1
|
Han Y, Li B, Li Y, Niu D. The Inhibitory Effects of RNA-Interference-Mediated Guanylate Cyclase Knockdown on Larval Metamorphosis and Early Progeny Growth of Razor Clam. Genes (Basel) 2023; 14:459. [PMID: 36833386 PMCID: PMC9956218 DOI: 10.3390/genes14020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Guanylate cyclase (GC, cGMPase) is a key enzyme in organisms, catalyzing the synthesis of cGMP from GTP, thus making cGMP work. cGMP plays a vital role in the regulation of cell and biological growth as a second messenger in signaling pathways. In this study, we screened and identified cGMPase from the razor clam Sinonovacula constricta, which encoded 1257 amino acids and was widely expressed in different tissues, especially the gill and liver. We also screened one double-stranded RNA (dsRNA), cGMPase, which was used to knockdown cGMPase at three larval metamorphosis development stages: trochophores-veliger larve, veliger larve-umbo larve, and umbo larve-creeping larvae. We showed that interference at these stages significantly inhibited larval metamorphosis and survival rates. cGMPase knockdown resulted in an average metamorphosis rate of 60% and an average mortality rate of 50% when compared with control clams. After 50 days, shell length and body weight were inhibited to 53% and 66%, respectively. Thus, cGMPase appeared to regulate metamorphosis development and growth in S. constricta. By examining the role of the key gene in the metamorphosis development of S. constricta larvae and the growth and development period, we can provide some data reference for studying the growth and development mechanism of shellfish, and the results provided basic information for the breeding of S. constricta.
Collapse
Affiliation(s)
- Yuting Han
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Beibei Li
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yifeng Li
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Donghong Niu
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Zhu YT, Liang LL, Liu TT, Liang X, Yang JL. Effects of L-arginine on Nitric Oxide Synthesis and Larval Metamorphosis of Mytilus coruscus. Genes (Basel) 2023; 14:450. [PMID: 36833378 PMCID: PMC9957169 DOI: 10.3390/genes14020450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
To investigate the regulatory functions of L-arginine and nitric oxide (NO) on Mytilus coruscus metamorphosis, M. coruscus larvae were exposed to an inhibitor of nitric oxide synthase (NOS), aminoguanidine hemisulfate (AGH), and a substrate for NO synthesis, L-arginine. We observed that NO levels showed a significant increase, and this trend continued with L-arginine treatment. When NOS activity was inhibited, the larvae could not synthesize NO, and metamorphosis was not inhibited even in the presence of L-arginine. On transfecting pediveliger larvae with NOS siRNA followed by L-arginine exposure, we found that the larvae did not produce NO and that the larval metamorphosis rate was significantly increased, suggesting that L-arginine regulates M. coruscus larval metamorphosis by promoting NO synthesis. Our findings improve our understanding of the effects of marine environmental factors on larval metamorphosis of mollusks.
Collapse
Affiliation(s)
- You-Ting Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lin-Li Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Tian-Tian Liu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Moroz LL, Mukherjee K, Romanova DY. Nitric oxide signaling in ctenophores. Front Neurosci 2023; 17:1125433. [PMID: 37034176 PMCID: PMC10073611 DOI: 10.3389/fnins.2023.1125433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Nitric oxide (NO) is one of the most ancient and versatile signal molecules across all domains of life. NO signaling might also play an essential role in the origin of animal organization. Yet, practically nothing is known about the distribution and functions of NO-dependent signaling pathways in representatives of early branching metazoans such as Ctenophora. Here, we explore the presence and organization of NO signaling components using Mnemiopsis and kin as essential reference species. We show that NO synthase (NOS) is present in at least eight ctenophore species, including Euplokamis and Coeloplana, representing the most basal ctenophore lineages. However, NOS could be secondarily lost in many other ctenophores, including Pleurobrachia and Beroe. In Mnemiopsis leidyi, NOS is present both in adult tissues and differentially expressed in later embryonic stages suggesting the involvement of NO in developmental mechanisms. Ctenophores also possess soluble guanylyl cyclases as potential NO receptors with weak but differential expression across tissues. Combined, these data indicate that the canonical NO-cGMP signaling pathways existed in the common ancestor of animals and could be involved in the control of morphogenesis, cilia activities, feeding and different behaviors.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
- *Correspondence: Leonid L. Moroz, ; orcid.org/0000-0002-1333-3176
| | - Krishanu Mukherjee
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
4
|
Locascio A, Vassalli QA, Castellano I, Palumbo A. Novel Insights on Nitric Oxide Synthase and NO Signaling in Ascidian Metamorphosis. Int J Mol Sci 2022; 23:ijms23073505. [PMID: 35408864 PMCID: PMC8999111 DOI: 10.3390/ijms23073505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) is a pivotal signaling molecule involved in a wide range of physiological and pathological processes. We investigated NOS/NO localization patterns during the different stages of larval development in the ascidia Ciona robusta and evidenced a specific and temporally controlled pattern. NOS/NO expression starts in the most anterior sensory structures of the early larva and progressively moves towards the caudal portion as larval development and metamorphosis proceeds. We here highlight the pattern of NOS/NO expression in the central and peripheral nervous system of Ciona larvae which precisely follows the progression of neural signals of the central pattern generator necessary for the control of the movements of the larva towards the substrate. This highly dynamic localization profile perfectly matches with the central role played by NO from the first phase of settlement induction to the next control of swimming behavior, adhesion to substrate and progressive tissue resorption and reorganization of metamorphosis itself.
