients, and for this purpose, more clinical trials are needed to increase the efficacy of several pathologies. Conclusion: From a bioethical and transcendental anthropological point of view, the human person as a unique being facilitates better clinical and personalized therapy, given the higher prevalence of dental and chronic systemic diseases.
Collapse
Affiliation(s)
- María Eugenia Cabaña-Muñoz
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José María Parmigiani-Cabaña
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), 28040 Madrid, Spain
| |
Collapse
|
6
|
Reibring CG, El Shahawy M, Hallberg K, Harfe BD, Linde A, Gritli-Linde A. Loss of BMP2 and BMP4 Signaling in the Dental Epithelium Causes Defective Enamel Maturation and Aberrant Development of Ameloblasts. Int J Mol Sci 2022; 23:6095. [PMID: 35682776 PMCID: PMC9180982 DOI: 10.3390/ijms23116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
BMP signaling is crucial for differentiation of secretory ameloblasts, the cells that secrete enamel matrix. However, whether BMP signaling is required for differentiation of maturation-stage ameloblasts (MA), which are instrumental for enamel maturation into hard tissue, is hitherto unknown. To address this, we used an in vivo genetic approach which revealed that combined deactivation of the Bmp2 and Bmp4 genes in the murine dental epithelium causes development of dysmorphic and dysfunctional MA. These fail to exhibit a ruffled apical plasma membrane and to reabsorb enamel matrix proteins, leading to enamel defects mimicking hypomaturation amelogenesis imperfecta. Furthermore, subsets of mutant MA underwent pathological single or collective cell migration away from the ameloblast layer, forming cysts and/or exuberant tumor-like and gland-like structures. Massive apoptosis in the adjacent stratum intermedium and the abnormal cell-cell contacts and cell-matrix adhesion of MA may contribute to this aberrant behavior. The mutant MA also exhibited severely diminished tissue non-specific alkaline phosphatase activity, revealing that this enzyme's activity in MA crucially depends on BMP2 and BMP4 inputs. Our findings show that combined BMP2 and BMP4 signaling is crucial for survival of the stratum intermedium and for proper development and function of MA to ensure normal enamel maturation.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Maha El Shahawy
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
- Department of Oral Biology, Faculty of Dentistry, Minia University, Minia 61511, Egypt
| | - Kristina Hallberg
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Anders Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| |
Collapse
|
7
|
Lee YS, Park YH, Seo YM, Lee HK, Park JC. Tubular dentin formation by TGF-β/BMP signaling in dental epithelial cells. Oral Dis 2022; 29:1644-1656. [PMID: 35199415 DOI: 10.1111/odi.14170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study aimed to identify formation of tubular dentin induced by Transforming growth factor-β (TGF-β) and bone morphogenic protein (BMP) signaling pathway in dental epithelial cells. METHODS We collected conditioned medium (CM) of rTGF-β1/rBMP-2 treated HAT-7 and treated to MDPC-23 cells. The expression levels of odontoblast differentiation markers, KLF4, DMP1, and DSP were evaluated by real-time PCR and western blot analysis. To evaluate whether CM of rTGF-β1/rBMP-2 induces tubular dentin formation, we made a beagle dog tooth defect model. RESULTS Here, we show that Cpne7 is regulated by Smad4-dependent TGF-β1/BMP2 signaling pathway in dental epithelial cells. CM of rTGF-β1/rBMP-2 treated HAT-7, or rCPNE7 raises the expression levels of KLF4, DMP1, and DSP in MDPC-23 cells. When rTGF-β1 or rBMP-2 is directly treated to MDPC-23 cells, however, expression levels of Cpne7-regulated genes remain unchanged. In a beagle dog defect model, application of rTGF-β1/BMP2 treated CM resulted in tubular tertiary dentin mixed with osteodentin at cavity-prepared sites, while rTGF-β1 group exhibited homogenous osteodentin. CONCLUSIONS Taken together, Smad4-dependent TGF-β1/BMP2 signaling regulates Cpne7 in dental epithelial cells, and CPNE7 protein secreted from pre-ameloblasts mediates odontoblast differentiation via epithelial-mesenchymal interaction.
Collapse
Affiliation(s)
- Yoon Seon Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeoung-Hyun Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Regenerative Dental Medicine R and D Center, Hysensbio Co., Ltd, Seoul, South Korea
| | - You-Mi Seo
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hye-Kyung Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Wu Y, Zhou X, Yuan W, Liu J, Yang W, Zhu Y, Ye C, Xiong X, Zhang Q, Liu J, Wang J. Gli1+ Mesenchymal Stem Cells in Bone and Teeth. Curr Stem Cell Res Ther 2022; 17:494-502. [PMID: 34994317 DOI: 10.2174/1574888x17666220107102911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are remarkable and noteworthy. Identification of markers for MSCs enables the study of their niche in vivo. It has been identified that glioma-associated oncogene 1 positive (Gli1+) cells are mesenchymal stem cells supporting homeostasis and injury repair, especially in the skeletal system and teeth. This review outlines the role of Gli1+ cells as an MSC subpopulation in both bones and teeth, suggesting the prospects of Gli1+ cells in stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Yange Wu
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China; b Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueman Zhou
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxiu Yuan
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenke Yang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufan Zhu
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengxinyue Ye
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xiong
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinlanhui Zhang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Salomies L, Eymann J, Ollonen J, Khan I, Di-Poï N. The developmental origins of heterodonty and acrodonty as revealed by reptile dentitions. SCIENCE ADVANCES 2021; 7:eabj7912. [PMID: 34919438 PMCID: PMC8682985 DOI: 10.1126/sciadv.abj7912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Despite the exceptional diversity and central role of dentitions in vertebrate evolution, many aspects of tooth characters remain unknown. Here, we exploit the large array of dental phenotypes in acrodontan lizards, including EDA mutants showing the first vertebrate example of positional transformation in tooth identity, to assess the developmental origins and evolutionary patterning of tooth types and heterodonty. We reveal that pleurodont versus acrodont dentition can be determined by a simple mechanism, where modulation of tooth size through EDA signaling has major consequences on dental formula, thereby providing a new flexible tooth patterning model. Furthermore, such implication of morphoregulation in tooth evolution allows predicting the dental patterns characterizing extant and fossil lepidosaurian taxa at large scale. Together, the origins and diversification of tooth types, long a focus of multiple research fields, can now be approached through evo-devo approaches, highlighting the importance of underexplored dental features for illuminating major evolutionary patterns.
Collapse
|
10
|
Lin C, Ruan N, Li L, Chen Y, Hu X, Chen Y, Hu X, Zhang Y. FGF8-mediated signaling regulates tooth developmental pace during odontogenesis. J Genet Genomics 2021; 49:40-53. [PMID: 34500094 DOI: 10.1016/j.jgg.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
The developing human and mouse teeth constitute an ideal model system to study the regulatory mechanism underlying organ growth control since their teeth share highly conserved and well-characterized developmental processes and their developmental tempo varies notably. In the current study, we manipulated heterogenous recombination between human and mouse dental tissues and demonstrate that the dental mesenchyme dominates the tooth developmental tempo and FGF8 could be a critical player during this developmental process. Forced activation of FGF8 signaling in the dental mesenchyme of mice promoted cell proliferation, prevented cell apoptosis via p38 and perhaps PI3K-Akt intracellular signaling, and impelled the transition of the cell cycle from G1- to S-phase in the tooth germ, resulting in the slowdown of the tooth developmental pace. Our results provide compelling evidence that extrinsic signals can profoundly affect tooth developmental tempo and the dental mesenchymal FGF8 could be a pivotal factor in controlling the developmental pace in a non-cell-autonomous manner during mammalian odontogenesis.
Collapse
Affiliation(s)
- Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Ningsheng Ruan
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Linjun Li
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Yibin Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Xiaoxiao Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China.
