1
|
Martin CG, Bent JS, Hill T, Topalidou I, Singhvi A. Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans. Dev Cell 2024; 59:1668-1688.e7. [PMID: 38670103 PMCID: PMC11233253 DOI: 10.1016/j.devcel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.
Collapse
Affiliation(s)
- Cecilia G Martin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James S Bent
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Irini Topalidou
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Cebul ER, Marivin A, Wexler LR, Perrat PN, Bénard CY, Garcia-Marcos M, Heiman MG. SAX-7/L1CAM acts with the adherens junction proteins MAGI-1, HMR-1/Cadherin, and AFD-1/Afadin to promote glial-mediated dendrite extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575259. [PMID: 38260503 PMCID: PMC10802611 DOI: 10.1101/2024.01.11.575259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Adherens junctions (AJs) are a fundamental organizing structure for multicellular life. Although AJs are studied mainly in epithelia, their core function - stabilizing cell contacts by coupling adhesion molecules to the cytoskeleton - is important in diverse tissues. We find that two C. elegans sensory neurons, URX and BAG, require conserved AJ proteins for dendrite morphogenesis. We previously showed that URX and BAG dendrites attach to the embryonic nose via the adhesion molecule SAX-7/L1CAM, acting both in neurons and glia, and then extend by stretch during embryo elongation. Here, we find that a PDZ-binding motif (PB) in the SAX-7 cytoplasmic tail acts with other interaction motifs to promote dendrite extension. Using pull-down assays, we find that the SAX-7 PB binds the multi-PDZ scaffolding protein MAGI-1, which bridges it to the cadherin-catenin complex protein HMP-2/β-catenin. Using cell-specific rescue and depletion, we find that both MAGI-1 and HMR-1/Cadherin act in glia to non-autonomously promote dendrite extension. Double mutant analysis indicates that each protein can act independently of SAX-7, suggesting a multivalent adhesion complex. The SAX-7 PB motif also binds AFD-1/Afadin, loss of which further enhances sax-7 BAG dendrite defects. As MAGI-1, HMR-1, and AFD-1 are all found in epithelial AJs, we propose that an AJ-like complex in glia promotes dendrite extension.
Collapse
Affiliation(s)
- Elizabeth R. Cebul
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Present address: Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Arthur Marivin
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA, Boston University School of Medicine, Boston, MA 02118, USA
| | - Leland R. Wexler
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Paola N. Perrat
- Department of Biological Sciences, CERMO-FC Research Center, Universite du Québec à Montréal, Montreál, QC, Canada
| | - Claire Y. Bénard
- Department of Biological Sciences, CERMO-FC Research Center, Universite du Québec à Montréal, Montreál, QC, Canada
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| | - Maxwell G. Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Zhang B, Duan H, Kavaler J, Wei L, Eberl DF, Lai EC. A nonneural miRNA cluster mediates hearing via repression of two neural targets. Genes Dev 2023; 37:1041-1051. [PMID: 38110249 PMCID: PMC10760640 DOI: 10.1101/gad.351052.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
We show here that mir-279/996 are absolutely essential for development and function of Johnston's organ (JO), the primary proprioceptive and auditory organ in Drosophila Their deletion results in highly aberrant cell fate determination, including loss of scolopale cells and ectopic neurons, and mutants are electrophysiologically deaf. In vivo activity sensors and mosaic analyses indicate that these seed-related miRNAs function autonomously to suppress neural fate in nonneuronal cells. Finally, genetic interactions pinpoint two neural targets (elav and insensible) that underlie miRNA mutant JO phenotypes. This work uncovers how critical post-transcriptional regulation of specific miRNA targets governs cell specification and function of the auditory system.
Collapse
Affiliation(s)
- Binglong Zhang
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Hong Duan
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Joshua Kavaler
- Department of Biology, Colby College, Waterville, Maine 04901, USA
| | - Lu Wei
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA;
| |
Collapse
|
4
|
Fung W, Tan TM, Kolotuev I, Heiman MG. A sex-specific switch in a single glial cell patterns the apical extracellular matrix. Curr Biol 2023; 33:4174-4186.e7. [PMID: 37708887 PMCID: PMC10578079 DOI: 10.1016/j.cub.2023.08.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Apical extracellular matrix (aECM) constitutes the interface between every tissue and the outside world. It is patterned into diverse tissue-specific structures through unknown mechanisms. Here, we show that a male-specific genetic switch in a single C. elegans glial cell patterns the overlying aECM from a solid sheet to an ∼200 nm pore, thus allowing a male sensory neuron to access the environment. Using cell-specific genetic sex reversal, we find that this switch reflects an inherent sex difference in the glial cell that is independent of the sex identity of the surrounding neurons. Through candidate and unbiased genetic screens, we find that this glial sex difference is controlled by factors shared with neurons (mab-3, lep-2, and lep-5) as well as previously unidentified regulators whose effects may be glia specific (nfya-1, bed-3, and jmjd-3.1). The switch results in male-specific glial expression of a secreted Hedgehog-related protein, GRL-18, that we discover localizes to transient nanoscale rings at sites where aECM pores will form. Using electron microscopy, we find that blocking male-specific gene expression in glia prevents pore formation, whereas forcing male-specific glial gene expression induces an ectopic pore. Thus, a switch in gene expression in a single cell is necessary and sufficient to pattern aECM into a specific structure. Our results highlight that aECM is not a simple homogeneous meshwork, but instead is composed of discrete local features that reflect the identity of the underlying cells.
Collapse
Affiliation(s)
- Wendy Fung
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Taralyn M Tan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Kenis S, Istiban MN, Van Damme S, Vandewyer E, Watteyne J, Schoofs L, Beets I. Ancestral glycoprotein hormone-receptor pathway controls growth in C. elegans. Front Endocrinol (Lausanne) 2023; 14:1200407. [PMID: 37409228 PMCID: PMC10319355 DOI: 10.3389/fendo.2023.1200407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
In vertebrates, thyrostimulin is a highly conserved glycoprotein hormone that, besides thyroid stimulating hormone (TSH), is a potent ligand of the TSH receptor. Thyrostimulin is considered the most ancestral glycoprotein hormone and orthologs of its subunits, GPA2 and GPB5, are widely conserved across vertebrate and invertebrate animals. Unlike TSH, however, the functions of the thyrostimulin neuroendocrine system remain largely unexplored. Here, we identify a functional thyrostimulin-like signaling system in Caenorhabditis elegans. We show that orthologs of GPA2 and GPB5, together with thyrotropin-releasing hormone (TRH) related neuropeptides, constitute a neuroendocrine pathway that promotes growth in C. elegans. GPA2/GPB5 signaling is required for normal body size and acts through activation of the glycoprotein hormone receptor ortholog FSHR-1. C. elegans GPA2 and GPB5 increase cAMP signaling by FSHR-1 in vitro. Both subunits are expressed in enteric neurons and promote growth by signaling to their receptor in glial cells and the intestine. Impaired GPA2/GPB5 signaling causes bloating of the intestinal lumen. In addition, mutants lacking thyrostimulin-like signaling show an increased defecation cycle period. Our study suggests that the thyrostimulin GPA2/GPB5 pathway is an ancient enteric neuroendocrine system that regulates intestinal function in ecdysozoans, and may ancestrally have been involved in the control of organismal growth.
Collapse
Affiliation(s)
- Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Sara Van Damme
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Elke Vandewyer
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Fritzsch B, Schultze HP, Elliott KL. The evolution of the various structures required for hearing in Latimeria and tetrapods. IBRO Neurosci Rep 2023; 14:325-341. [PMID: 37006720 PMCID: PMC10063410 DOI: 10.1016/j.ibneur.2023.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membrane, cochlear aqueduct, lungs, and tympanic membranes. The lagena of the inner ear evolved from a common macula of the saccule several times. It is near this lagena where the basilar papilla forms in Latimeria and tetrapods. The basilar papilla is lost in lungfish, certain caecilians and salamanders, but is transformed into the cochlea of mammals. Hearing in bony fish and tetrapods involves particle motion to improve sound pressure reception within the ear but also works without air. Lungs evolved after the chondrichthyans diverged and are present in sarcopterygians and actinopterygians. Lungs open to the outside in tetraposomorph sarcopterygians but are transformed from a lung into a swim bladder in ray-finned fishes. Elasmobranchs, polypterids, and many fossil fishes have open spiracles. In Latimeria, most frogs, and all amniotes, a tympanic membrane covering the spiracle evolved independently. The tympanic membrane is displaced by pressure changes and enabled tetrapods to perceive airborne sound pressure waves. The hyomandibular bone is associated with the spiracle/tympanic membrane in actinopterygians and piscine sarcopterygians. In tetrapods, it transforms into the stapes that connects the oval window of the inner ear with the tympanic membrane and allows hearing at higher frequencies by providing an impedance matching and amplification mechanism. The three characters-basilar papilla, cochlear aqueduct, and tympanic membrane-are fluid related elements in sarcopterygians, which interact with a set of unique features in Latimeria. Finally, we explore the possible interaction between the unique intracranial joint, basicranial muscle, and an enlarged notochord that allows fluid flow to the foramen magnum and the cochlear aqueduct which houses a comparatively small brain.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, IA, USA
- Correspondence to: Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA.
| | | | - Karen L. Elliott
- Department of Biology & Department of Otolaryngology, University of Iowa, IA, USA
| |
Collapse
|
7
|
Fung W, Tan TM, Kolotuev I, Heiman MG. A sex-specific switch in a single glial cell patterns the apical extracellular matrix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533199. [PMID: 36993293 PMCID: PMC10055199 DOI: 10.1101/2023.03.17.533199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Apical extracellular matrix (aECM) constitutes the interface between every tissue and the outside world. It is patterned into diverse tissue-specific structures through unknown mechanisms. Here, we show that a male-specific genetic switch in a single C. elegans glial cell patterns the aECM into a ∼200 nm pore, allowing a male sensory neuron to access the environment. We find that this glial sex difference is controlled by factors shared with neurons ( mab-3, lep-2, lep-5 ) as well as previously unidentified regulators whose effects may be glia-specific ( nfya-1, bed-3, jmjd-3.1 ). The switch results in male-specific expression of a Hedgehog-related protein, GRL-18, that we discover localizes to transient nanoscale rings at sites of aECM pore formation. Blocking male-specific gene expression in glia prevents pore formation, whereas forcing male-specific expression induces an ectopic pore. Thus, a switch in gene expression in a single cell is necessary and sufficient to pattern aECM into a specific structure.