Collapse
Affiliation(s)
- Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: (A.L.); (A.P.)
| | - Quirino Attilio Vassalli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy;
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: (A.L.); (A.P.)
| |
Collapse
|
5
|
Vogeler S, Carboni S, Li X, Nevejan N, Monaghan SJ, Ireland JH, Joyce A. Bivalves are NO different: nitric oxide as negative regulator of metamorphosis in the Pacific oyster, Crassostrea gigas. BMC DEVELOPMENTAL BIOLOGY 2020; 20:23. [PMID: 33228520 PMCID: PMC7686737 DOI: 10.1186/s12861-020-00232-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nitric oxide (NO) is presumed to be a regulator of metamorphosis in many invertebrate species, and although NO pathways have been comparatively well-investigated in gastropods, annelids and crustaceans, there has been very limited research on the effects of NO on metamorphosis in bivalve shellfish. RESULTS In this paper, we investigate the effects of NO pathway inhibitors and NO donors on metamorphosis induction in larvae of the Pacific oyster, Crassostrea gigas. The nitric oxides synthase (NOS) inhibitors s-methylisothiourea hemisulfate salt (SMIS), aminoguanidine hemisulfate salt (AGH) and 7-nitroindazole (7-NI) induced metamorphosis at 75, 76 and 83% respectively, and operating in a concentration-dependent manner. Additional induction of up to 54% resulted from exposures to 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, with which NO interacts to catalyse the synthesis of cyclic guanosine monophosphate (cGMP). Conversely, high concentrations of the NO donor sodium nitroprusside dihydrate in combination with metamorphosis inducers epinephrine, MK-801 or SMIS, significantly decreased metamorphosis, although a potential harmful effect of excessive NO unrelated to metamorphosis pathway cannot be excluded. Expression of CgNOS also decreased in larvae after metamorphosis regardless of the inducers used, but intensified again post-metamorphosis in spat. Fluorescent detection of NO in competent larvae with DAF-FM diacetate and localisation of the oyster nitric oxide synthase CgNOS expression by in-situ hybridisation showed that NO occurs primarily in two key larval structures, the velum and foot. cGMP was also detected in the foot using immunofluorescent assays, and is potentially involved in the foot's smooth muscle relaxation. CONCLUSION Together, these results suggest that the NO pathway acts as a negative regulator of metamorphosis in Pacific oyster larvae, and that NO reduction induces metamorphosis by inhibiting swimming or crawling behaviour, in conjunction with a cascade of additional neuroendocrine downstream responses.
Collapse
Affiliation(s)
- Susanne Vogeler
- Department of Marine Science, University of Gothenburg, Carl Skottbergsgata 22 B, 41319, Gothenburg, Sweden
| | - Stefano Carboni
- Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, Scotland, UK
| | - Xiaoxu Li
- South Australia Research and Development Institute Aquatic Sciences Centre, 2 Hamra Ave, West Beach, SA, 5024, Australia
| | - Nancy Nevejan
- Department of Animal Production, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, Scotland, UK
| | - Jacqueline H Ireland
- Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, Scotland, UK
| | - Alyssa Joyce
- Department of Marine Science, University of Gothenburg, Carl Skottbergsgata 22 B, 41319, Gothenburg, Sweden.