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China.
| |
Collapse
|
11
|
Shin YK, Cheon S, Kim SD, Moon JS, Kim JY, Kim SH, Park C, Kim MS. Identification of novel candidate genes implicated in odontogenic potential in the developing mouse tooth germ using transcriptome analysis. Genes Genomics 2021; 43:1087-1094. [PMID: 34302633 DOI: 10.1007/s13258-021-01130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND In tooth bioengineering for replacement therapy of missing teeth, the utilized cells must possess an inductive signal-forming ability to initiate odontogenesis. This ability is called odontogenic potential. In mice, the odontogenic potential signal is known to be translocated from the epithelium to the mesenchyme at the early bud stage in the developing molar tooth germ. However, the identity of the molecular constituents of this process remains unclear. OBJECTIVE The purpose of this study is to determine the molecular identity of odontogenic potential and to provide a new perspective in the field of tooth development research. METHODS In this study, whole transcriptome profiles of the mouse molar tooth germ epithelium and mesenchyme were investigated using the RNA sequencing (RNA-seq) technique. The analyzed transcriptomes corresponded to two developmental stages, embryonic day 11.5 (E11.5) and 14.5 (E14.5), which represent the odontogenic potential shifts. RESULTS We identified differentially expressed genes (DEGs), which were specifically overexpressed in both the E11.5 epithelium and E14.5 mesenchyme, but not expressed in their respective counterparts. Of the 55 DEGs identified, the top three most expressed transcription factor genes (transcription factor AP-2 beta isoform 3 [TFAP2B], developing brain homeobox protein 2 [DBX2], and insulin gene enhancer protein ISL-1 [ISL1]) and three tooth development-related genes (transcription factor HES-5 [HES5], platelet-derived growth factor D precursor [PDGFD], semaphrin-3 A precursor [SEMA3A]) were selected and validated by quantitative RT-PCR. Using immunofluorescence staining, the TFAP2B protein expression was found to be localized only at the E11.5 epithelium and E14.5 mesenchyme. CONCLUSIONS Thus, our empirical findings in the present study may provide a new perspective into the characterization of the molecules responsible for the odontogenic potential and may have an implication in the cell-based whole tooth regeneration strategy.
Collapse
Affiliation(s)
- Yeo-Kyeong Shin
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Sung-Duk Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Jung-Sun Moon
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea.
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea.
| |
Collapse
|
12
|
Yamunadevi A, Pratibha R, Rajmohan M, Mahendraperumal S, Ganapathy N, Srivandhana R. First Molars in Permanent Dentition and their Malformations in Various Pathologies: A Review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:S23-S30. [PMID: 34447037 PMCID: PMC8375929 DOI: 10.4103/jpbs.jpbs_744_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 11/19/2022] Open
Abstract
Permanent maxillary and mandibular first molars are the first permanent teeth to erupt into the oral cavity along with the mandibular incisors. It serves as an excellent record of maternal and fetal health, reflecting the prenatal, perinatal, and postnatal health and diseases. This review focuses on the molar morphogenesis, molar malformations, their etiopathogenesis, and pathologies causing specific pattern of molar malformations.
Collapse
Affiliation(s)
- Andamuthu Yamunadevi
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
| | - Ramani Pratibha
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College, Chennai, Tamil Nadu, India
| | - Muthusamy Rajmohan
- Department of Oral and Maxillofacial Pathology, KSR Institute of Dental Science and Research, Namakkal, Tamil Nadu, India
| | - Sengottaiyan Mahendraperumal
- Department of Oral and Maxillofacial Surgery, KSR Institute of Dental Science and Research, Namakkal, Tamil Nadu, India
| | - Nalliappan Ganapathy
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
| | | |
Collapse
|
13
|
Gerber JT, Dos Santos KM, Brum BK, Petinati MFP, Meger MN, da Costa DJ, Elsalanty M, Küchler EC, Scariot R. Odontogenesis-related candidate genes involved in variations of permanent teeth size. Clin Oral Investig 2021; 25:4481-4494. [PMID: 33651240 DOI: 10.1007/s00784-020-03760-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate the association between genetic polymorphisms in RUNX2, BMP4, BMP2, TGFβ1, EGF, and SMAD6 and variations in permanent tooth size (TS). MATERIALS AND METHODS This cross-sectional study evaluated 110 individuals' dental casts to determine the maximum tooth crown size of all fully erupted permanent teeth (third molars were excluded) in the mesiodistal (MD) and buccolingual (BL) dimensions. Genomic DNA was obtained from the epithelial cells of the oral mucosa to evaluate the genetic polymorphisms in RUNX2 (rs59983488 and rs1200425), BMP4 (rs17563), BMP2 (rs235768 and rs1005464), TGFβ1 (rs1800470), EGF (rs4444903), and SMAD6 (rs2119261 and rs3934908) through real-time PCR. The data were submitted to statistical analysis with a significance level of 0.05. RESULTS The genetic polymorphisms rs59983488, rs1200425, rs17563, rs235768, rs1005464, rs1800470, and rs4444903 were associated with MD and BL TS of the upper and lower arches (p < 0.05). The polymorphism rs2119261 was associated with variation in TS only in the upper arch (p < 0.05). The rs3934908 was not associated with any TS measurement (p > 0.05). CONCLUSIONS In summary, this study reports novel associations between variation in permanent TS and genetic polymorphisms in RUNX2, BMP4, BMP2, TGFβ1, EGF, and SMAD6 indicating a possible role of these genes in dental morphology. CLINICAL RELEVANCE Polymorphisms in odontogenesis-related genes may be involved in dental morphology enabling a prediction of permanent TS variability. The knowledge regarding genes involved in TS might impact the personalized dental treatment, considering that patients' genetic profile would soon be introduced into clinical practice to improve patient management.
Collapse
Affiliation(s)
- Jennifer Tsi Gerber
- School of Health Sciences, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Campo Comprido, Curitiba, PR, 81280-330, Brazil
| | - Katheleen Miranda Dos Santos
- School of Health Sciences, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Campo Comprido, Curitiba, PR, 81280-330, Brazil
| | - Bruna Karas Brum
- School of Health Sciences, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Campo Comprido, Curitiba, PR, 81280-330, Brazil
| | - Maria Fernanda Pivetta Petinati
- School of Health Sciences, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Campo Comprido, Curitiba, PR, 81280-330, Brazil
| | - Michelle Nascimento Meger
- School of Health Sciences, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Campo Comprido, Curitiba, PR, 81280-330, Brazil
| | - Delson João da Costa
- Department of Stomatology, School of Dentistry, Federal University of Parana, 632 Prefeito Lothario Meissner Avenue, Curitiba, PR, 80210-170, Brazil
| | - Mohammed Elsalanty
- Department of Medical and Anatomical Sciences, College of Ostheopathic Medicine of the Pacific, Western Universitiy, 615 E 3rd St, Pomona, CA, 91766, USA
| | - Erika Calvano Küchler
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n - Campus da USP, Ribeirao Preto, SP, 14040-904, Brazil
| | - Rafaela Scariot
- Department of Stomatology, School of Dentistry, Federal University of Parana, 632 Prefeito Lothario Meissner Avenue, Curitiba, PR, 80210-170, Brazil.
| |
Collapse
|
14
|
Malik Z, Roth DM, Eaton F, Theodor JM, Graf D. Mesenchymal Bmp7 Controls Onset of Tooth Mineralization: A Novel Way to Regulate Molar Cusp Shape. Front Physiol 2020; 11:698. [PMID: 32719613 PMCID: PMC7350786 DOI: 10.3389/fphys.2020.00698] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 01/14/2023] Open
Abstract
Investigating the molecular basis for tooth shape variation provides an important glimpse into the evolution of tooth function. We recently showed that loss of mesenchymal BMP7 is sufficient to alter morphology and function of the toothrow. Here we report on the underlying mechanism. Expression of mesenchymal Bmp7 is observed at sites where mineralization is initiated, in tooth cusps of developing molars. Neural crest-specific deletion of Bmp7 (Bmp7ncko) resulted in a complete lack of dentin/enamel formation at birth, the time when mineralization is normally initiated in the upper molars, similar to what was observed in Bmp2ncko mice. Unlike loss of Bmp2, loss of Bmp7 did not affect odontoblast polarization and did not significantly alter the levels of pSmad1/5/8, but almost completely abolished canonical Wnt signaling in (pre)-ameloblasts. Tooth mineralization resumed with a 48-h delay allowing for additional mesenchymal proliferation. Enamel volume was still reduced at P4 and P8, but was comparable in erupted teeth, which were broader and had altered cusp shapes. Tooth eruption was also delayed. Overall, enamel appeared inconspicuous, although some structural changes along with reduced mineral density could be observed. Loss of Bmp7 led to an increase in mesenchymal Bmp6 suggesting an interplay between Bmp6 and Bmp7 in the regulation of mineralization initiation. Our findings show that regulation of the onset of tooth mineralization is a hitherto unsuspected mechanism controlling tooth shape variation. Initiation of tooth mineralization is regulated by a complex epithelial-mesenchymal Bmp/Wnt-signaling network to which Bmp7 contributes. This network is separate and independent of the Bmp2-signaling network regulating odontoblast cell polarization. From an evolutionary perspective, addition of Bmp7 as initiator of tooth mineralization might be akin to an upgrade of an existing computer operating system. While not essential, it provides obviously sufficient advantage warranting its evolutionary incorporation.