Collapse
Affiliation(s)
- Wendy Fung
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| | - Taralyn M. Tan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| | - Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Maxwell G. Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
8
|
Fritzsch B, Kersigo J, Rejent K, Gherman W, Frank PW, Giovannucci DR, Maklad A. Hair cell morphological patterns and polarity organization in the sea lamprey vestibular cristae. Anat Rec (Hoboken) 2023. [PMID: 36651665 DOI: 10.1002/ar.25164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
The inner ear of the sea lamprey was examined by scanning electron microscopy, antibody labeling with tubulin, Myo7a, Spectrin, and Phalloidin stain to elucidate the canal cristae organization and the morphology and polarity of the hair cells. We characterized the hair cell stereocilia bundles and their morphological polarity with respect to the kinocilia. We identified three types of hair cells. In Type 1 hair cells, the kinocilia were slightly longer than the tallest stereocilia. This type was located along the medial bank of the crista and their polarity, based on kinocilia location, was uniformly pointed ampullipetally. Type 2 hair cells that had kinocilia that were much longer than the stereocilia, were most abundant in the central region of the crista. This type of hair cell displayed variable polarity. Type 3 hair cells had extremely long kinocilia (~40-50 μm long) and with extremely short stereocilia. They were mostly located in the lateral zone crista and displayed ampullipetal polarity. Myo7a and tubulin antibodies revealed that hair cells and vestibular afferents are distributed across the canal cristae in the lamprey, covering the area of cruciate eminence; a feature that is absent in more derived vertebrates. Spectrin shows hair cells of varying polarities in the central zone. In this zone, some cells followed the main polarity vector (lateral) like those in medial and lateral zones, whereas other cells displayed polarities that carried up to 40° from the main polarity vector.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Jennifer Kersigo
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Kassidy Rejent
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Wesley Gherman
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Patrick W Frank
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA.,Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - David R Giovannucci
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA.,Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Adel Maklad
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA.,Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
9
|
Wang Z, Heid B, Lu R, Sachdeva M, Edwards MR, Ren J, Cecere TE, Khan D, Jeboda T, Kirsch DG, Reilly CM, Dai R, Ahmed SA. Deletion of microRNA-183-96-182 Cluster in Lymphocytes Suppresses Anti-DsDNA Autoantibody Production and IgG Deposition in the Kidneys in C57BL/6-Fas lpr/lpr Mice. Front Genet 2022; 13:840060. [PMID: 35873462 PMCID: PMC9301314 DOI: 10.3389/fgene.2022.840060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulated miRNAs have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). Our previous study reported a substantial increase in three miRNAs located at the miR-183-96-182 cluster (miR-183C) in several autoimmune lupus-prone mice, including MRL/lpr and C57BL/6-lpr (B6/lpr). This study reports that in vitro inhibition of miR-182 alone or miR-183C by specific antagomirs in activated splenocytes from autoimmune-prone MRL/lpr and control MRL mice significantly reduced lupus-related inflammatory cytokines, interferon-gamma (IFNγ), and IL-6 production. To further characterize the role of miR-182 and miR-183C cluster in vivo in lupus-like disease and lymphocyte phenotypes, we used hCD2-iCre to generate B6/lpr mice with conditional deletion of miR-182 or miR-183C in CD2+ lymphocytes (miR-182-/-B6/lpr and miR-183C-/-B6/lpr). The miR-182-/-B6/lpr and miR-183C-/-B6/lpr mice had significantly reduced deposition of IgG immunocomplexes in the kidney when compared to their respective littermate controls, although there appeared to be no remarkable changes in renal pathology. Importantly, we observed a significant reduction of serum anti-dsDNA autoantibodies in miR-183C-/-B6/lpr mice after reaching 24 weeks-of age compared to age-matched miR-183Cfl/flB6/lpr controls. In vitro activated splenocytes from miR-182-/-B6/lpr mice and miR-183C-/-B6/lpr mice showed reduced ability to produce lupus-associated IFNγ. Forkhead box O1(Foxo1), a previously validated miR-183C miRNAs target, was increased in the splenic CD4+ cells of miR-182-/-B6/lpr and miR-183C-/-B6/lpr mice. Furthermore, in vitro inhibition of Foxo1 with siRNA in splenocytes from miR-182-/-B6/lpr and miR-183C-/-B6/lpr mice significantly increased IFNγ expression following anti-CD3/CD28 stimulation, suggesting that miR-182 and miR-183C miRNAs regulate the inflammatory IFNγ in splenocytes via targeting Foxo1. The deletion of either miR-182 alone or the whole miR-183C cluster, however, had no marked effect on the composition of T and B cell subsets in the spleens of B6/lpr mice. There were similar percentages of CD4+, CD8+, CD19+, as well as Tregs, follicular helper T (TFH), germinal center B (GCB), and plasma cells in the miR-183C-/-B6/lpr and miR-182-/-B6/lpr mice and their respective littermate controls, miR-183Cfl/flB6/lpr and miR-182fl/flB6/lpr mice. Together, our data demonstrate a role of miR-183C in the regulation of anti-dsDNA autoantibody production in vivo in B6/lpr mice and the induction of IFNγ in in vitro activated splenocytes from B6/lpr mice.
Collapse
Affiliation(s)
- Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Mohit Sachdeva
- Preclinical Lead Immunology, Spark Theraprutics, Philadelphia, PA, United States
| | - Michael R. Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - JingJing Ren
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Taschua Jeboda
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - Christopher M. Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Colaianni D, De Pittà C. The Role of microRNAs in the Drosophila Melanogaster Visual System. Front Cell Dev Biol 2022; 10:889677. [PMID: 35493095 PMCID: PMC9053400 DOI: 10.3389/fcell.2022.889677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs (∼22 nucleotides in length) that negatively regulate protein-coding gene expression post-transcriptionally by targeting mRNAs and triggering either translational repression or RNA degradation. MiRNA genes represent approximately 1% of the genome of different species and it has been estimated that every miRNA can interact with an average of 200 mRNA transcripts, with peaks of 1,500 mRNA targets per miRNA molecule. As a result, miRNAs potentially play a fundamental role in several biological processes including development, metabolism, proliferation, and apoptotic cell death, both in physiological and pathological conditions. Since miRNAs were discovered, Drosophila melanogaster has been used as a model organism to shed light on their functions and their molecular mechanisms in the regulation of many biological and behavioral processes. In this review we focus on the roles of miRNAs in the fruit fly brain, at the level of the visual system that is composed by the compound eyes, each containing ∼800 independent unit eyes called ommatidia, and each ommatidium is composed of eight photoreceptor neurons that project into the optic lobes. We describe the roles of a set of miRNAs in the development and in the proper function of the optic lobes (bantam, miR-7, miR-8, miR-210) and of the compound eyes (bantam, miR-7, miR-9a, miR-210, miR-263a/b, miR-279/996), summarizing also the pleiotropic effects that some miRNAs exert on circadian behavior.
Collapse
|
11
|
Circular RNA_0057209 Acts as ceRNA to Inhibit Thyroid Cancer Progression by Promoting the STK4-Mediated Hippo Pathway via Sponging MicroRNA-183. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9974639. [PMID: 35308166 PMCID: PMC8933075 DOI: 10.1155/2022/9974639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022]
Abstract
Thyroid cancer is the most common malignancy of the endocrine system, and its outcome remains unsatisfactory. In recent years, circular RNAs (circRNAs) have emerged as crucial regulators in cancers. In the current study, we aimed to investigate whether and how circRNA_0057209 functioned in thyroid cancer. Initial results revealed that circRNA_0057209 and STK4 were both reduced, while miR-183 was up-regulated in thyroid cancer tissues and cells. Experiments including RNA pull-down and RIP assays further identified that upregulation of circRNA_0057209 augmented the expression of STK4, a target gene of miR-183, by competitively-binding to miR-183. Furthermore, functional experiments provided evidence that overexpression of circRNA_0057209 not only inhibited the proliferative, migratory, and invasive properties of thyroid cancer cells while facilitating their apoptosis but also delayed tumor growth. Conversely, upregulation of miR-183 or silencing of STK4 reversed the changes induced by circRNA_0057209. Meanwhile, mechanistic experimentation demonstrated that circRNA_0057209 promoted STK4 expression by sponging miR-183, while STK4 enhanced YAP phosphorylation to mediate the Hippo pathway, thereby suppressing tumor progression. Altogether, our findings indicated that circRNA_0057209 may serve as a competing endogenous RNA of miR-183 to increase STK4 expression, thus inhibiting the development of thyroid cancer.
Collapse
|
12
|
Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci 2022; 14:814528. [PMID: 35250542 PMCID: PMC8891613 DOI: 10.3389/fnagi.2022.814528] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Age-related hearing loss (ARHL) is a common, increasing problem for older adults, affecting about 1 billion people by 2050. We aim to correlate the different reductions of hearing from cochlear hair cells (HCs), spiral ganglion neurons (SGNs), cochlear nuclei (CN), and superior olivary complex (SOC) with the analysis of various reasons for each one on the sensory deficit profiles. Outer HCs show a progressive loss in a basal-to-apical gradient, and inner HCs show a loss in a apex-to-base progression that results in ARHL at high frequencies after 70 years of age. In early neonates, SGNs innervation of cochlear HCs is maintained. Loss of SGNs results in a considerable decrease (~50% or more) of cochlear nuclei in neonates, though the loss is milder in older mice and humans. The dorsal cochlear nuclei (fusiform neurons) project directly to the inferior colliculi while most anterior cochlear nuclei reach the SOC. Reducing the number of neurons in the medial nucleus of the trapezoid body (MNTB) affects the interactions with the lateral superior olive to fine-tune ipsi- and contralateral projections that may remain normal in mice, possibly humans. The inferior colliculi receive direct cochlear fibers and second-order fibers from the superior olivary complex. Loss of the second-order fibers leads to hearing loss in mice and humans. Although ARHL may arise from many complex causes, HC degeneration remains the more significant problem of hearing restoration that would replace the cochlear implant. The review presents recent findings of older humans and mice with hearing loss.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, Montpellier, France
| |
Collapse
|
13
|
Jorgensen BG, Ro S. MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23042166. [PMID: 35216281 PMCID: PMC8876324 DOI: 10.3390/ijms23042166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.