| |
Collapse
|
6
|
Yang XX, Wong YH, Zhang Y, Zhang G, Qian PY. Exploring the regulatory role of nitric oxide (NO) and the NO-p38MAPK/cGMP pathway in larval settlement of the bryozoan Bugula neritina. BIOFOULING 2018; 34:545-556. [PMID: 29842799 DOI: 10.1080/08927014.2018.1470240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
The bryozoan Bugula neritina is a cosmopolitan marine fouling species that causes major fouling problems in sub-tropical waters. Settlement of B. neritina larvae can be triggered without an obvious external cue. Here, the negative regulatory role of nitric oxide (NO) during larval settlement of B. neritina was demonstrated to be mediated by cyclic guanosine monophosphate (cGMP). Although the regulatory role of the NO-p38 MAPK signaling axis in larval settlement was not evident, inhibition of nitric oxide synthase (NOS) led to the deactivation of p38 MAPK. Exclusive localization of NO and NO signaling components in sensory-related organs of the larvae is consistent with its signal transduction function in metamorphosis. Overall, this study provides new insights into the regulatory roles of the NO-p38MAPK/cGMP pathway in B. neritina settlement.
Collapse
Affiliation(s)
- Xiao-Xue Yang
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Yue Him Wong
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Yu Zhang
- b Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , PR China
| | - Gen Zhang
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Pei-Yuan Qian
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| |
Collapse
|
7
|
Annona G, Caccavale F, Pascual-Anaya J, Kuratani S, De Luca P, Palumbo A, D'Aniello S. Nitric Oxide regulates mouth development in amphioxus. Sci Rep 2017; 7:8432. [PMID: 28814726 PMCID: PMC5559612 DOI: 10.1038/s41598-017-08157-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 12/15/2022] Open
Abstract
The development of the mouth in animals has fascinated researchers for decades, and a recent study proposed the modern view of recurrent evolution of protostomy and deuterostomy. Here we expanded our knowledge about conserved traits of mouth formation in chordates, testing the hypothesis that nitric oxide (NO) is a potential regulator of this process. In the present work we show for the first time that NO is an essential cell signaling molecule for cephalochordate mouth formation, as previously shown for vertebrates, indicating its conserved ancestral role in chordates. The experimental decrease of NO during early amphioxus Branchiostoma lanceolatum development impaired the formation of the mouth and gill slits, demonstrating that it is a prerequisite in pharyngeal morphogenesis. Our results represent the first step in the understanding of NO physiology in non-vertebrate chordates, opening new evolutionary perspectives into the ancestral importance of NO homeostasis and acquisition of novel biological roles during evolution.
Collapse
Affiliation(s)
- Giovanni Annona
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale 1, 80121, Napoli, Italy
| | - Filomena Caccavale
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale 1, 80121, Napoli, Italy
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN, Minatojima-minami 2-2-3, 650-0047, Kobe, Hyogo, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, Minatojima-minami 2-2-3, 650-0047, Kobe, Hyogo, Japan
| | - Pasquale De Luca
- RIMAR, Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale 1, 80121, Napoli, Italy
| | - Anna Palumbo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale 1, 80121, Napoli, Italy
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale 1, 80121, Napoli, Italy.
| |
Collapse
|
8
|
Burns R, Pechenik J. Transcriptomic Basis of Metamorphic Competence in the Salt-Marsh-Dwelling Polychaete Capitella teleta. THE BIOLOGICAL BULLETIN 2017; 232:158-170. [PMID: 28898599 DOI: 10.1086/692829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Marine invertebrate larvae typically take hours to weeks after being released into the plankton before becoming "competent" to metamorphose. The mechanisms that govern this transition between the precompetent and metamorphically competent states are unknown. We studied gene expression patterns in precompetent and competent larvae of the salt-marsh-dwelling polychaete worm Capitella teleta (Blake, Grassle & Eckelbarger, 2009)-a species in which precompetent larvae are unusually easy to distinguish from competent larvae-to determine differences in gene expression associated with the onset of metamorphic competence. More than 1530 genes were more highly expressed in precompetent larvae, while more than 1060 genes were more highly expressed in competent larvae. Competent larvae downregulated the expression of genes belonging to gene ontologies relating to growth and development and upregulated those associated with ligand-binding transmembrane channels with possible chemo- and mechanosensory functions. Most of these channels were annotated as being from the degenerin/epithelial sodium channel family or the G-protein-coupled receptor family; proteins from these families can have chemosensory functions. Serotonin and GABA (γ-aminobutyric acid) receptors are among the genes that were upregulated in competent larvae; both have been shown to induce larvae of C. teleta and other marine invertebrates to metamorphose and are thought to be components of the signal transduction pathway that leads to metamorphosis. Overall, it appears that once larvae of C. teleta have completed development of the internal structures and physiology required for juvenile life during the precompetent period, they then upregulate the expression of chemosensory proteins and neurotransmitter receptors that will enable them to detect and transduce a settlement cue signal.