Collapse
Affiliation(s)
- Zeba Malik
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniela M Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jessica M Theodor
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Jin H, Xu Y, Qi Y, Wang X, Patel DK, Deb Dutta S, Chen R, Lim KT. Evaluation of Osteogenic/Cementogenic Modulating Potential of PAI-1 Transfected Media for Stem Cells. IEEE Trans Nanobioscience 2020; 19:446-456. [PMID: 32603295 DOI: 10.1109/tnb.2020.2984551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM OF THE STUDY In vitro evaluation of the effects of plasminogen activator inhibitor-1 (PAI-1) transfected-conditioned media (P-CM) on the differentiation of human periodontal ligament stem cells (hPDLSCs) and human periapical follicular stem cells (hPAFSCs). MATERIALS AND METHODS The hPDLSCs and hPAFSCs received from impacted third molars were treated with P-CM and viability, as well as differentiation of the cells were evaluated. Plasmids were constructed according to standard techniques, and all sequences were validated by proper enzyme digestion and sequencing. Chinese hamster ovarian (CHO) cells were transfected with pcDNA3.1-hPAI-1 plasmid to obtain P-CM, followed by western blotting and PAI-1-specific ELISA kit to evaluate the proteins of P-CM. The cell viability of hPDLSCs and hPAFSCs were analyzed using MTT assay after 48 h of incubation. Alizarin red S staining was performed to evaluate the differentiation of hPDLSCs and hPAFSCs. The reverse transcription-polymerase chain reaction was used to observe the expression levels of osteogenic/cementogenic marker genes. The human cytokine antibody array was applied for further analysis of cytokine expression in P-CM. RESULTS P-CM significantly promoted the differentiation of hPDLSCs and hPAFSCs and upregulated the expression of osteogenic/cementogenic marker genes in vitro. Furthermore, rhPAI-1 promoted mineralized nodules formation of hPDLSCs and hPAFSCs, and we identified that other proteins, RANTES and IL-6, were highly expressed in P-CM. CONCLUSIONS P-CM promoted the differentiation of hPDLSCs and hPAFSCs by upregulating the expression of RANTES and IL-6, and interaction between PAI-1 and RANTES/IL-6 signaling may be involved in P-CM-induced osteogenic/cementogenic differentiation.
Collapse
|
16
|
Olsson B, Calixto RD, da Silva Machado NC, Meger MN, Paula-Silva FWG, Rebellato NLB, da Costa DJ, Küchler EC, Scariot R. MSX1 is differentially expressed in the deepest impacted maxillary third molars. Br J Oral Maxillofac Surg 2020; 58:789-794. [PMID: 32381388 DOI: 10.1016/j.bjoms.2020.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
An impacted third molar is one of the most common dental abnormalities. Among the reasons for impaction the most common are: insufficient space, time of eruption, improper position of the tooth bud, and genetic disruptions. To investigate if runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), and msh homeobox 1 (MSX1) are differently expressed depending on the position of the molar, we studied 32 patients who had been referred for surgical removal. An orthopantomogram was used to separate them according to Winter's, and Pell & Gregory's, classifications. Bone samples were harvested during the operation for gene expression assay. The Kruskal-Wallis, Dunn's post hoc, and Spearman's correlation, tests were used to assess the significance of differences. No correlations were found in expression of the genes, and no differences between expression in maxillary and mandibular third molars, nor were they expressed differently according to Winter's or Pell and Gregory's classifications or in relation to impaction of the mandibular ramus. However, MSX1 was expressed differently when account was taken of the depth of impaction in maxillary third molars (p = 0.029), but there was no difference in expression of RUNX2, BMP2, and MSX1 for the Pell and Gregory classification of depth of impaction (p > 0.05). We conclude that MSX1 is expressed differently depending on the depth of maxillary impaction phenotypes.
Collapse
Affiliation(s)
- B Olsson
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
| | - R D Calixto
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
| | - N C da Silva Machado
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
| | - M N Meger
- School of Health Sciences, Department of Oral and Maxillofacial Surgery, Positivo University, Professor Pedro Viriato Parigot de Souza, 5300, Campo Comprido, Curitiba, Paraná, 81280330, Brazil.
| | - F W G Paula-Silva
- Department of Pediatric Dentistry, University of São Paulo, Av. do Café, Subsetor Oeste-11 (N-11), Ribeirão Preto, SP, 14040-904, Brazil.
| | - N L B Rebellato
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
| | - D J da Costa
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
| | - E C Küchler
- Department of Pediatric Dentistry, University of São Paulo, Av. do Café, Subsetor Oeste-11 (N-11), Ribeirão Preto, SP, 14040-904, Brazil.
| | - R Scariot
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil; School of Health Sciences, Department of Oral and Maxillofacial Surgery, Positivo University, Professor Pedro Viriato Parigot de Souza, 5300, Campo Comprido, Curitiba, Paraná, 81280330, Brazil.
| |
Collapse
|
17
|
Zhang S, Li X, Wang S, Yang Y, Guo W, Chen G, Tian W. Immortalized Hertwig's epithelial root sheath cell line works as model for epithelial-mesenchymal interaction during tooth root formation. J Cell Physiol 2020; 235:2698-2709. [PMID: 31512758 DOI: 10.1002/jcp.29174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023]
Abstract
Hertwig's epithelial root sheath (HERS) is critical for epithelial-mesenchymal interaction (EMI) during tooth root formation. However, the exact roles of HERS in odontogenic differentiation by EMI have not been well characterized, because primary HERS cells are difficult to obtain. Immortalized cell lines constitute crucial scientific tools, while there are few HERS cell lines available. Our previous study has successfully established immortalized HERS cell lines. Here, we confirmed the phenotype of our HERS-H1 by verifying its characteristics and functions in odontogenic differentiation through EMI. The HERS-H1-conditioned medium (CM-H1) effectively enhanced odontogenic differentiation of dental papilla cells (DPCs) in vitro. Furthermore, Smad4 and p-Smad1/5/8 were significantly activated in DPCs treated with CM-H1, and this activation was attenuated by noggin. In vivo, our implanted recombinants of HERS-H1 and DPCs exhibited mineralized tissue formation and expression of Smad4, p-Smad1/5/8, and odontogenic differentiation markers. Our results indicated that HERS-H1 promoted DPCs odontoblastic differentiation via bone morphogenetic protein/Smad signaling. HERS-H1 exhibits relevant key molecular characteristics and constitutes a new biological model for basic research on HERS and the dental EMI during root development and regeneration.
Collapse
Affiliation(s)
- Sicheng Zhang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuebing Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shikai Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Yang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Tissue Engineering Approaches for Enamel, Dentin, and Pulp Regeneration: An Update. Stem Cells Int 2020; 2020:5734539. [PMID: 32184832 PMCID: PMC7060883 DOI: 10.1155/2020/5734539] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Stem/progenitor cells are undifferentiated cells characterized by their exclusive ability for self-renewal and multilineage differentiation potential. In recent years, researchers and investigations explored the prospect of employing stem/progenitor cell therapy in regenerative medicine, especially stem/progenitor cells originating from the oral tissues. In this context, the regeneration of the lost dental tissues including enamel, dentin, and the dental pulp are pivotal targets for stem/progenitor cell therapy. The present review elaborates on the different sources of stem/progenitor cells and their potential clinical applications to regenerate enamel, dentin, and the dental pulpal tissues.
Collapse
|
19
|
Tsutsui TW. Dental Pulp Stem Cells: Advances to Applications. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2020; 13:33-42. [PMID: 32104005 PMCID: PMC7025818 DOI: 10.2147/sccaa.s166759] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Abstract
Dental pulp stem cells (DPSCs) have a high capacity for differentiation and the ability to regenerate a dentin/pulp-like complex. Numerous studies have provided evidence of DPSCs’ differentiation capacity, such as in neurogenesis, adipogenesis, osteogenesis, chondrogenesis, angiogenesis, and dentinogenesis. The molecular mechanisms and functions of DPSCs’ differentiation process are affected by growth factors and scaffolds. For example, growth factors such as basic fibroblast growth factor (bFGF), transforming growth factor-β (TGF-β), nerve growth factor (NGF), platelet-derived growth factor (PDGF), and bone morphogenic proteins (BMPs) influence DPSC fate, including in differentiation, cell proliferation, and wound healing. In addition, several types of scaffolds, such as collagen, hydrogel, decellularized bioscaffold, and nanofibrous spongy microspheres, have been used to characterize DPSC cellular attachment, migration, proliferation, differentiation, and functions. An appropriate combination of growth factors and scaffolds can enhance the differentiation capacity of DPSCs, in terms of optimizing not only dental-related expression but also dental pulp morphology. For a cell-based clinical approach, focus has been placed on the tissue engineering triad [cells/bioactive molecules (growth factors)/scaffolds] to characterize DPSCs. It is clear that a deep understanding of the mechanisms of stem cells, including their aging, self-renewal, microenvironmental homeostasis, and differentiation correlated with cell activity, the energy for which is provided from mitochondria, should provide new approaches for DPSC research and therapeutics. Mitochondrial functions and dynamics are related to the direction of stem cell differentiation, including glycolysis, oxidative phosphorylation, mitochondrial metabolism, mitochondrial transcription factor A (TFAM), mitochondrial elongation, and mitochondrial fusion and fission proteins. This review summarizes the effects of major growth factors and scaffolds for regenerating dentin/pulp-like complexes, as well as elucidating mitochondrial properties of DPSCs for the development of advanced applications research.