Collapse
|
14
|
Klann M, Issa AR, Pinho S, Alonso CR. MicroRNA-Dependent Control of Sensory Neuron Function Regulates Posture Behavior in Drosophila. J Neurosci 2021; 41:8297-8308. [PMID: 34417328 PMCID: PMC8496190 DOI: 10.1523/jneurosci.0081-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 11/21/2022] Open
Abstract
All what we see, touch, hear, taste, or smell must first be detected by the sensory elements of our nervous system. Sensory neurons, therefore, represent a critical component in all neural circuits and their correct function is essential for the generation of behavior and adaptation to the environment. Here, we report that the evolutionarily-conserved microRNA (miRNA) miR-263b plays a key behavioral role in Drosophila melanogaster through effects on the function of larval sensory neurons. Several independent experiments (in 50:50 male:female populations) support this finding: first, miRNA expression analysis, via reporter expression and fluorescent-activated cell sorting (FACS)-quantitative PCR (qPCR) analysis, demonstrate miR-263b expression in larval sensory neurons. Second, behavioral tests in miR-263b null mutants show defects in self-righting, an innate and evolutionarily conserved posture-control behavior that allows larvae to rectify their position if turned upside-down. Third, competitive inhibition of miR-263b in sensory neurons using a miR-263b "sponge" leads to self-righting defects. Fourth, systematic analysis of sensory neurons in miR-263b mutants shows no detectable morphologic defects in their stereotypic pattern, while genetically-encoded calcium sensors expressed in the sensory domain reveal a reduction in neural activity in miR-263b mutants. Fifth, miR-263b null mutants show reduced "touch-response" behavior and a compromised response to sound, both characteristic of larval sensory deficits. Furthermore, bioinformatic miRNA target analysis, gene expression assays, and behavioral phenocopy experiments suggest that miR-263b might exert its effects, at least in part, through repression of the basic helix-loop-helix (bHLH) transcription factor Atonal Altogether, our study suggests a model in which miRNA-dependent control of transcription factor expression affects sensory function and behavior.SIGNIFICANCE STATEMENT Sensory neurons are key to neural circuit function, but how these neurons acquire their specific properties is not well understood. Here, we examine this problem, focusing on the roles played by microRNAs (miRNAs). Using Drosophila, we demonstrate that the evolutionarily-conserved miRNA miR-263b controls sensory neuron function allowing the animal to perform an adaptive, elaborate three-dimensional movement. Our work thus shows that microRNAs can control complex motor behaviors by modulating sensory neuron physiology, and suggests that similar miRNA-dependent mechanisms may operate in other species. The work contributes to advance the understanding of the molecular basis of behavior and the biological roles of microRNAs within the nervous system.
Collapse
Affiliation(s)
- Marleen Klann
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - A Raouf Issa
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Sofia Pinho
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Claudio R Alonso
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
15
|
Mizeracka K, Rogers JM, Rumley JD, Shaham S, Bulyk ML, Murray JI, Heiman MG. Lineage-specific control of convergent differentiation by a Forkhead repressor. Development 2021; 148:272306. [PMID: 34423346 DOI: 10.1242/dev.199493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
During convergent differentiation, multiple developmental lineages produce a highly similar or identical cell type. However, few molecular players that drive convergent differentiation are known. Here, we show that the C. elegans Forkhead transcription factor UNC-130 is required in only one of three convergent lineages that produce the same glial cell type. UNC-130 acts transiently as a repressor in progenitors and newly-born terminal cells to allow the proper specification of cells related by lineage rather than by cell type or function. Specification defects correlate with UNC-130:DNA binding, and UNC-130 can be functionally replaced by its human homolog, the neural crest lineage determinant FoxD3. We propose that, in contrast to terminal selectors that activate cell type-specific transcriptional programs in terminally differentiating cells, UNC-130 acts early and specifically in one convergent lineage to produce a cell type that also arises from molecularly distinct progenitors in other lineages.
Collapse
Affiliation(s)
- Karolina Mizeracka
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julia M Rogers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan D Rumley
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shai Shaham
- The Rockefeller University, New York, NY 10065, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John I Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
16
|
Fritzsch B. An Integrated Perspective of Evolution and Development: From Genes to Function to Ear, Lateral Line and Electroreception. DIVERSITY 2021; 13:364. [PMID: 35505776 PMCID: PMC9060560 DOI: 10.3390/d13080364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four sensory systems (vestibular, lateral line, electroreception, auditory) are unique and project exclusively to the brainstem of vertebrates. All sensory neurons depend on a common set of genes (Eya1, Sox2, Neurog1, Neurod1) that project to a dorsal nucleus and an intermediate nucleus, which differentiate into the vestibular ear, lateral line and electroreception in vertebrates. In tetrapods, a loss of two sensory systems (lateral line, electroreception) leads to the development of a unique ear and auditory system in amniotes. Lmx1a/b, Gdf7, Wnt1/3a, BMP4/7 and Atoh1 define the lateral line, electroreception and auditory nuclei. In contrast, vestibular nuclei depend on Neurog1/2, Ascl1, Ptf1a and Olig3, among others, to develop an independent origin of the vestibular nuclei. A common origin of hair cells depends on Eya1, Sox2 and Atoh1, which generate the mechanosensory cells. Several proteins define the polarity of hair cells in the ear and lateral line. A unique connection of stereocilia requires CDH23 and PCDH15 for connections and TMC1/2 proteins to perceive mechanosensory input. Electroreception has no polarity, and a different system is used to drive electroreceptors. All hair cells function by excitation via ribbons to activate neurons that innervate the distinct target areas. An integrated perspective is presented to understand the gain and loss of different sensory systems.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
Pidíková P, Herichová I. miRNA Clusters with Up-Regulated Expression in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13122979. [PMID: 34198662 PMCID: PMC8232258 DOI: 10.3390/cancers13122979] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As miRNAs show the capacity to be used as CRC biomarkers, we analysed experimentally validated data about frequently up-regulated miRNA clusters in CRC tissue. We identified 15 clusters that showed increased expression in CRC: miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224. Cluster positions in the genome are intronic or intergenic. Most clusters are regulated by several transcription factors, and by long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. The members of the selected clusters target 181 genes. Their functions and corresponding pathways were revealed with the use of Panther analysis. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research. Abstract Colorectal cancer (CRC) is one of the most common malignancies in Europe and North America. Early diagnosis is a key feature of efficient CRC treatment. As miRNAs can be used as CRC biomarkers, the aim of the present study was to analyse experimentally validated data on frequently up-regulated miRNA clusters in CRC tissue and investigate their members with respect to clinicopathological characteristics of patients. Based on available data, 15 up-regulated clusters, miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224, were selected. The positions of such clusters in the genome can be intronic or intergenic. Most clusters are regulated by several transcription factors, and miRNAs are also sponged by specific long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. Based on experimental evidence, 181 target genes of selected clusters were identified. Panther analysis was used to reveal the functions of the target genes and their corresponding pathways. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research.
Collapse
|
18
|
Zhu L, Zhou X, Li S, Liu J, Yang J, Fan X, Zhou S. miR‑183‑5p attenuates cerebral ischemia injury by negatively regulating PTEN. Mol Med Rep 2020; 22:3944-3954. [PMID: 32901892 PMCID: PMC7533437 DOI: 10.3892/mmr.2020.11493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Cerebral ischemia is a common cerebrovascular disease caused by the occlusion of a cerebral blood vessel. MicroRNAs (miRNAs/miRs) are emerging regulators of various human diseases, including cerebral ischemia. Upregulation of miR‑183‑5p has been reported to alleviate liver injury induced by ischemia‑reperfusion (I/R). However, the effect of miR‑183‑5p on cerebral ischemia injury remains unknown. The present study evaluated the effects of miR‑183‑5p on ischemia injury using ischemic models of mouse brains exposed to transient middle cerebral artery occlusion and Neuro‑2A (N2A) neuroblastoma cells exposed to oxygen‑glucose‑deprivation (OGD) and subsequently reoxygenated. Ischemia was evaluated in mice using neurological function scores, cerebral edema, 2,3,5‑triphenyltetrazoliumchloride, Nissl and Fluoro‑Jade B staining assays. In addition, miR‑183‑5p expression, N2A cell viability and the expression levels of apoptosis‑associated proteins were detected by quantitative PCR, Cell Counting Kit‑8 assay, flow cytometry and western blotting. The association between miR‑183‑5p and phosphatase and tensin homolog (PTEN) was also confirmed by a luciferase reporter assay. The results revealed that miR‑183‑5p expression was decreased and brain damage was increased in ischemic mice compared with the sham group. Additionally, miR‑183‑5p levels were reduced, and apoptosis was increased in N2A cells exposed to ischemia compared with the control group. Following transfection with agomiR‑183‑5p, cerebral ischemic injury and apoptosis levels were reduced in the in vivo I/R stroke model and OGD‑induced N2A cells. In addition, PTEN was determined to be a target of miR‑183‑5p following elucidation of a direct binding site. Overexpression of PTEN reversed the miR‑183‑5p‑induced N2A cell apoptosis inhibition and survival after OGD. The results of the present study suggested that miR‑183‑5p reduced ischemic injury by negatively regulating PTEN, which may aid the development of a novel therapeutic strategy for cerebral ischemia.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xueying Zhou
- Department of Rehabilitation, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shanshan Li
- Department of Neurology, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Jianmeng Liu
- Department of Gynaecology and Obstetrics, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Jingyan Yang
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiangyun Fan
- Department of General Medicine, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Shengnian Zhou
- Department of Neurology, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
19
|
Fung W, Wexler L, Heiman MG. Cell-type-specific promoters for C. elegans glia. J Neurogenet 2020; 34:335-346. [PMID: 32696701 PMCID: PMC7855602 DOI: 10.1080/01677063.2020.1781851] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022]
Abstract
Glia shape the development and function of the C. elegans nervous system, especially its sense organs and central neuropil (nerve ring). Cell-type-specific promoters allow investigators to label or manipulate individual glial cell types, and therefore provide a key tool for deciphering glial function. In this technical resource, we compare the specificity, brightness, and consistency of cell-type-specific promoters for C. elegans glia. We identify a set of promoters for the study of seven glial cell types (F16F9.3, amphid and phasmid sheath glia; F11C7.2, amphid sheath glia only; grl-2, amphid and phasmid socket glia; hlh-17, cephalic (CEP) sheath glia; and grl-18, inner labial (IL) socket glia) as well as a pan-glial promoter (mir-228). We compare these promoters to promoters that are expressed more variably in combinations of glial cell types (delm-1 and itx-1). We note that the expression of some promoters depends on external conditions or the internal state of the organism, such as developmental stage, suggesting glial plasticity. Finally, we demonstrate an approach for prospectively identifying cell-type-specific glial promoters using existing single-cell sequencing data, and we use this approach to identify two novel promoters specific to IL socket glia (col-53 and col-177).