Collapse
Key Words
- 5-HT6, 5-hydroxytryptamine 6
- ASW, artificial seawater
- DEG/ENaC, degenerin/epithelial sodium channel
- FDR, false discovery rate
- GABA, γ-aminobutyric acid
- GPCR, G-protein-coupled receptor
- HSP, heat-shock protein
- NCBI, National Center for Biotechnology Information
- NOS, nitric oxide synthase
- PKD, polycystic kidney disease
- UTR, untranslated region
Collapse
|
9
|
Ueda N, Richards GS, Degnan BM, Kranz A, Adamska M, Croll RP, Degnan SM. An ancient role for nitric oxide in regulating the animal pelagobenthic life cycle: evidence from a marine sponge. Sci Rep 2016; 6:37546. [PMID: 27874071 PMCID: PMC5118744 DOI: 10.1038/srep37546] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
In many marine invertebrates, larval metamorphosis is induced by environmental cues that activate sensory receptors and signalling pathways. Nitric oxide (NO) is a gaseous signalling molecule that regulates metamorphosis in diverse bilaterians. In most cases NO inhibits or represses this process, although it functions as an activator in some species. Here we demonstrate that NO positively regulates metamorphosis in the poriferan Amphimedon queenslandica. High rates of A. queenslandica metamorphosis normally induced by a coralline alga are inhibited by an inhibitor of nitric oxide synthase (NOS) and by a NO scavenger. Consistent with this, an artificial donor of NO induces metamorphosis even in the absence of the alga. Inhibition of the ERK signalling pathway prevents metamorphosis in concert with, or downstream of, NO signalling; a NO donor cannot override the ERK inhibitor. NOS gene expression is activated late in embryogenesis and in larvae, and is enriched in specific epithelial and subepithelial cell types, including a putative sensory cell, the globular cell; DAF-FM staining supports these cells being primary sources of NO. Together, these results are consistent with NO playing an activating role in induction of A. queenslandica metamorphosis, evidence of its highly conserved regulatory role in metamorphosis throughout the Metazoa.
Collapse
Affiliation(s)
- Nobuo Ueda
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Gemma S. Richards
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Alexandrea Kranz
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Maja Adamska
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Roger P. Croll
- Department of Physiology & Biophysics, Dalhousie University, Halifax NS B3H 4R2, Canada
| | - Sandie M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
10
|
Castellano I, Ercolesi E, Romano G, Ianora A, Palumbo A. The diatom-derived aldehyde decadienal affects life cycle transition in the ascidian Ciona intestinalis through nitric oxide/ERK signalling. Open Biol 2015; 5:140182. [PMID: 25788553 PMCID: PMC4389792 DOI: 10.1098/rsob.140182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Polyunsaturated aldehydes (PUAs) are fatty-acid-derived metabolites produced by some microalgae, including different diatom species. PUAs are mainly produced as a wound-activated defence mechanism against microalgal predators or released from senescent cells at the end of a bloom. PUAs, including 2,4-trans-decadienal (DD), induce deleterious effects on embryonic and larval development of several planktonic and benthic organisms. Here, we report on the effects of DD on larval development and metamorphosis of the ascidian Ciona intestinalis. Ciona larval development is regulated by the cross-talking of different molecular events, including nitric oxide (NO) production, ERK activation and caspase 3-dependent apoptosis. We report that treatment with DD at the competence larval stage results in a delay in metamorphosis. DD affects redox balance by reducing total glutathione and NO levels. By biochemical and quantitative gene expression analysis, we identify the NO-signalling network affected by DD, including the upregulation of ERK phosphatase mkp1 and consequent reduction of ERK phosphorylation, with final changes in the expression of downstream ERK target genes. Overall, these results give new insights into the molecular pathways induced in marine organisms after exposure to PUAs during larval development, demonstrating that this aldehyde affects key checkpoints of larval transition from the vegetative to the reproductive life stage.