Collapse
Affiliation(s)
- Takeo W Tsutsui
- Department of Pharmacology, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| |
Collapse
|
20
|
Jani P, Zhang H, Benson MD, Qin C. Noggin inhibition of mouse dentinogenesis. J Oral Biosci 2019; 62:72-79. [PMID: 31862386 DOI: 10.1016/j.job.2019.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The Bone Morphogenetic Proteins (BMPs) direct tooth development and still express in the adult tooth. We hypothesized that inhibition of BMP function would therefore disrupt dentinogenesis by differentiated odontoblasts. METHODS We generated mice overexpressing the BMP-inhibitory protein Noggin in differentiated odontoblasts and osteocytes under control of a Dmp1 promoter-driven cre transgene. We compared the dentin phenotype in these mice with that in WT littermates and in mice with a Smad4 odontoblast/osteocyte knockout mediated by the same cre and therefore lacking all BMP and Tgfβ signaling in the same tissues. RESULTS Three-month-old first molars from both Noggin-expressing and Smad4-deleted mice showed decreased dentin volume with enlarged pulp cavities, and both displayed less organized and mineralized dentinal tubules compared to WT. The Smad4-ablated phenotype was more severe. While dentin sialophosphoprotein (DSPP) and bone sialoprotein (BSP) were decreased in the dentin of both lines, dentin matrix protein 1 (DMP1) was sharply increased in Noggin-expressing teeth. CONCLUSIONS The phenotypes we observed in Noggin-overexpressing and Smad4-conditional knockout teeth resemble the phenotype of Dentinogenesis Imperfecta (DGI) type III. Our results show that BMPs regulate post-natal dentinogenesis and that BMP-inhibitory proteins like Noggin play a role in that regulation. The increased severity of the Smad4 phenotype indicates that Tgfβ ligands, in addition to BMPs, play a crucial role in post-developmental dentinogenesis.
Collapse
Affiliation(s)
- Priyam Jani
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - M Douglas Benson
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.
| |
Collapse
|
21
|
Maier C, Dumančić J, Brkić H, Kaić Z, Savić Pavičin I, Poje Z, Scott GR. Tooth Crown Morphology in Turner and Klinefelter Syndrome Individuals from a Croatian Sample. Acta Stomatol Croat 2019; 53:106-118. [PMID: 31341318 PMCID: PMC6604557 DOI: 10.15644/asc53/2/2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/01/2019] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE Turner syndrome (TS) and Klinefelter syndrome (KS) represent the two most common X chromosome aneuploidies, each associated with systemic disruptions to growth and development. Effects of these conditions on tooth crown morphology are explored in a sample of Croatian individuals. MATERIALS AND METHODS The sample included 57 TS, 37 KS and 88 control individuals. Dental crown morphology was scored on dental casts according to the Turner-Scott Dental Anthropology System. RESULTS Incisor shoveling and the hypocone were significantly different between TS individuals and both control and KS individuals. Individuals with TS exhibit lower grades of expression than either group. Furthermore, the number of lingual cusps on the mandibular premolars, the hypoconulid on the mandibular second molar, and cusp 7 on the mandibular first molar were significantly different, though pair-wise comparisons did not elucidate these differences. Tuberculum dentale, distal accessory ridge, and Carabelli's trait were expressed similarly to the control. KS individuals were not significantly different from control individuals for any trait, though this may be related to sample size. CONCLUSIONS Previous studies suggest the loss of an X chromosome has a reducing effect on dental crown morphology, which is confirmed in this research. TS individuals exhibit generally simpler dental morphology compared to the control sample, though some traits are expressed comparably to the control sample. The effects of KS are less clear. Though previous studies suggest that the presence of an extra X chromosome increases dental crown dimensions, there was no notable effect on crown morphology in this study.
Collapse
Affiliation(s)
- Christopher Maier
- Eckerd College, Department of Anthropology, 4200 54 Ave. S. St. Petersburg, FL 33711, USA
| | - Jelena Dumančić
- University of Zagreb School of Dental Medicine, Department of Dental Anthropology, Zagreb, Croatia
- Department of Dental Medicine, University Hospital Centre Zagreb, Croatia
| | - Hrvoje Brkić
- University of Zagreb School of Dental Medicine, Department of Dental Anthropology, Zagreb, Croatia
- Department of Dental Medicine, University Hospital Centre Zagreb, Croatia
| | - Zvonimir Kaić
- Croatian Dental Chamber, Zagreb, Croatia
- Croatian Academy of Medical Sciences, Zagreb, Croatia
| | - Ivana Savić Pavičin
- University of Zagreb School of Dental Medicine, Department of Dental Anthropology, Zagreb, Croatia
| | - Zvonko Poje
- Croatian Dental Chamber, Zagreb, Croatia
- Croatian Academy of Medical Sciences, Zagreb, Croatia
| | - G. Richard Scott
- University of Nevada, Reno, Department of Anthropology, 1664 N. Virginia St., Reno, NVUSA
| |
Collapse
|
22
|
Guo W, Fan Z, Wang S, Du J. ALK5 is essential for tooth germ differentiation during tooth development. Biotech Histochem 2019; 94:481-490. [PMID: 31144525 DOI: 10.1080/10520295.2018.1552018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The TGFβ superfamily of proteins participates in tooth development. TGFβ1 and TGFβ3 regulate odontoblast differentiation and dentin extracellular matrix synthesis. Although the expression of TGFβ family member ligands is well-characterized during mammalian tooth development, less is known about the TGFβ receptor, which is a heteromeric complex consisting of a type I and type II receptors. The molecular mechanism of ALK5 (TGFβR1) in the dental mesenchyme is not clear. We investigated the role of ALK5 in tooth germ mesenchymal cells (TGMCs) from the lower first molar tooth germs of day 15.5 embryonic mice. Human recombinant TGFβ3 protein or an ALK5 inhibitor (SD208) was added to the cells. Cell proliferation was inhibited by SD208 and promoted by TGFβ3. We found that SD208 inhibited TGMCs osteogenesis and dentinogenesis. Both canonical and noncanonical TGFβ signaling pathways participated in the process. TAK1, P-TAK1, p38 and P-p38 showed greater expression and SMAD4 showed less expression when ALK5 was inhibited. Our findings contribute to understanding the role of TGFβ signaling for the differentiation of mesenchymal stem cells derived from dental germ and suggest possible targets for optimizing the use of stem cells of dental origin for tissue regeneration.
Collapse
Affiliation(s)
- W Guo
- Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing , China
| | - Z Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing , China
| | - S Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing , China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences , Beijing , China
| | - J Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing , China
| |
Collapse
|
23
|
Shi C, Yuan Y, Guo Y, Jing J, Ho TV, Han X, Li J, Feng J, Chai Y. BMP Signaling in Regulating Mesenchymal Stem Cells in Incisor Homeostasis. J Dent Res 2019; 98:904-911. [PMID: 31136721 DOI: 10.1177/0022034519850812] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling performs multiple essential functions during craniofacial development. In this study, we used the adult mouse incisor as a model to uncover how BMP signaling maintains tissue homeostasis and regulates mesenchymal stem cell (MSC) fate by mediating WNT and FGF signaling. We observed a severe defect in the proximal region of the adult mouse incisor after loss of BMP signaling in the Gli1+ cell lineage, indicating that BMP signaling is required for cell proliferation and odontoblast differentiation. Our study demonstrates that BMP signaling serves as a key regulator that antagonizes WNT and FGF signaling to regulate MSC lineage commitment. In addition, BMP signaling in the Gli1+ cell lineage is also required for the maintenance of quiescent MSCs, suggesting that BMP signaling not only is important for odontoblast differentiation but also plays a crucial role in providing feedback to the MSC population. This study highlights multiple important roles of BMP signaling in regulating tissue homeostasis.