Collapse
Affiliation(s)
- Wendy Fung
- These authors contributed equally to this work
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston MA 02115
| | - Leigh Wexler
- These authors contributed equally to this work
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston MA 02115
| | - Maxwell G. Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston MA 02115
| |
Collapse
|
20
|
Vasu MM, Sumitha PS, Rahna P, Thanseem I, Anitha A. microRNAs in Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4368-4378. [PMID: 31692427 DOI: 10.2174/1381612825666191105120901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Efforts to unravel the extensive impact of the non-coding elements of the human genome on cell homeostasis and pathological processes have gained momentum over the last couple of decades. miRNAs refer to short, often 18-25 nucleotides long, non-coding RNA molecules which can regulate gene expression. Each miRNA can regulate several mRNAs. METHODS This article reviews the literature on the roles of miRNAs in autism. RESULTS Considering the fact that ~ 1% of the human DNA encodes different families of miRNAs, their overall impact as critical regulators of gene expression in the mammalian brain should be immense. Though the autism spectrum disorders (ASDs) are predominantly genetic in nature and several candidate genes are already identified, the highly heterogeneous and multifactorial nature of the disorder makes it difficult to identify common genetic risk factors. Several studies have suggested that the environmental factors may interact with the genetic factors to increase the risk. miRNAs could possibly be one of those factors which explain this link between genetics and the environment. CONCLUSION In the present review, we have summarized our current knowledge on miRNAs and their complex roles in ASD, and also on their therapeutic applications.
Collapse
Affiliation(s)
- Mahesh Mundalil Vasu
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Puthiripadath S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Parakkal Rahna
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| |
Collapse
|
21
|
MicroRNA-183 regulates lipopolysaccharide-induced oxidative stress of hippocampal neurons by targeting the fibronectin 1 gene. Neurosci Lett 2020; 725:134902. [PMID: 32165261 DOI: 10.1016/j.neulet.2020.134902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/24/2022]
Abstract
Oxidative stress is implicated in the initiation and progression of human and animal diseases. MicroRNA (MiR) has been reported to be involved in the body's regulation to oxidative stress. We investigated if miR-183 regulates lipopolysaccharide (LPS)-induced oxidative stress in the hippocampus of weaned piglets. LPS-treated piglets had lower expression of miR-183 and higher expression of the fibronectin(FN)1 gene in their hippocampus than control piglets. The expression profiles of miR-183 and the FN1 gene in primary cultured rat hippocampal neurons exposed to LPS were consistent with those in the hippocampus of LPS-treated piglets. The LPS-induced expression of FN1 was reversed in hippocampal neurons by transfection with an miR-183 mimic. A luciferase reporter assay further demonstrated that the FN1 gene is a direct target of miR-183. Taken together, our results demonstrated that miR-183 regulates LPS-induced oxidative stress at least in part by targeting FN1.
Collapse
|
22
|
Shen T, Cheng X, Liu X, Xia C, Zhang H, Pan D, Zhang X, Li Y. Circ_0026344 restrains metastasis of human colorectal cancer cells via miR-183. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4038-4045. [PMID: 31608699 DOI: 10.1080/21691401.2019.1669620] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: CircRNA circ_0026344 was previously revealed as a tumour-suppressive gene in colorectal cancer (CRC) progression. The purpose of this research was to investigate the role of circ_0026344 in CRC cells metastasis induced by chemokines. Methods: Two human CRC cell lines SW480 and Caco-2 were treated by CCL20 and CXCL8. Cell proliferation, migration/invasion, expression of epithelial-mesenchymal transition (EMT) inducers and the expression of circ_0026344 were measured using sulforhodamine B assay, Transwell chamber, western blot and qRT-PCR, respectively. The effects of circ_0026344 on CRC cells migration/invasion and the expression of EMT inducers were evaluated. Moreover, the downstream miRNA and signalling pathways of circ_0026344 were studied. Results: CCL20 and CXCL8 synergized to facilitate the proliferation, migration and invasion of CRC cells. At the meantime, E-cadherin was downregulated, whereas N-cadherin, Vimentin and Snail were up-regulated by CCL20 and CXCL8 co-stimulation, which was accompanied by the mobilization of PI3K/AKT/ERK signalling. More interestingly, the expression of circ_0026344 was down-regulated by CCL20 and CXCL8 co-stimulation. Silence of circ_0026344 increased the migratory and invasive capacities of CRC cells and increased EMT process as well. Overexpression of circ_0026344 led to a contrary impact. miR-183 was negatively regulated by circ_0026344, and the inhibitory effects of circ_0026344 overexpression on Wnt/β-catenin pathway were reversed when miR-183 was overexpressed. Conclusion: Overexpression of circ_0026344 restrained CRC metastasis and EMT induced by CCL20 and CXCL8 synergistical treatment. miR-183 was a downstream effector of circ_0026344, and the anti-tumour function of circ_0026344 might be involved in the repressed Wnt/β-catenin signalling. Highlights CCL20 and CXCL8 synergize to decrease the expression of circ_0026344; Silence of circ_0026344 promotes CRC cells migration, invasion and EMT process; miR-183 is a downstream effector of circ_0026344.
Collapse
Affiliation(s)
- Tao Shen
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Xianshuo Cheng
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Xin Liu
- Tumor Institute, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Cuifeng Xia
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Hongtao Zhang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Dingguo Pan
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Xuan Zhang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Yunfeng Li
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| |
Collapse
|
23
|
Zhang Y, Zhan Y, Liu D, Yu B. Inhibition of microRNA-183 expression resists human umbilical vascular endothelial cells injury by upregulating expression of IRS1. Drug Deliv 2019; 26:612-621. [PMID: 31210063 PMCID: PMC6586131 DOI: 10.1080/10717544.2019.1628117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/03/2019] [Indexed: 12/23/2022] Open
Abstract
Our study aims to investigate the effect of microRNA-183 (miR-183) on human umbilical vascular endothelial cells (HUVECs) injury by targeting IRS1. HUVECs injury was induced by oxidized low-density lipoprotein (ox-LDL). HUVECs were grouped so as to explore the role of ox-LDL and miR-183 in HUVECs injury, with the expression of miR-183 and IRS1 detected. Additionally, the related factors of oxidative stress and inflammation, as well as angiogenesis ability, proliferation, cell cycle, apoptosis, invasion, and migration abilities were also measured. Ox-LDL treatment could decrease the activity of HUVECs, increase the level of oxidative stress and inflammation, and induce the HUVECs injury. miR-183 could inhibit the expression of IRS1. The inhibition of miR-183 expression in ox-LDL-induced HUVECs injury could enhance cell activity, inhibit inflammatory level, and thus resist cell injury. Low expression of IRS1 could reverse the inhibition of miR-183 on HUVECs injury. This study highlights that inhibition of miR-183 expression may resist HUVECs injury by upregulating expression of IRS1.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, and the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Yefei Zhan
- Department of Intensive Care Unit, Ningbo No 2 Hospital, Ningbo, People’s Republic of China
| | - Dandan Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, and the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, and the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| |
Collapse
|
24
|
miRNA‑183‑5p.1 promotes the migration and invasion of gastric cancer AGS cells by targeting TPM1. Oncol Rep 2019; 42:2371-2381. [PMID: 31638242 PMCID: PMC6859460 DOI: 10.3892/or.2019.7354] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/12/2019] [Indexed: 01/13/2023] Open
Abstract
MicroRNA-183 (miR-183) is a small, non-coding RNA that is involved in post-transcriptional processes, is upregulated in gastric cancer and acts as an oncogene in cancer migration. Although fragmentary reports have demonstrated the importance of miR-183 in gastric cancer, its biofunctions and regulatory effects are still unknown. In the present study, the gene and protein expression levels were determined by reverse transcription-quantitative PCR and western blot analysis. The connection between miR-183-5p.1 and tropomyosin 1 (TPM1) was tested through luciferase reporter experiments. Cell viability, apoptosis and related proteins were detected by MTT assay, flow cytometry, immunofluorescence and western blotting, respectively. The migration and invasion of AGS cells modulated by miR-183-5p.1 were analyzed by Transwell assay. TPM1 expression was found to be decreased in gastric cancer tissues and cell lines when compared with normal and adjacent tissues and gastric epithelial cells, and was regulated by miR-183-5p.1 targeting TPM1. miR-183-5p.1 overexpression facilitated the growth and suppressed the death of AGS cells through Bcl-2 and P53 proteins. In addition, miR-183-5p.1 restricted TPM1, TPM2 and TPM3 protein expression in AGS cells. The excessive levels of miR-183-5p.1 promoted the migration and invasion of AGS cells, and inhibited the apoptosis of AGS cells. However, the knockdown of miR-183-5p.1 induced the opposite in AGS cells. In conclusion, miR-183-5p.1 promotes cell proliferation, migration and invasion by downregulating TPM1 and deactivating the Bcl-2/P53 signaling pathways in gastric cancer, indicating that miR-183-5p.1 and TPM1 may be potential targets for the diagnosis or therapy of gastric cancer in the future.
Collapse
|
25
|
Banks SA, Pierce ML, Soukup GA. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family. Mol Neurobiol 2019; 57:358-371. [DOI: 10.1007/s12035-019-01717-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
|
26
|
He PY, Yip WK, Jabar MF, Mohtarrudin N, Dusa NM, Seow HF. Effect of the miR-96-5p inhibitor and mimic on the migration and invasion of the SW480-7 colorectal cancer cell line. Oncol Lett 2019; 18:1949-1960. [PMID: 31423265 DOI: 10.3892/ol.2019.10492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
The objectives of the present study were to identify the aberrant expression of microRNA (miRNA) in colorectal carcinoma (CRC) tissues from published miRNA profiling studies and to investigate the effects of the identified miRNA inhibitor and mimic miR-96-5p on CRC cell migration and invasion. The altered expression of the regulators of cytoskeleton mRNA in miR-96-5p inhibitor-transfected cells was determined. The miR-96-5p expression level in five CRC cell lines, HCT11, CaCo2, HT29, SW480 and SW620, and 26 archived paraffin-embedded CRC tissues were also investigated by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). Cell viability in response to the miR-96-5p inhibitor and mimic transfections was determined by an MTT assay. A Matrigel invasion assay was conducted to select the invasive subpopulation designated SW480-7, by using the parental cell line SW480. The effects of miR-96-5p mimic- or inhibitor-transfected SW480-7 cells on cell migration and invasion were evaluated using the Transwell and Matrigel assays, and the change in expression of the regulators of cytoskeleton mRNAs was identified by Cytoskeleton Regulators RT2-Profiler PCR array followed by validation with RT-qPCR. CRC tissues exhibited a significant increase in miR-96-5p expression, compared with their matched normal adjacent tissues, indicating an oncogenic role for miR-96-5p. The results demonstrated that the miR-96-5p inhibitor decreased the migration of SW480-7 cells, but had no effect on invasion. This may be due to the promotion of cell invasion by Matrigel, which counteracts the blockade of cell invasion by the miR-96-5p inhibitor. The miR-96-5p mimic enhanced SW480-7 cell migration and invasion, as expected. It was determined that there was a >2.5 fold increase in the expression of genes involved in cytoskeleton regulation, myosin light chain kinase 2, pleckstrin homology like domain family B member 2, cyclin A1, IQ motif containing GTPase activating protein 2, Brain-specific angiogenesisinhibitor 1-associated protein 2 and microtubule-actin crosslinking factor 1, in miR-96-5p inhibitor-transfected cells, indicating that they are negative regulators of cell migration. In conclusion, the miR-96-5p inhibitor blocked cell migration but not invasion, and the latter may be due to the counteraction of Matrigel, which has been demonstrated to stimulate cell invasion.
Collapse
Affiliation(s)
- Pei Yuan He
- Department of Gastroenterology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Wai Kien Yip
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noraini Mohd Dusa
- Department of Pathology, Hospital Kuala Lumpur Jalan Pahang, Kuala Lumpur 50586, Malaysia
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
27
|
Wang CY, Tsai PY, Chen TY, Tsai HL, Kuo PL, Su MT. Elevated miR-200a and miR-141 inhibit endocrine gland-derived vascular endothelial growth factor expression and ciliogenesis in preeclampsia. J Physiol 2019; 597:3069-3083. [PMID: 31026335 DOI: 10.1113/jp277704] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is a critical factor that facilitates trophoblast invasion in placenta. Plasma miR-141 and miR-200a levels were elevated, while EG-VEGF was decreased in peripheral blood and placenta of preeclamptic patients. Furthermore, numbers of cilia in the placenta from preeclamptic women were significantly decreased. Elevated miR-141 and miR-200a inhibited the expression of EG-VEGF, downstream extracellular signal-regulated kinase (ERK)/matrix metalloproteinase 9 signalling and cilia formation, thus leading to defective trophoblast invasion. The growth of the primary cilium, which transduced ERK signalling upon EG-VEGF induction for proper trophoblast invasion, was also inhibited by miR-141 and miR-200a upregulation. ABSTRACT Preeclampsia is a severe gestational complication, and inadequate trophoblast invasion during placental development is an important pathoaetiology. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is a critical factor that facilitates trophoblast invasion in placenta. By binding to the primary cilium, EG-VEGF initiates the signalling cascade for proper embryo implantation and placental development. The miR-200 family was predicted to target the EG-VEGF 5'-untranslated region, and its specific binding site was confirmed using a dual luciferase and a co-transfection assay. In the peripheral blood and placenta of preeclamptic patients, EG-VEGF showed significantly lower expression, whereas plasma miR-141 and miR-200a had higher expression compared with the controls. The biological significance of miR-141 and miR-200a was verified using an overexpression method in a trophoblast cell line (HTR-8/SVneo). Elevated miR-141 and miR-200a inhibited the expression of EG-VEGF, matrix metalloproteinase 9 (MMP9) and downstream extracellular signal-regulated kinase (ERK) signalling, thus leading to defective trophoblast invasion. Additionally, the growth of the primary cilium, which transduces ERK/MMP9 signalling upon EG-VEGF induction, was inhibited by miR-141 and miR-200a upregulation. Furthermore, the number of cilia in the human placenta of preeclamptic women was significantly decreased compared to normal placenta. In conclusion, the study uncovers the clinical correlations among the miR-200 family, EG-VEGF and the primary cilium in preeclampsia and the underlying molecular mechanisms. The results indicate that miR-141 and miR-200a directly targeted EG-VEGF, suppressed primary cilia formation and inhibited trophoblast invasion. Thus, miR-141 and miR-200a could be explored as promising miRNA biomarkers and therapeutic targets in preeclampsia.
Collapse
Affiliation(s)
- Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yin Tsai
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yu Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ling Tsai
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Tsz Su
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
28
|
Tawfik KO, Klepper K, Saliba J, Friedman RA. Advances in understanding of presbycusis. J Neurosci Res 2019; 98:1685-1697. [PMID: 30950547 DOI: 10.1002/jnr.24426] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Abstract
The pathophysiology of age-related hearing loss (ARHL), or presbycusis, involves a complex interplay between environmental and genetic factors. The fundamental biomolecular mechanisms of ARHL have been well described, including the roles of membrane transport, reactive oxygen species, cochlear synaptopathy, vascular insults, hormones, and microRNA, to name a few. The genetic basis underlying these mechanisms remains under-investigated and poorly understood. The emergence of genome-wide association studies has allowed for the identification of specific groups of genes involved in ARHL. This review highlights recent advances in understanding of the pathogenesis of ARHL, the genetic basis underlying these processes and suggests future directions for research and potential therapeutic avenues.
Collapse
Affiliation(s)
- Kareem O Tawfik
- Division of Otolaryngology - Head & Neck Surgery, University of California San Diego School of Medicine, San Diego, California
| | - Kristin Klepper
- School of Medicine, University of California San Diego, La Jolla, California
| | - Joe Saliba
- Division of Otolaryngology - Head & Neck Surgery, University of California San Diego School of Medicine, San Diego, California
| | - Rick A Friedman
- Division of Otolaryngology - Head & Neck Surgery, University of California San Diego School of Medicine, San Diego, California
| |
Collapse
|
29
|
The role of miR-183 cluster in immunity. Cancer Lett 2018; 443:108-114. [PMID: 30529154 DOI: 10.1016/j.canlet.2018.11.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are essential factors of an extensively conserved post-transcriptional process to regulate gene expression. MiRNAs play a pivotal role in immunity, including controlling the differentiation of various immune cells as well as their immunological functions. The miR-183 cluster, which is comprised of miR-183, -96 and -182, is a miRNA family with sequence homology. These miRNAs are usually transcribed together as a polycistronic miRNA cluster during development and are required for maturation of sensory organs. In comparison to defined sensory-specific role of these miRNAs in normal development, they are frequently over-expressed in several non-sensory diseases, including autoimmune diseases and cancers. Because individual miRNAs of miR-183 cluster have both common and unique targets within functionally interrelated pathways, they can show cooperative or opposing effects on biological processes, implying the complexity of this miR cluster-mediated gene regulation. Therefore, a better understanding of the molecular regulation of miR-183 cluster expression and its downstream networks is important for the therapeutic applications. In this review, we will discuss the characteristics of miR-183 cluster and a wide variety of evidence on its function in immune system. Newer knowledge summarized here will help readers understand the versatile role of miR-183 cluster in this field.
Collapse
|
30
|
Gao JX, Li Y, Wang SN, Chen XC, Lin LL, Zhang H. Overexpression of microRNA-183 promotes apoptosis of substantia nigra neurons via the inhibition of OSMR in a mouse model of Parkinson's disease. Int J Mol Med 2018; 43:209-220. [PMID: 30431059 PMCID: PMC6257840 DOI: 10.3892/ijmm.2018.3982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the effect of microRNA-183 (miR-183) on substantia nigra neurons by targeting oncostatin M receptor (OSMR) in a mouse model of Parkinson’s disease (PD). The positive expression rates of OSMR and the apoptosis of substantia nigra neurons were detected by immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling, respectively. Substantia nigra neurons in normal and PD mice were cultured in vitro. The association between miR-183 and OSMR was verified using a dual luciferase reporter gene assay. The expression of miR-183 and the phosphoinositide 3-kinase-Akt signaling pathway-associated genes were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Cell apoptosis was detected by flow cytometry. OSMR is the target gene of miR-183. The number of OSMR-positive cells and the apoptotic rate of substantia nigra neurons were increased in the PD group. Neurons transfected with miR-183 mimic exhibited elevated expression levels of miR-183, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-9 and increased apoptotic rate, and reduced expression levels of OSMR, Akt, phosphorylated (p-)Akt, glycogen synthase kinase-3 (GSK-3β), p-GSK-3β, Bcl-2, insulin-like growth factor 1 (IGF-1), mammalian target of rapamycin (mTOR) and p-mTOR. The miR-183 inhibitor decreased the expression levels of miR-183, Bax and caspase-9 and the apoptotic rate; however, increased the expression of OSMR, Akt, p-Akt, GSK-3β, p-GSK-3β, Bcl-2, IGF-1, mTOR and p-mTOR. The results of the present study provide evidence that the overexpression of miR-183 promotes the apoptosis of substantia nigra neurons by inhibiting the expression of OSMR.