Collapse
Affiliation(s)
- C Shi
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA.,2 Department of Orthodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Y Yuan
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Y Guo
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA.,3 Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - J Jing
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA.,4 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T V Ho
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - X Han
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - J Li
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA.,5 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - J Feng
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Y Chai
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Meguro F, Porntaveetus T, Kawasaki M, Kawasaki K, Yamada A, Kakihara Y, Saeki M, Tabeta K, Kessler JA, Maeda T, Ohazama A. Bmp signaling in molar cusp formation. Gene Expr Patterns 2019; 32:67-71. [PMID: 30980961 DOI: 10.1016/j.gep.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/07/2019] [Accepted: 04/07/2019] [Indexed: 01/17/2023]
Abstract
Tooth cusp is a crucial structure, since the shape of the molar tooth is determined by number, shape, and size of the cusp. Bone morphogenetic protein (Bmp) signaling is known to play a critical role in tooth development, including in initiation. However, it remains unclear whether Bmp signaling is also involved in cusp formation. To address this question, we examined cusp in two different transgenic mouse lines: mice with overexpression of Bmp4 (K14-Bmp4), and those with Bmp inhibitor, Noggin, (K14-Noggin) under keratin14 (K14) promoter. K14-Noggin mice demonstrated extra cusps, whereas reduced number of cusps was observed in K14-Bmp4 mice. To further understand how Bmps are expressed during cusp formation, we performed whole-mount in situ hybridisation analysis of three major Bmps (Bmp2, Bmp4, and Bmp7) in murine maxillary and mandibular molars from E14.5 to P3. The linear expressions of Bmp2 and Bmp4 were observed in both maxillary and mandibular molars at E14.5. The expression patterns of Bmp2 and Bmp4 became significantly different between the maxillary and mandibular molars at E16.5. At P3, all Bmps were expressed in all the cusp regions of the maxillary molar; however, the patterns differed. All Bmps thus exhibited dynamic temporo-spatial expression during the cusp formation. It could therefore be inferred that Bmp signaling is involved in regulating cusp formation.
Collapse
Affiliation(s)
- Fumiya Meguro
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Maiko Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - John A Kessler
- Department of Neurology, Northwestern University, Feinberg Medical School, Chicago, IL, 60611, USA
| | - Takeyasu Maeda
- (f)Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
25
|
Balic A. Concise Review: Cellular and Molecular Mechanisms Regulation of Tooth Initiation. Stem Cells 2018; 37:26-32. [DOI: 10.1002/stem.2917] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Anamaria Balic
- Research Program in Developmental Biology; Institute of Biotechnology, University of Helsinki; Helsinki Finland
| |
Collapse
|
26
|
Malcov-Brog H, Alpert A, Golan T, Parikh S, Nordlinger A, Netti F, Sheinboim D, Dror I, Thomas L, Cosson C, Gonen P, Stanevsky Y, Brenner R, Perluk T, Frand J, Elgavish S, Nevo Y, Rahat D, Tabach Y, Khaled M, Shen-Orr SS, Levy C. UV-Protection Timer Controls Linkage between Stress and Pigmentation Skin Protection Systems. Mol Cell 2018; 72:444-456.e7. [PMID: 30401431 PMCID: PMC6224604 DOI: 10.1016/j.molcel.2018.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/15/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022]
Abstract
Skin sun exposure induces two protection programs: stress responses and pigmentation, the former within minutes and the latter only hours afterward. Although serving the same physiological purpose, it is not known whether and how these programs are coordinated. Here, we report that UVB exposure every other day induces significantly more skin pigmentation than the higher frequency of daily exposure, without an associated increase in stress responses. Using mathematical modeling and empirical studies, we show that the melanocyte master regulator, MITF, serves to synchronize stress responses and pigmentation and, furthermore, functions as a UV-protection timer via damped oscillatory dynamics, thereby conferring a trade-off between the two programs. MITF oscillations are controlled by multiple negative regulatory loops, one at the transcriptional level involving HIF1α and another post-transcriptional loop involving microRNA-148a. These findings support trait linkage between the two skin protection programs, which, we speculate, arose during furless skin evolution to minimize skin damage. UV exposure frequency reveals a trade-off between skin protection programs MITF dynamics synchronize skin stress responses and pigmentation MITF serves as a UV-protection timer Two negative regulatory loops involving miR-148a and HIF1α underlie MITF dynamics
Collapse
Affiliation(s)
- Hagar Malcov-Brog
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ayelet Alpert
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tamar Golan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alice Nordlinger
- INSERM U1186, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif 94805, France
| | - Francesca Netti
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Danna Sheinboim
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Iris Dror
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laetitia Thomas
- INSERM U1186, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif 94805, France
| | - Camille Cosson
- INSERM U1186, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif 94805, France
| | - Pinchas Gonen
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | - Jacob Frand
- E. Wolfson Medical Center, Holon 58100, Israel
| | - Sharona Elgavish
- Bioinformatics Unit of the I-CORE Computation Center, Hebrew University, Jerusalem 91120, Israel
| | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, Hebrew University, Jerusalem 91120, Israel
| | - Dolev Rahat
- Department of Developmental Biology and Cancer Research, Hadassah Medical School, Hebrew University, Jerusalem 91120, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Hadassah Medical School, Hebrew University, Jerusalem 91120, Israel
| | - Mehdi Khaled
- INSERM U1186, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif 94805, France.
| | - Shai S Shen-Orr
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
27
|
Liu CW, Zhou YJ, Yan GX, Shi C, Zhang X, Hu Y, Hao XQ, Zhao H, Sun HC. [The role of bone morphogenetic protein signaling pathway in tooth root development]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:559-563. [PMID: 30465352 DOI: 10.7518/hxkq.2018.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The bone morphogenetic protein (BMP) family is an important factor in the regulation of cell ular life activities and in the development of almost all tissues. BMP-mediated signaling plays an important role in tooth root development, which is a part of tooth development. Epithelial and mesenchymal interactions are involved in tooth root development, but the BMP signaling pathway has a different effect on tooth root development in epithelial and mesenchymal. This review summarizes the advances of BMP signaling in tooth root development.
Collapse
Affiliation(s)
- Cang-Wei Liu
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Yi-Jun Zhou
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Guang-Xing Yan
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Ce Shi
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Xue Zhang
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Yue Hu
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Xin-Qing Hao
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Huan Zhao
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Hong-Chen Sun
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| |
Collapse
|
28
|
The Role of Fibroblast Growth Factors in Tooth Development and Incisor Renewal. Stem Cells Int 2018; 2018:7549160. [PMID: 29713351 PMCID: PMC5866892 DOI: 10.1155/2018/7549160] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/04/2018] [Indexed: 02/08/2023] Open
Abstract
The mineralized tissue of the tooth is composed of enamel, dentin, cementum, and alveolar bone; enamel is a calcified tissue with no living cells that originates from oral ectoderm, while the three other tissues derive from the cranial neural crest. The fibroblast growth factors (FGFs) are critical during the tooth development. Accumulating evidence has shown that the formation of dental tissues, that is, enamel, dentin, and supporting alveolar bone, as well as the development and homeostasis of the stem cells in the continuously growing mouse incisor is mediated by multiple FGF family members. This review discusses the role of FGF signaling in these mineralized tissues, trying to separate its different functions and highlighting the crosstalk between FGFs and other signaling pathways.
Collapse
|
29
|
Navarro N, Murat Maga A. Genetic mapping of molar size relations identifies inhibitory locus for third molars in mice. Heredity (Edinb) 2018; 121:1-11. [PMID: 29302051 DOI: 10.1038/s41437-017-0033-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022] Open
Abstract
Molar size in Mammals shows considerable disparity and exhibits variation similar to that predicted by the Inhibitory Cascade model. The importance of such developmental systems in favoring evolutionary trajectories is also underlined by the fact that this model can predict macroevolutionary patterns. Using backcross mice, we mapped QTL for molar sizes controlling for their sequential development. Genetic controls for upper and lower molars appear somewhat similar, and regions containing genes implied in dental defects drive this variation. We mapped three relationship QTLs (rQTL) modifying the control of the mesial molars on the focal third molar. These regions overlap Shh, Sostdc1, and Fst genes, which have pervasive roles in development and should be buffered against new variation. It has theoretically been shown that rQTL produces new variation channeled in the direction of adaptive changes. Our results provide evidence that evolutionary/disease patterns of tooth size variation could result from such a non-random generating process.
Collapse
Affiliation(s)
- Nicolas Navarro
- EPHE, PSL Research University Paris, F-21000, Dijon, France. .,Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - A Murat Maga
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| |
Collapse
|
30
|
Abstract
The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans.