Collapse
Affiliation(s)
- Jin-Xia Gao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yu Li
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Sai-Nan Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xing-Chi Chen
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Lu-Lu Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Hui Zhang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
31
|
Role of microRNAs in inner ear development and hearing loss. Gene 2018; 686:49-55. [PMID: 30389561 DOI: 10.1016/j.gene.2018.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
The etiology of hearing loss tends to be multi-factorial and affects a significant proportion of the global population. Despite the differences in etiology, a common physical pathological change that leads to hearing loss is damage to the mechanosensory hair cells of the inner ear. MicroRNAs (miRNAs) have been shown to play a role in inner ear development and thus, may play a role in the development or prevention of hearing loss. In this paper, we review the mechanism of action of miRNAs in the auditory system. We present an overview about the role of miRNAs in inner ear development, summarize the current research on the role of miRNAs in gene regulation, and discuss the effects of both miRNA mutations as well as overexpression. We discuss the crucial role of miRNAs in ensuring normal physiological development of the inner ear. Any deviation from the proper function of miRNA in the cochlea seems to contribute to deleterious damage to the structure of the auditory system and subsequently results in hearing loss. As interest for miRNA research increases, this paper serves as a platform to review current understandings and postulate future avenues for research. A better knowledge about the role of miRNA in the auditory system will help in developing novel treatment modalities for restoring hearing function based on regeneration of damaged inner ear hair cells.
Collapse
|
32
|
Mahmoodian-sani MR, Mehri-Ghahfarrokhi A. The potential of miR-183 family expression in inner ear for regeneration, treatment, diagnosis and prognosis of hearing loss. J Otol 2018; 12:55-61. [PMID: 29937838 PMCID: PMC5963458 DOI: 10.1016/j.joto.2017.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/04/2022] Open
Abstract
miRNA-183 family, in normal biology, is expressed in a harmonious and stable manner in the neurosensory organs and cells. Studies have also shown that miRNA-183 family, in different pathways, affects the neurosensory development, maintenance, survival and function. In addition, it has potential neuroprotective effects in response to neurosensory destructive stimulations. miRNA-96 mutation causes hereditary deafness in humans and mice, and therefore affects the inner ear activity and its maintenance. Certain roles have been identified for miR-96 in the maintenance and function of the inner ear. The comparison of the target genes of family-183 in transcriptomes of newborn and adult hair cells shows that hundreds of target genes in this family may affect development and maintenance of the ears. Identifying the genes that are regulated by miRNA-183 family provides researchers with important information about the complex development and environmental regulation of the inner ear, and can offer new approaches to the maintenance and regeneration of hair cells and auditory nerve.
Collapse
Affiliation(s)
- Mohammad-Reza Mahmoodian-sani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Dept. of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding author. Fax: +98 381 3330709.
| | | |
Collapse
|
33
|
Xiong H, Chen R, Liu S, Lin Q, Chen H, Jiang Q. MicroRNA-183 induces epithelial-mesenchymal transition and promotes endometrial cancer cell migration and invasion in by targeting CPEB1. J Cell Biochem 2018; 119:8123-8137. [PMID: 29923214 DOI: 10.1002/jcb.26763] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
Abstract
The aim of this study is to evaluate the ability of microRNA-183 (miR-183) to influence epithelial-mesenchymal transition (EMT) and cell proliferation, migration, invasion, and apoptosis in endometrial cancer (EC) by targeting cytoplasmic polyadenylation element binding protein 1(CPEB1). EC tissues with matched nonmalignant tissues were collected from 208 EC patients. Ishikawa and RL95-2 cells were selected for cell experiments in vitro and each kind of cells were grouped into blank, negative control (NC), miR-183 mimic, miR-183 inhibitor, CPEB1 overexpression, and miR-183 mimic + CPEB1 overexpression groups. Expressions of miR-183, CPEB1, E-cadherin, and Vimentin were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Cell viability, colony formation ability, migration, invasion, and apoptosis were assessed by MTT assay, clone formation assay, scratch test, Transwell assay, and flow cytometry. In vivo tumorigenesis of Ishikawa cells was evaluated by tumor formation in nude mice. The miR-183 expression was higher, but the CPEB1 expression was lower in EC tissues than in adjacent nonmalignant tissues. CPEB1 was confirmed as the target of miR-183 by dual-luciferase reporter assay. The miR-183 mimic group had increased cell viability, colony formation ability, cell invasion and migration, tumor volume and weight in nude mice, but decreased cell apoptosis when compared with the blank group. The expression of E-cadherin was down-regulate, but expression of Vimentin was up-regulate in the miR-183 mimic group in comparison with the blank group. In terms of a comparison between the blank group and CPEB1 overexpression group, the CPEB1 overexpression group had suppressed cell viability, colony formation ability, cell invasion and migration, tumor volume and weight, but increased cell apoptosis. The expression of E-cadherin was up-regulated, but the expression of Vimentin was down-regulated in the CPEB1 overexpression group in comparison with the blank group. The miR-183 mimic + CPEB1 overexpression group had higher miR-183 expression than the blank group. These findings indicate that miR-183 induces EMT, inhibits apoptosis, and promotes cell proliferation, migration, invasion, and in vivo tumorigenesis in EC by targeting CPEB1.
Collapse
Affiliation(s)
- Hanzhen Xiong
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ruichao Chen
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Shaoyan Liu
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Qiongyan Lin
- Department of Gynaecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hui Chen
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Qingping Jiang
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
34
|
Zhao W, Yang H, Li J, Chen Y, Cao J, Zhong T, Wang L, Guo J, Li L, Zhang H. MiR-183 promotes preadipocyte differentiation by suppressing Smad4 in goats. Gene 2018; 666:158-164. [PMID: 29751096 DOI: 10.1016/j.gene.2018.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022]
Abstract
As a well-conserved microRNA, miR-183 is ubiquitously expressed in many tissues and cells including backfat and the 3T3-L1 adipocytes; however, the mechanisms regulating miR-183 in adipogenesis remain poorly understood. Here, we explored the expression pattern and role of miR-183 in adipogenesis using hircine preadipocytes. The results showed that miR-183 was up-regulated during preadipocyte differentiation, and overexpression of miR-183 enhanced lipid accumulation and dramatically increased the mRNA expression of the adipogenic genes PPARγ, C/EBPα, SREBP-1c, FAS, and ACC. Using bioinformatics tools, we predicted Smad4 to be a target of miR-183. This was subsequently validated with a luciferase reporter assay. Overexpression of miR-183 suppressed the mRNA and protein levels of Smad4 significantly, whereas inhibiting miR-183 had the opposite effect. However, inhibition of Smad4 greatly accelerated lipid deposition and increased the expression of adipogenic genes which consists with the results of miR-183 overexpression. In conclusion, these results indicate that miR-183 promotes hircine preadipocyte differentiation by targeting Smad4.
Collapse
Affiliation(s)
- Wei Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hailong Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Juntao Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
35
|
Booth KT, Azaiez H, Jahan I, Smith RJH, Fritzsch B. Intracellular Regulome Variability Along the Organ of Corti: Evidence, Approaches, Challenges, and Perspective. Front Genet 2018; 9:156. [PMID: 29868110 PMCID: PMC5951964 DOI: 10.3389/fgene.2018.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian hearing organ is a regular array of two types of hair cells (HCs) surrounded by six types of supporting cells. Along the tonotopic axis, this conserved radial array of cell types shows longitudinal variations to enhance the tuning properties of basilar membrane. We present the current evidence supporting the hypothesis that quantitative local variations in gene expression profiles are responsible for local cell responses to global gene manipulations. With the advent of next generation sequencing and the unprecedented array of technologies offering high throughput analyses at the single cell level, transcriptomics will become a common tool to enhance our understanding of the inner ear. We provide an overview of the approaches and landmark studies undertaken to date to analyze single cell variations in the organ of Corti and discuss the current limitations. We next provide an overview of the complexity of known regulatory mechanisms in the inner ear. These mechanisms are tightly regulated temporally and spatially at the transcription, RNA-splicing, mRNA-regulation, and translation levels. Understanding the intricacies of regulatory mechanisms at play in the inner ear will require the use of complementary approaches, and most probably, a combinatorial strategy coupling transcriptomics, proteomics, and epigenomics technologies. We highlight how these data, in conjunction with recent insights into molecular cell transformation, can advance attempts to restore lost hair cells.