Collapse
Affiliation(s)
- Jingyuan Li
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People's Republic of China
| | - Carolina Parada
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| |
Collapse
|
31
|
Mechanical constraint from growing jaw facilitates mammalian dental diversity. Proc Natl Acad Sci U S A 2017; 114:9403-9408. [PMID: 28808032 DOI: 10.1073/pnas.1707410114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Much of the basic information about individual organ development comes from studies using model species. Whereas conservation of gene regulatory networks across higher taxa supports generalizations made from a limited number of species, generality of mechanistic inferences remains to be tested in tissue culture systems. Here, using mammalian tooth explants cultured in isolation, we investigate self-regulation of patterning by comparing developing molars of the mouse, the model species of mammalian research, and the bank vole. A distinct patterning difference between the vole and the mouse molars is the alternate cusp offset present in the vole. Analyses of both species using 3D reconstructions of developing molars and jaws, computational modeling of cusp patterning, and tooth explants cultured with small braces show that correct cusp offset requires constraints on the lateral expansion of the developing tooth. Vole molars cultured without the braces lose their cusp offset, and mouse molars cultured with the braces develop a cusp offset. Our results suggest that cusp offset, which changes frequently in mammalian evolution, is more dependent on the 3D support of the developing jaw than other aspects of tooth shape. This jaw-tooth integration of a specific aspect of the tooth phenotype indicates that organs may outsource specific aspects of their morphology to be regulated by adjacent body parts or organs. Comparative studies of morphologically different species are needed to infer the principles of organogenesis.
Collapse
|
32
|
Yachuan Z, Xuedong Z, Liwei Z. [Expression and function of microRNAs in enamel development]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:328-333. [PMID: 28675021 DOI: 10.7518/hxkq.2017.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
microRNAs (miRNAs) are endogenous short, noncoding RNAs that can negatively regulate gene expression post-transcriptionally. miRNAs are involved in multiple developmental events in various tissues and organs, including dental enamel development. Any disruption during enamel development may result in inherited enamel malformations. This article reviews the expression and function of miRNAs in enamel development.
Collapse
Affiliation(s)
- Zhou Yachuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhou Xuedong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Liwei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
De Novo Genome and Transcriptome Assembly of the Canadian Beaver ( Castor canadensis). G3-GENES GENOMES GENETICS 2017; 7:755-773. [PMID: 28087693 PMCID: PMC5295618 DOI: 10.1534/g3.116.038208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Canadian beaver (Castor canadensis) is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 ×) long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 ×) and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon–gene models derived from 9805 full-length open reading frames (FL-ORFs) constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs) gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology.
Collapse
|
34
|
Wang Q, Oh JW, Lee HL, Dhar A, Peng T, Ramos R, Guerrero-Juarez CF, Wang X, Zhao R, Cao X, Le J, Fuentes MA, Jocoy SC, Rossi AR, Vu B, Pham K, Wang X, Mali NM, Park JM, Choi JH, Lee H, Legrand JMD, Kandyba E, Kim JC, Kim M, Foley J, Yu Z, Kobielak K, Andersen B, Khosrotehrani K, Nie Q, Plikus MV. A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning. eLife 2017; 6:22772. [PMID: 28695824 PMCID: PMC5610035 DOI: 10.7554/elife.22772] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/29/2017] [Indexed: 01/27/2023] Open
Abstract
The control principles behind robust cyclic regeneration of hair follicles (HFs) remain unclear. Using multi-scale modeling, we show that coupling inhibitors and activators with physical growth of HFs is sufficient to drive periodicity and excitability of hair regeneration. Model simulations and experimental data reveal that mouse skin behaves as a heterogeneous regenerative field, composed of anatomical domains where HFs have distinct cycling dynamics. Interactions between fast-cycling chin and ventral HFs and slow-cycling dorsal HFs produce bilaterally symmetric patterns. Ear skin behaves as a hyper-refractory domain with HFs in extended rest phase. Such hyper-refractivity relates to high levels of BMP ligands and WNT antagonists, in part expressed by ear-specific cartilage and muscle. Hair growth stops at the boundaries with hyper-refractory ears and anatomically discontinuous eyelids, generating wave-breaking effects. We posit that similar mechanisms for coupled regeneration with dominant activator, hyper-refractory, and wave-breaker regions can operate in other actively renewing organs.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Mathematics, University of California, Irvine, United States,Center for Complex Biological Systems, University of California, Irvine, United States
| | - Ji Won Oh
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Hye-Lim Lee
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Anukriti Dhar
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Tao Peng
- Department of Mathematics, University of California, Irvine, United States
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Christian Fernando Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Ran Zhao
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoling Cao
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Department of Burn Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jonathan Le
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Melisa A Fuentes
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Shelby C Jocoy
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Antoni R Rossi
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Brian Vu
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Kim Pham
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Xiaoyang Wang
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Nanda Maya Mali
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Jung Min Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - June-Hyug Choi
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Hyunsu Lee
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, Korea
| | - Julien M D Legrand
- UQ Diamantina Institute, Experimental Dermatology Group, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Eve Kandyba
- Department of Pathology, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, United States
| | - Jung Chul Kim
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Moonkyu Kim
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - John Foley
- Department of Dermatology, Medical Sciences Program, Indiana University School of Medicine, Bloomington, United States
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Krzysztof Kobielak
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Centre of New Technologies, CeNT, University of Warsaw, Warsaw, Poland
| | - Bogi Andersen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Departments of Medicine and Biological Chemistry, University of California, Irvine, United States
| | - Kiarash Khosrotehrani
- UQ Diamantina Institute, Experimental Dermatology Group, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, United States,Center for Complex Biological Systems, University of California, Irvine, United States,Department of Developmental and Cell Biology, University of California, Irvine, United States, (QN)
| | - Maksim V Plikus
- Center for Complex Biological Systems, University of California, Irvine, United States,Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States, (MVP)
| |
Collapse
|
35
|
Yan X, Kang D, Pan J, Jiang C, Lin Y, Qi S. Osteoblastic differentiation and cell calcification of adamantinomatous craniopharyngioma induced by bone morphogenetic protein-2. Cancer Biomark 2017; 18:191-198. [PMID: 27983534 DOI: 10.3233/cbm-161576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The calcification of adamantinomatous craniopharyngioma (ACP) often creates difficulties for surgical therapy. Nevertheless, the mechanism of ACP calcification is unclear. Our previous studies demonstrated that osteoblastic factors might play important roles in ACP calcification. OBJECTIVE We examined the effects of recombinant human Bmp2 on ACP cell differentiation by testing osteoblastic proteins and calcium deposition. METHODS The expression of osteoblastic factors including osteopontin (OPN), Runx2, and osterix in Bmp2-treated ACP cells was examined by western blot and/or real time PCR. ALP activity and calcium deposition after Bmp2 induction were also tested. RESULTS Bmp2 significantly amplified the expression of Runx2, Osterix and OPN, as well as ALP activity. Both of these effects could be repressed by noggin treatment. Bmp2 also significantly induced the calcification of ACP, and noggin inhibited this calcium deposition. CONCLUSION Our study demonstrated for the first time that ACP cells could differentiate into an osteoblastic lineage via induction by Bmp2. The mechanism of ACP calcification likely involves osteoblastic differentiation modulated by Bmp2. Further studies targeting Bmp2 cascades could result in novel therapeutic interventions for recurrent ACP.
Collapse
Affiliation(s)
- Xiaorong Yan
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Pan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changzhen Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Sun Z, Yu W, Sanz Navarro M, Sweat M, Eliason S, Sharp T, Liu H, Seidel K, Zhang L, Moreno M, Lynch T, Holton NE, Rogers L, Neff T, Goodheart MJ, Michon F, Klein OD, Chai Y, Dupuy A, Engelhardt JF, Chen Z, Amendt BA. Sox2 and Lef-1 interact with Pitx2 to regulate incisor development and stem cell renewal. Development 2016; 143:4115-4126. [PMID: 27660324 PMCID: PMC5117215 DOI: 10.1242/dev.138883] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022]
Abstract
Sox2 marks dental epithelial stem cells (DESCs) in both mammals and reptiles, and in this article we demonstrate several Sox2 transcriptional mechanisms that regulate dental stem cell fate and incisor growth. Conditional Sox2 deletion in the oral and dental epithelium results in severe craniofacial defects, including impaired dental stem cell proliferation, arrested incisor development and abnormal molar development. The murine incisor develops initially but is absorbed independently of apoptosis owing to a lack of progenitor cell proliferation and differentiation. Tamoxifen-induced inactivation of Sox2 demonstrates the requirement of Sox2 for maintenance of the DESCs in adult mice. Conditional overexpression of Lef-1 in mice increases DESC proliferation and creates a new labial cervical loop stem cell compartment, which produces rapidly growing long tusk-like incisors, and Lef-1 epithelial overexpression partially rescues the tooth arrest in Sox2 conditional knockout mice. Mechanistically, Pitx2 and Sox2 interact physically and regulate Lef-1, Pitx2 and Sox2 expression during development. Thus, we have uncovered a Pitx2-Sox2-Lef-1 transcriptional mechanism that regulates DESC homeostasis and dental development.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Wenjie Yu
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Maria Sanz Navarro
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Mason Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Thad Sharp
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Huan Liu
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P.R.China
| | - Kerstin Seidel
- Department of Orofacial Sciences and Program in Craniofacial Biology, UCSF, San Francisco, CA 94143-0442, USA
| | - Li Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P.R.China
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Thomas Lynch
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Nathan E Holton
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Laura Rogers
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Traci Neff
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael J Goodheart
- Department of Obstetrics and Gynecology, The University of Iowa, Iowa City, IA 52242, USA
| | - Frederic Michon
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, UCSF, San Francisco, CA 94143-0442, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Adam Dupuy
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P.R.China
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
37
|
Ahi EP. Signalling pathways in trophic skeletal development and morphogenesis: Insights from studies on teleost fish. Dev Biol 2016; 420:11-31. [PMID: 27713057 DOI: 10.1016/j.ydbio.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
During the development of the vertebrate feeding apparatus, a variety of complicated cellular and molecular processes participate in the formation and integration of individual skeletal elements. The molecular mechanisms regulating the formation of skeletal primordia and their development into specific morphological structures are tightly controlled by a set of interconnected signalling pathways. Some of these pathways, such as Bmp, Hedgehog, Notch and Wnt, are long known for their pivotal roles in craniofacial skeletogenesis. Studies addressing the functional details of their components and downstream targets, the mechanisms of their interactions with other signals as well as their potential roles in adaptive morphological divergence, are currently attracting considerable attention. An increasing number of signalling pathways that had previously been described in different biological contexts have been shown to be important in the regulation of jaw skeletal development and morphogenesis. In this review, I provide an overview of signalling pathways involved in trophic skeletogenesis emphasizing studies of the most species-rich group of vertebrates, the teleost fish, which through their evolutionary history have undergone repeated episodes of spectacular trophic diversification.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland.