Collapse
Affiliation(s)
- Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Israt Jahan
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States.,Department of Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
36
|
Weston MD, Tarang S, Pierce ML, Pyakurel U, Rocha-Sanchez SM, McGee J, Walsh EJ, Soukup GA. A mouse model of miR-96, miR-182 and miR-183 misexpression implicates miRNAs in cochlear cell fate and homeostasis. Sci Rep 2018; 8:3569. [PMID: 29476110 PMCID: PMC5824881 DOI: 10.1038/s41598-018-21811-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
Germline mutations in Mir96, one of three co-expressed polycistronic miRNA genes (Mir96, Mir182, Mir183), cause hereditary hearing loss in humans and mice. Transgenic FVB/NCrl- Tg(GFAP-Mir183,Mir96,Mir182)MDW1 mice (Tg1MDW), which overexpress this neurosensory-specific miRNA cluster in the inner ear, were developed as a model system to identify, in the aggregate, target genes and biologic processes regulated by the miR-183 cluster. Histological assessments demonstrate Tg1MDW/1MDW homozygotes have a modest increase in cochlear inner hair cells (IHCs). Affymetrix mRNA microarray data analysis revealed that downregulated genes in P5 Tg1MDW/1MDW cochlea are statistically enriched for evolutionarily conserved predicted miR-96, miR-182 or miR-183 target sites. ABR and DPOAE tests from 18 days to 3 months of age revealed that Tg1MDW/1MDW homozygotes develop progressive neurosensory hearing loss that correlates with histologic assessments showing massive losses of both IHCs and outer hair cells (OHCs). This mammalian miRNA misexpression model demonstrates a potency and specificity of cochlear homeostasis for one of the dozens of endogenously co-expressed, evolutionally conserved, small non-protein coding miRNA families. It should be a valuable tool to predict and elucidate miRNA-regulated genes and integrated functional gene expression networks that significantly influence neurosensory cell differentiation, maturation and homeostasis.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Disease Models, Animal
- Ear, Inner/metabolism
- Ear, Inner/pathology
- Gene Expression Regulation
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/pathology
- Homeostasis/genetics
- Humans
- Mice
- Mice, Transgenic
- MicroRNAs/genetics
- Microarray Analysis
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Michael D Weston
- Department of Oral Biology, School of Dentistry, Creighton University, 780729 California Plaza, Omaha, NE 68178-0729, USA.
| | - Shikha Tarang
- Department of Oral Biology, School of Dentistry, Creighton University, 780729 California Plaza, Omaha, NE 68178-0729, USA
| | - Marsha L Pierce
- Department of Pharmacology, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Umesh Pyakurel
- Department of Oral Biology, School of Dentistry, Creighton University, 780729 California Plaza, Omaha, NE 68178-0729, USA
| | - Sonia M Rocha-Sanchez
- Department of Oral Biology, School of Dentistry, Creighton University, 780729 California Plaza, Omaha, NE 68178-0729, USA
| | - JoAnn McGee
- Developmental Auditory Physiology Laboratory, Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131, USA
| | - Edward J Walsh
- Developmental Auditory Physiology Laboratory, Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131, USA
| | - Garrett A Soukup
- Department of Biomedical Sciences, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
37
|
Glover JC, Elliott KL, Erives A, Chizhikov VV, Fritzsch B. Wilhelm His' lasting insights into hindbrain and cranial ganglia development and evolution. Dev Biol 2018; 444 Suppl 1:S14-S24. [PMID: 29447907 DOI: 10.1016/j.ydbio.2018.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 01/04/2023]
Abstract
Wilhelm His (1831-1904) provided lasting insights into the development of the central and peripheral nervous system using innovative technologies such as the microtome, which he invented. 150 years after his resurrection of the classical germ layer theory of Wolff, von Baer and Remak, his description of the developmental origin of cranial and spinal ganglia from a distinct cell population, now known as the neural crest, has stood the test of time and more recently sparked tremendous advances regarding the molecular development of these important cells. In addition to his 1868 treatise on 'Zwischenstrang' (now neural crest), his work on the development of the human hindbrain published in 1890 provided novel ideas that more than 100 years later form the basis for penetrating molecular investigations of the regionalization of the hindbrain neural tube and of the migration and differentiation of its constituent neuron populations. In the first part of this review we briefly summarize the major discoveries of Wilhelm His and his impact on the field of embryology. In the second part we relate His' observations to current knowledge about the molecular underpinnings of hindbrain development and evolution. We conclude with the proposition, present already in rudimentary form in the writings of His, that a primordial spinal cord-like organization has been molecularly supplemented to generate hindbrain 'neomorphs' such as the cerebellum and the auditory and vestibular nuclei and their associated afferents and sensory organs.
Collapse
Affiliation(s)
- Joel C Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway; Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway; Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Albert Erives
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Victor V Chizhikov
- The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
38
|
|
39
|
Mann ZF, Gálvez H, Pedreno D, Chen Z, Chrysostomou E, Żak M, Kang M, Canden E, Daudet N. Shaping of inner ear sensory organs through antagonistic interactions between Notch signalling and Lmx1a. eLife 2017; 6:e33323. [PMID: 29199954 PMCID: PMC5724992 DOI: 10.7554/elife.33323] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of formation of the distinct sensory organs of the inner ear and the non-sensory domains that separate them are still unclear. Here, we show that several sensory patches arise by progressive segregation from a common prosensory domain in the embryonic chicken and mouse otocyst. This process is regulated by mutually antagonistic signals: Notch signalling and Lmx1a. Notch-mediated lateral induction promotes prosensory fate. Some of the early Notch-active cells, however, are normally diverted from this fate and increasing lateral induction produces misshapen or fused sensory organs in the chick. Conversely Lmx1a (or cLmx1b in the chick) allows sensory organ segregation by antagonizing lateral induction and promoting commitment to the non-sensory fate. Our findings highlight the dynamic nature of sensory patch formation and the labile character of the sensory-competent progenitors, which could have facilitated the emergence of new inner ear organs and their functional diversification in the course of evolution.
Collapse
Affiliation(s)
- Zoe F Mann
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Héctor Gálvez
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - David Pedreno
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Ziqi Chen
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | | | - Magdalena Żak
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Miso Kang
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | | | - Nicolas Daudet
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
40
|
|
41
|
Notch and Fgf signaling during electrosensory versus mechanosensory lateral line organ development in a non-teleost ray-finned fish. Dev Biol 2017; 431:48-58. [PMID: 28818669 PMCID: PMC5650464 DOI: 10.1016/j.ydbio.2017.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/05/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
Abstract
The lateral line system is a useful model for studying the embryonic and evolutionary diversification of different organs and cell types. In jawed vertebrates, this ancestrally comprises lines of mechanosensory neuromasts over the head and trunk, flanked on the head by fields of electrosensory ampullary organs, all innervated by lateral line neurons in cranial lateral line ganglia. Both types of sense organs, and their afferent neurons, develop from cranial lateral line placodes. Current research primarily focuses on the posterior lateral line primordium in zebrafish, which migrates as a cell collective along the trunk; epithelial rosettes form in the trailing zone and are deposited as a line of neuromasts, within which hair cells and supporting cells differentiate. However, in at least some other teleosts (e.g. catfishes) and all non-teleosts, lines of cranial neuromasts are formed by placodes that elongate to form a sensory ridge, which subsequently fragments, with neuromasts differentiating in a line along the crest of the ridge. Furthermore, in many non-teleost species, electrosensory ampullary organs develop from the flanks of the sensory ridge. It is unknown to what extent the molecular mechanisms underlying neuromast formation from the zebrafish migrating posterior lateral line primordium are conserved with the as-yet unexplored molecular mechanisms underlying neuromast and ampullary organ formation from elongating lateral line placodes. Here, we report experiments in an electroreceptive non-teleost ray-finned fish, the Mississippi paddlefish Polyodon spathula, that suggest a conserved role for Notch signaling in regulating lateral line organ receptor cell number, but potentially divergent roles for the fibroblast growth factor signaling pathway, both between neuromasts and ampullary organs, and between paddlefish and zebrafish. Notch and Fgf pathway genes are expressed during paddlefish lateral line development. Fgf ligand genes are differentially expressed in neuromasts and ampullary organs. DAPT treatment results in irregular organ spacing and supernumerary receptor cells. SU5402 treatment yields fewer neuromasts, but ampullary organs form precociously. SU5402 treatment also results in supernumerary receptor cells.
Collapse
|
42
|
Rapti G, Li C, Shan A, Lu Y, Shaham S. Glia initiate brain assembly through noncanonical Chimaerin-Furin axon guidance in C. elegans. Nat Neurosci 2017; 20:1350-1360. [PMID: 28846083 PMCID: PMC5614858 DOI: 10.1038/nn.4630] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Brain assembly is hypothesized to begin when pioneer axons extend over non-neuronal cells, forming tracts guiding follower axons. Yet pioneer-neuron identities, their guidance substrates, and their interactions are not well understood. Here, using time-lapse embryonic imaging, genetics, protein-interaction, and functional studies, we uncover the early events of C. elegans brain assembly. We demonstrate that C. elegans glia are key for assembly initiation, guiding pioneer and follower axons using distinct signals. Pioneer sublateral neurons, with unique growth properties, anatomy, and innervation, cooperate with glia to mediate follower-axon guidance. We further identify a Chimaerin (CHIN-1)- Furin (KPC-1) double-mutant that severely disrupts assembly. CHIN-1 and KPC-1 function noncanonically, in glia and pioneer neurons, for guidance-cue trafficking. We exploit this bottleneck to define roles for glial Netrin and Semaphorin in pioneer- and follower-axon guidance, respectively, and for glial and pioneer-neuron Flamingo (CELSR) in follower-axon navigation. Taken together, our studies reveal previously undescribed glial roles in pioneer-axon guidance, suggesting conserved principles of brain assembly.
Collapse
Affiliation(s)
- Georgia Rapti
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Chang Li
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Alan Shan
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
43
|
Du J, Zhang X, Cao H, Jiang D, Wang X, Zhou W, Chen K, Zhou J, Jiang H, Ba L. MiR-194 is involved in morphogenesis of spiral ganglion neurons in inner ear by rearranging actin cytoskeleton via targeting RhoB. Int J Dev Neurosci 2017; 63:16-26. [PMID: 28941704 DOI: 10.1016/j.ijdevneu.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Many microRNAs participate in the development, differentiation and function preservation of the embryonic and adult inner ear, but many details still need to be elucidated regarding the numerous microRNAs in the inner ear. Based on previous investigations on the microRNA profile in the inner ear, we confirmed that several microRNAs are expressed in the inner ear, and we detected the spatial expression of these microRNAs in the neonatal mouse inner ear. Then we focused on miR-194 for its specific expression with a dynamic spatiotemporal pattern during inner ear development. Overexpression of miR-194 in cultured spiral ganglion cells significantly affected the dendrites of differentiated neurons, with more branching and obviously dispersed nerve fibres. Furthermore, the cytoskeleton of cultured cells was markedly affected, as disordered actin filaments resulting from miR-194 overexpression and enhanced filaments resulting from miR-194 knockdown were observed. Together with the bioinformatic methods, the RT-qPCR and western blot results showed that RhoB is a candidate target of miR-194 in the morphogenesis of spiral ganglion neurons. Additionally, the double luciferase reporter system was used to identify RhoB as a novel target of miR-194. Finally, the inhibition of RhoB activation by Clostridium difficile toxin B disturbed the organization of the actin filament, similar to the effects of miR-194 overexpression. In summary, we investigated microRNA expression in the mouse inner ear, and demonstrated that miR-194 is dynamically expressed during inner ear development; importantly, we found that miR-194 affects neuron morphogenesis positively through Rho B-mediated F-actin rearrangement.