| |
Collapse
|
38
|
Puthiyaveetil JSV, Kota K, Chakkarayan R, Chakkarayan J, Thodiyil AKP. Epithelial - Mesenchymal Interactions in Tooth Development and the Significant Role of Growth Factors and Genes with Emphasis on Mesenchyme - A Review. J Clin Diagn Res 2016; 10:ZE05-ZE09. [PMID: 27790596 DOI: 10.7860/jcdr/2016/21719.8502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/26/2016] [Indexed: 11/24/2022]
Abstract
The recent advancements in medical research field mainly highlights the genetic and molecular aspects of various disease processes and related treatment options, in a specialized "custom-made" approach. The medical and dental field has made tremendous progress in providing even with the smallest insight into pathological entities, thus, making patient management more fruitful. But, short comings have occurred in dental treatments involving odontogenic lesions mainly due to poor understanding of the developmental cycle involved during early stages of developmental process. Multiple numbers of interactions take place during embryo formation and further proliferation of tissue. One such important step is the interaction between epithelium and mesenchyme which tantamount to functional requirements of an individual tooth. The role of extra cellular molecules and genes has to be studied in depth to assess the impact and significance attached to it as the synergistic function of various elements underlines the complex process of development.
Collapse
Affiliation(s)
| | - Kasim Kota
- Professor and Head, Department of Oral Pathology and Microbiology, Kannur Dental College , Kannur, Kerala, India
| | - Roopesh Chakkarayan
- Senior Lecturer, Department of Conservative Dentistry and Endodontics, Kannur Dental College , Kannur, Kerala, India
| | - Jithesh Chakkarayan
- Reader, Department of Orthodontics and Dentofacial Orthopaedics, Kannur Dental College , Kannur, Kerala, India
| | | |
Collapse
|
39
|
Structural and Morphometric Comparison of Lower Incisors in PACAP-Deficient and Wild-Type Mice. J Mol Neurosci 2016; 59:300-8. [PMID: 27154515 DOI: 10.1007/s12031-016-0765-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread distribution. PACAP plays an important role in the development of the nervous system, it has a trophic and protective effect, and it is also implicated in the regulation of various physiological functions. Teeth are originated from the mesenchyme of the neural crest and the ectoderm of the first branchial arch, suggesting similarities with the development of the nervous system. Earlier PACAP-immunoreactive fibers have been found in the odontoblastic and subodontoblastic layers of the dental pulp. Our previous examinations have shown that PACAP deficiency causes alterations in the morphology and structure of the developing molars of 7-day-old mice. In our present study, morphometric and structural comparison was performed on the incisors of 1-year-old wild-type and PACAP-deficient mice. Hard tissue density measurements and morphometric comparison were carried out on the mandibles and the lower incisors with micro-CT. For structural examination, Raman microscopy was applied on frontal thin sections of the mandible. With micro-CT morphometrical measurements, the size of the incisors and the relative volume of the pulp to dentin were significantly smaller in the PACAP-deficient group compared to the wild-type animals. The density of calcium hydroxyapatite in the dentin was reduced in the PACAP-deficient mice. No structural differences could be observed in the enamel with Raman microscopy. Significant differences were found in the dentin of PACAP-deficient mice with Raman microscopy, where increased carbonate/phosphate ratio indicates higher intracrystalline disordering. The evaluation of amide III bands in the dentin revealed higher structural diversity in wild-type mice. Based upon our present and previous results, it is obvious that PACAP plays an important role in tooth development with the regulation of morphogenesis, dentin, and enamel mineralization. Further studies are required to clarify the molecular background of the effects of PACAP on tooth development.
Collapse
|
40
|
Mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-induced Smad1/5/8 phosphorylation. Sci Rep 2016; 6:23670. [PMID: 27030100 PMCID: PMC4814822 DOI: 10.1038/srep23670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/11/2016] [Indexed: 02/04/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate hard tissue formation, including bone and tooth. Growth differentiation factor 5 (GDF5), a known BMP, is expressed in cartilage and regulates chondrogenesis, and mutations have been shown to cause osteoarthritis. Notably, GDF5 is also expressed in periodontal ligament tissue; however, its role during tooth development is unclear. Here, we used cell culture and in vivo analyses to determine the role of GDF5 during tooth development. GDF5 and its associated BMP receptors are expressed at the protein and mRNA levels during postnatal tooth development, particularly at a stage associated with enamel formation. Furthermore, whereas BMP2 was observed to induce evidently the differentiation of enamel-forming ameloblasts, excess GDF5 induce mildly this differentiation. A mouse model harbouring a mutation in GDF5 (W408R) showed enhanced enamel formation in both the incisors and molars, but not in the tooth roots. Overexpression of the W408R GDF5 mutant protein was shown to induce BMP2-mediated mRNA expression of enamel matrix proteins and downstream phosphorylation of Smad1/5/8. These results suggest that mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-signalling.
Collapse
|
41
|
Yang Z, Balic A, Michon F, Juuri E, Thesleff I. Mesenchymal Wnt/β-Catenin Signaling Controls Epithelial Stem Cell Homeostasis in Teeth by Inhibiting the Antiapoptotic Effect of Fgf10. Stem Cells 2016; 33:1670-81. [PMID: 25693510 DOI: 10.1002/stem.1972] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/17/2015] [Indexed: 01/05/2023]
Abstract
Continuous growth of rodent incisors relies on epithelial stem cells (SCs) located in the SC niche called labial cervical loop (LaCL). Here, we found a population of apoptotic cells residing in a specific location of the LaCL in mouse incisor. Activated Caspase 3 and Caspase 9, expressed in this location colocalized in part with Lgr5 in putative SCs. The addition of Caspase inhibitors to incisors ex vivo resulted in concentration dependent thickening of LaCL. To examine the role of Wnt signaling in regulation of apoptosis, we exposed the LaCL of postnatal day 2 (P2) mouse incisor ex vivo to BIO, a known activator of Wnt/β-catenin signaling. This resulted in marked thinning of LaCL as well as enhanced apoptosis. We found that Wnt/β-catenin signaling was intensely induced by BIO in the mesenchyme surrounding the LaCL, but, unexpectedly, no β-catenin activity was detected in the LaCL epithelium either before or after BIO treatment. We discovered that the expression of Fgf10, an essential growth factor for incisor epithelial SCs, was dramatically downregulated in the mesenchyme around BIO-treated LaCL, and that exogenous Fgf10 could rescue the thinning of the LaCL caused by BIO. We conclude that the homeostasis of the epithelial SC population in the mouse incisor depends on a proper rate of apoptosis and that this apoptosis is controlled by signals from the mesenchyme surrounding the LaCL. Fgf10 is a key mesenchymal signal limiting apoptosis of incisor epithelial SCs and its expression is negatively regulated by Wnt/β-catenin. Stem Cells 2015;33:1670-1681.