Collapse
Affiliation(s)
- Jintao Du
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, China
| | - Xuemei Zhang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Hui Cao
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Di Jiang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Xianren Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Wei Zhou
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China; Department of Otolaryngology, People's Hospital of Meishan, Meishan, Sichuan, 620010, China
| | - Kaitian Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Jiao Zhou
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| | - Luo Ba
- Department of Otolaryngology, People's Hospital of the Tibet Autonomous Region, Lasha, China.
| |
Collapse
|
44
|
MicroRNAs in Different Histologies of Soft Tissue Sarcoma: A Comprehensive Review. Int J Mol Sci 2017; 18:ijms18091960. [PMID: 28895916 PMCID: PMC5618609 DOI: 10.3390/ijms18091960] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022] Open
Abstract
Soft tissue sarcomas (STS) constitute a rare tumour entity comprising over 50 histological subtypes. MicroRNAs (miRNAs) are short non-protein coding RNA molecules that regulate gene expression by targeting the 3'-untranslated region of messenger RNAs. They are involved in a variety of human diseases, including malignancies, such as endometrial cancer, osteosarcoma, bronchial carcinoma and breast cancer. In STS, various miRNAs are differentially expressed, thus contributing to development, progression and invasion. Therefore, the aim of the present review is to summarise current knowledge on the role of miRNAs in STS. Furthermore, the potential role of miRNAs as diagnostic, prognostic and predictive biomarkers is discussed.
Collapse
|
45
|
Fritzsch B, Elliott KL. Gene, cell, and organ multiplication drives inner ear evolution. Dev Biol 2017; 431:3-15. [PMID: 28866362 DOI: 10.1016/j.ydbio.2017.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/27/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future.
Collapse
Affiliation(s)
- Bernd Fritzsch
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States.
| | - Karen L Elliott
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States
| |
Collapse
|
46
|
Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors. Viruses 2017; 9:v9080210. [PMID: 28783105 PMCID: PMC5580467 DOI: 10.3390/v9080210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors.
Collapse
|
47
|
Ebeid M, Sripal P, Pecka J, Beisel KW, Kwan K, Soukup GA. Transcriptome-wide comparison of the impact of Atoh1 and miR-183 family on pluripotent stem cells and multipotent otic progenitor cells. PLoS One 2017; 12:e0180855. [PMID: 28686713 PMCID: PMC5501616 DOI: 10.1371/journal.pone.0180855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/05/2017] [Indexed: 11/18/2022] Open
Abstract
Over 5% of the global population suffers from disabling hearing loss caused by multiple factors including aging, noise exposure, genetic predisposition, or use of ototoxic drugs. Sensorineural hearing loss is often caused by the loss of sensory hair cells (HCs) of the inner ear. A barrier to hearing restoration after HC loss is the limited ability of mammalian auditory HCs to spontaneously regenerate. Understanding the molecular mechanisms orchestrating HC development is expected to facilitate cell replacement therapies. Multiple events are known to be essential for proper HC development including the expression of Atoh1 transcription factor and the miR-183 family. We have developed a series of vectors expressing the miR-183 family and/or Atoh1 that was used to transfect two different developmental cell models: pluripotent mouse embryonic stem cells (mESCs) and immortalized multipotent otic progenitor (iMOP) cells representing an advanced developmental stage. Transcriptome profiling of transfected cells show that the impact of Atoh1 is contextually dependent with more HC-specific effects on iMOP cells. miR-183 family expression in combination with Atoh1 not only appears to fine tune gene expression in favor of HC fate, but is also required for the expression of some HC-specific genes. Overall, the work provides novel insight into the combined role of Atoh1 and the miR-183 family during HC development that may ultimately inform strategies to promote HC regeneration or maintenance.
Collapse
Affiliation(s)
- Michael Ebeid
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Prashanth Sripal
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Jason Pecka
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Kelvin Kwan
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Garrett A. Soukup
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
48
|
Cai T, Long J, Wang H, Liu W, Zhang Y. Identification and characterization of miR-96, a potential biomarker of NSCLC, through bioinformatic analysis. Oncol Rep 2017; 38:1213-1223. [PMID: 28656287 DOI: 10.3892/or.2017.5754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/06/2017] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. The poor prognosis is partly due to lack of efficient methods for early diagnosis. MicroRNAs play roles in almost all aspects of cancer biology, and can be secreted into the circulation and serve as molecular biomarkers for the early diagnosis of cancer. In the present study, we determined the expression of miR-96 and the function of its target genes in lung cancer through bioinformatic analysis. Four microRNA expression profiles of lung cancer were downloaded from Gene Expression Omnibus and the data were analyzed using SPSS 16.0 software. Compared to the control group, expression of miR-96 was significantly increased in non-small cell lung cancer (NSCLC) (GSE51855), lung adenocarcinoma (GSE48414), stage I adenocarcinoma tissues (GSE63805) and the plasma of lung cancer patients (GSE68951). miR-96 was also elevated in six different NSCLC cell lines. However, the expression level of miR-96 was not related to the age, gender, clinical stage and histological subtype of the NSCLC patients. GO analysis of 78 predicted target genes of miR-96 showed that 42 of the obtained GO terms are highly associated with specific cellular processes including response to stimulus, signaling pathway, cell division, cell communication, cell migration and calcium signaling. KEGG results indicated that the miR-96 targets are mainly involved in the GnRH signaling pathway, long-term potentiation and insulin signaling pathway. In conclusion, miR-96, functioning as an oncogene, may play an important role in the development and progression of lung cancer. miR-96 may have the potential to serve as a molecular biomarker for the early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Tonghui Cai
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jie Long
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Hongyan Wang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Wanxia Liu
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
49
|
Maturation arrest in early postnatal sensory receptors by deletion of the miR-183/96/182 cluster in mouse. Proc Natl Acad Sci U S A 2017; 114:E4271-E4280. [PMID: 28484004 DOI: 10.1073/pnas.1619442114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The polycistronic miR-183/96/182 cluster is preferentially and abundantly expressed in terminally differentiating sensory epithelia. To clarify its roles in the terminal differentiation of sensory receptors in vivo, we deleted the entire gene cluster in mouse germline through homologous recombination. The miR-183/96/182 null mice display impairment of the visual, auditory, vestibular, and olfactory systems, attributable to profound defects in sensory receptor terminal differentiation. Maturation of sensory receptor precursors is delayed, and they never attain a fully differentiated state. In the retina, delay in up-regulation of key photoreceptor genes underlies delayed outer segment elongation and possibly mispositioning of cone nuclei in the retina. Incomplete maturation of photoreceptors is followed shortly afterward by early-onset degeneration. Cell biologic and transcriptome analyses implicate dysregulation of ciliogenesis, nuclear translocation, and an epigenetic mechanism that may control timing of terminal differentiation in developing photoreceptors. In both the organ of Corti and the vestibular organ, impaired terminal differentiation manifests as immature stereocilia and kinocilia on the apical surface of hair cells. Our study thus establishes a dedicated role of the miR-183/96/182 cluster in driving the terminal differentiation of multiple sensory receptor cells.
Collapse
|
50
|
McEwen TJ, Yao Q, Yun S, Lee CY, Bennett KL. Small RNA in situ hybridization in Caenorhabditis elegans, combined with RNA-seq, identifies germline-enriched microRNAs. Dev Biol 2016; 418:248-257. [PMID: 27521456 PMCID: PMC5131644 DOI: 10.1016/j.ydbio.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023]
Abstract
Over four hundred different microRNAs (miRNAs) have been identified in the genome of the model organism the nematode Caenorhabditis elegans. As the germline is dedicated to the preservation of each species, and almost half of all the cells in an adult nematode are germline, it is likely that regulatory miRNAs are important for germline development and maintenance. In C. elegans the miR35 family has strong maternal effects, contributing to normal embryogenesis and to adult fecundity. To determine whether any particular miRNAs are greatly enriched in the C. elegans germline we used RNA-seq to compare the miRNA populations in several germline-defective strains of adult C. elegans worms, including glp-4(germline proliferation-4), glh-1(germline helicase-1) and dcr-1(dicer-1). Statistical analyses of RNA-seq comparisons identified 13 miRNAs that are germline-enriched, including seven members of the well-studied miR35 family that were reduced as much as 1000-fold in TaqMan qRT PCR miRNA assays. Along with the miR35s, six others: miR-56 (a member of the miR51 family),-70, -244, -260 , -788 and -4813, none of which previously considered as such, were also identified by RNA-seq as germline-enriched candidates. We went on to develop a successful miRNA in situ hybridization protocol for C. elegans, revealing miR35s specifically concentrate during oogenesis in the pachytene region of the gonad, and persist throughout early embryogenesis, while in adult animals neither let-7 nor miR-228 has a germline-bias.
Collapse
Affiliation(s)
- Tamara J. McEwen
- Molecular Microbiology and Immunology Department, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Qiuming Yao
- Department of Computer Science, Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Sijung Yun
- Yotta Biomed, LLC, 4835 Cordell Ave #1117, Bethesda, MD 20814, USA
| | - Chin-Yung Lee
- The Seydoux Laboratory, Molecular Biology and Genetics Department, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Karen L. Bennett
- Molecular Microbiology and Immunology Department, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|