Collapse
Affiliation(s)
- Zheqiong Yang
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, Hubei, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
Lee DS, Choung HW, Kim HJ, Gronostajski RM, Yang YI, Ryoo HM, Lee ZH, Kim HH, Cho ES, Park JC. NFI-C regulates osteoblast differentiation via control of osterix expression. Stem Cells 2015; 32:2467-79. [PMID: 24801901 DOI: 10.1002/stem.1733] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/30/2014] [Indexed: 01/21/2023]
Abstract
In bone marrow, bone marrow stromal cells (BMSCs) have the capacity to differentiate into osteoblasts and adipocytes. Age-related osteoporosis is associated with a reciprocal decrease of osteogenesis and an increase of adipogenesis in bone marrow. In this study, we demonstrate that disruption of nuclear factor I-C (NFI-C) impairs osteoblast differentiation and bone formation, and increases bone marrow adipocytes. Interestingly, NFI-C controls postnatal bone formation but does not influence prenatal bone development. We also found decreased NFI-C expression in osteogenic cells from human osteoporotic patients. Notably, transplantation of Nfic-overexpressing BMSCs stimulates osteoblast differentiation and new bone formation, but inhibits adipocyte differentiation by suppressing peroxisome proliferator-activated receptor gamma expression in Nfic(-/-) mice showing an age-related osteoporosis-like phenotype. Finally, NFI-C directly regulates Osterix expression but acts downstream of the bone morphogenetic protein-2-Runx2 pathway. These results suggest that NFI-C acts as a transcriptional switch in cell fate determination between osteoblast and adipocyte differentiation in BMSCs. Therefore, regulation of NFI-C expression in BMSCs could be a novel therapeutic approach for treating age-related osteoporosis.
Collapse
Affiliation(s)
- Dong-Seol Lee
- Department of Oral Histology-Developmental Biology, Seoul National University, Chongro-gu, Seoul, Korea; Department of Anatomy and Orofacial Development, School of Dentistry, Chosun University, Dong-gu, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine Growth Factor Rev 2015; 27:129-39. [PMID: 26747371 DOI: 10.1016/j.cytogfr.2015.11.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 01/04/2023]
Abstract
BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early patterning of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.
Collapse
|
44
|
Dick DG, Maxwell EE. Ontogenetic Tooth Reduction in Stenopterygius quadriscissus (Reptilia: Ichthyosauria): Negative Allometry, Changes in Growth Rate, and Early Senescence of the Dental Lamina. PLoS One 2015; 10:e0141904. [PMID: 26579712 PMCID: PMC4651570 DOI: 10.1371/journal.pone.0141904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/14/2015] [Indexed: 11/18/2022] Open
Abstract
We explore the functional, developmental, and evolutionary processes which are argued to produce tooth reduction in the extinct marine reptile Stenopterygius quadriscissus (Reptilia: Ichthyosauria). We analyze the relationship between mandible growth and tooth size, shape, and count, to establish an ontogenetic trend. The pattern in S. quadriscissus is consistent with hypotheses of tooth size reduction by neutral selection, and this unusual morphology (a functionally edentulous rostrum) was produced by a series of different evolutionary developmental changes that are known for other taxa showing tooth reduction and loss. Specifically, this species evolved functional edentulism by evolutionary changes in the growth allometry of the dentition and by altering growth rates through ontogeny. This observation supports previous hypotheses that S. quadriscissus underwent ontogenetic tooth reduction. Tooth reduction in S. quadriscissus may be caused by unique selective pressures resulting from prey choice and feeding behavior, expanding our current understanding of the mechanisms producing tooth reduction.
Collapse
Affiliation(s)
- Daniel G. Dick
- Department of Paleontology, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
- Department of Geoscience, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- * E-mail:
| | - Erin E. Maxwell
- Department of Paleontology, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| |
Collapse
|
45
|
Bloomquist RF, Parnell NF, Phillips KA, Fowler TE, Yu TY, Sharpe PT, Streelman JT. Coevolutionary patterning of teeth and taste buds. Proc Natl Acad Sci U S A 2015; 112:E5954-62. [PMID: 26483492 PMCID: PMC4640805 DOI: 10.1073/pnas.1514298112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.
Collapse
Affiliation(s)
- Ryan F Bloomquist
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332; College of Dental Medicine, Georgia Regents University, Augusta, GA 30912;
| | - Nicholas F Parnell
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Kristine A Phillips
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Teresa E Fowler
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Tian Y Yu
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London WC2R 2LS, United Kingdom
| | - Paul T Sharpe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London WC2R 2LS, United Kingdom
| | - J Todd Streelman
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332;
| |
Collapse
|
46
|
Nakatomi C, Nakatomi M, Saito K, Harada H, Ohshima H. The enamel knot-like structure is eternally maintained in the apical bud of postnatal mouse incisors. Arch Oral Biol 2015; 60:1122-30. [DOI: 10.1016/j.archoralbio.2015.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/30/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|
47
|
Vassallo AI, Becerra F, Echeverría AI, Casinos A. Ontogenetic integration between force production and force reception: a case study inCtenomys(Rodentia: Caviomorpha). ACTA ZOOL-STOCKHOLM 2015. [DOI: 10.1111/azo.12119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Aldo I. Vassallo
- Departamento de Biología; Facultad de Ciencias Exactas y Naturales; Instituto de investigaciones Marinas y Costeras; Universidad Nacional de Mar del Plata - CONICET; Dean Funes 3250 Mar del Plata 7600 Argentina
| | - Federico Becerra
- Departamento de Biología; Facultad de Ciencias Exactas y Naturales; Instituto de investigaciones Marinas y Costeras; Universidad Nacional de Mar del Plata - CONICET; Dean Funes 3250 Mar del Plata 7600 Argentina
| | - Alejandra I. Echeverría
- Departamento de Biología; Facultad de Ciencias Exactas y Naturales; Instituto de investigaciones Marinas y Costeras; Universidad Nacional de Mar del Plata - CONICET; Dean Funes 3250 Mar del Plata 7600 Argentina
| | - Adriá Casinos
- Departamento de Biología Animal; Facultat de Biología; Universitat de Barcelona; Avinguda Diagonal 643 Barcelona Spain
| |
Collapse
|
48
|
Identification and analysis of a novel bmp4 enhancer in Fugu genome. Arch Oral Biol 2015; 60:540-5. [PMID: 25594624 DOI: 10.1016/j.archoralbio.2014.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/18/2014] [Accepted: 12/07/2014] [Indexed: 12/24/2022]
Abstract
Spatiotemporal expression of bone morphogenetic protein 4 (Bmp4) in epithelial and mesenchymal cells is critical for the development of many organs including teeth. Since Bmp4 has a complex and widespread regulatory area in mammals, the tissue-specific enhancers that are responsible for mesenchymal expression of Bmp4 are difficult to identify in mammals. TakiFugu rubripes (Fugu, pufferfish) has a highly compact genome size and is widely used in comparative genomics studies of gene regulatory mechanisms. In this study, we used the Fugu genome to evaluate the 15kb promoter region upstream of the Fugu bmp4 gene. By DNA segmental cloning and luciferase assay with two dental odontoblast-like cell lines, a dental ameloblast-like cell line, and a kidney fibroblast cell line, we identified a 485bp cis-regulatory enhancer between -4213 and -3728bp of the Fugu bmp4 gene. This enhancer showed strong transcriptional activity in all three dental cell lines and, to a lesser extent, also in kidney fibroblast cells. Though not located in an evolutionary conserved region, the enhancer activity for the DNA segment is intense. This is the first time a bmp4 enhancer sequence with activity in both mesenchymal and epithelial cells has been identified, which will help to decode the mechanism of tooth development in vertebrates.
Collapse
|
49
|
Balic A, Thesleff I. Tissue Interactions Regulating Tooth Development and Renewal. Curr Top Dev Biol 2015; 115:157-86. [DOI: 10.1016/bs.ctdb.2015.07.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Microscopic analysis of molar--incisor malformation. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 119:544-52. [PMID: 25544405 DOI: 10.1016/j.oooo.2014.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/10/2014] [Accepted: 10/19/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Molar-incisor malformation (MIM) is a newly discovered type of dental anomaly that involves a characteristic root malformation of the permanent first molars. The aim of this study was to reveal the microstructure of MIM teeth in order to determine their origin. STUDY DESIGN Four MIM teeth were extracted from a 9-year-old girl due to severe mobility. The detailed microstructure of the teeth was determined by examinations with micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, immunohistochemical staining, and scanning electron microscopy to reveal the detailed microstructure. RESULTS Micro-CT and H&E staining revealed the pulpal floor comprising three layers: upper, middle, and lower. Amorphous hard tissues and hyperactive cells were observed in the middle layer of the pulpal floor, and the cells stained positively for dentin sialoprotein and osteocalcin, but not for collagen XII. CONCLUSION The results of the present study imply that MIM-affected molars probably result from inappropriate differentiation of the apical pulp and dental follicle.
Collapse
|