Collapse
Affiliation(s)
| | - Elena Ercolesi
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Anna Palumbo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
11
|
Hodin J, Ferner MC, Ng G, Lowe CJ, Gaylord B. Rethinking competence in marine life cycles: ontogenetic changes in the settlement response of sand dollar larvae exposed to turbulence. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150114. [PMID: 26543587 PMCID: PMC4632551 DOI: 10.1098/rsos.150114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/25/2015] [Indexed: 06/05/2023]
Abstract
Complex life cycles have evolved independently numerous times in marine animals as well as in disparate algae. Such life histories typically involve a dispersive immature stage followed by settlement and metamorphosis to an adult stage on the sea floor. One commonality among animals exhibiting transitions of this type is that their larvae pass through a 'precompetent' period in which they do not respond to localized settlement cues, before entering a 'competent' period, during which cues can induce settlement. Despite the widespread existence of these two phases, relatively little is known about how larvae transition between them. Moreover, recent studies have blurred the distinction between the phases by demonstrating that fluid turbulence can spark precocious activation of competence. Here, we further investigate this phenomenon by exploring how larval interactions with turbulence change across ontogeny, focusing on offspring of the sand dollar Dendraster excentricus (Eschscholtz). Our data indicate that larvae exhibit increased responsiveness to turbulence as they get older. We also demonstrate a likely cost to precocious competence: the resulting juveniles are smaller. Based upon these findings, we outline a new, testable conception of competence that has the potential to reshape our understanding of larval dispersal and connectivity among marine populations.
Collapse
Affiliation(s)
- Jason Hodin
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - Matthew C. Ferner
- San Francisco Bay National Estuarine Research Reserve and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
| | - Gabriel Ng
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| | | | - Brian Gaylord
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
12
|
The B vitamins nicotinamide (B3) and riboflavin (B2) stimulate metamorphosis in larvae of the deposit-feeding polychaete Capitella teleta: implications for a sensory ligand-gated ion channel. PLoS One 2014; 9:e109535. [PMID: 25390040 PMCID: PMC4229104 DOI: 10.1371/journal.pone.0109535] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/08/2014] [Indexed: 01/28/2023] Open
Abstract
Marine sediments can contain B vitamins, presumably incorporated from settled, decaying phytoplankton and microorganisms associated with decomposition. Because B vitamins may be advantageous for the energetically intensive processes of metamorphosis, post-metamorphic growth, and reproduction, we tested several B vitamins to determine if they would stimulate larvae of the deposit-feeding polychaete Capitella teleta to settle and metamorphose. Nicotinamide and riboflavin individually stimulated larvae of C. teleta to settle and metamorphose, generally within 1–2 hours at nicotinamide concentrations as low as 3 µM and riboflavin concentrations as low as 50 µM. More than 80% of the larvae metamorphosed within 30 minutes at a nicotinamide concentration of 7 µM. The pyridine channel agonist pyrazinecarboxamide also stimulated metamorphosis at very low concentrations. In contrast, neither lumichrome, thiamine HCl, pyridoxine HCl, nor vitamin B12 stimulated larvae of C. teleta to metamorphose at concentrations as high as 500 µM. Larvae also did not metamorphose in response to either nicotinamide or pyrazinecarboxamide in calcium-free seawater or with the addition of 4-acetylpyridine, a competitive inhibitor of the pyridine receptor. Together, these results suggest that larvae of C. teleta are responding to nicotinamide and riboflavin via a chemosensory pyridine receptor similar to that previously reported to be present on crayfish chela and involved with food recognition. Our data are the first to implicate B vitamins as possible natural chemical settlement cues for marine invertebrate larvae.
Collapse
|
13
|
Nitric oxide affects ERK signaling through down-regulation of MAP kinase phosphatase levels during larval development of the ascidian Ciona intestinalis. PLoS One 2014; 9:e102907. [PMID: 25058405 PMCID: PMC4109947 DOI: 10.1371/journal.pone.0102907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/25/2014] [Indexed: 02/07/2023] Open
Abstract
In the ascidian Ciona intestinalis larval development and metamorphosis require a complex interplay of events, including nitric oxide (NO) production, MAP kinases (ERK, JNK) and caspase-3 activation. We have previously shown that NO levels affect the rate of metamorphosis, regulate caspase activity and promote an oxidative stress pathway, resulting in protein nitration. Here, we report that NO down-regulates MAP kinase phosphatases (mkps) expression affecting positively ERK signaling. By pharmacological approach, we observed that the reduction of endogenous NO levels caused a decrease of ERK phosphorylation, whereas increasing levels of NO induced ERK activation. We have also identified the ERK gene network affected by NO, including mpk1, mpk3 and some key developmental genes by quantitative gene expression analysis. We demonstrate that NO induces an ERK-independent down-regulation of mkp1 and mkp3, responsible for maintaining the ERK phosphorylation levels necessary for transcription of key metamorphic genes, such as the hormone receptor rev-erb and the van willebrand protein vwa1c. These results add new insights into the role played by NO during larval development and metamorphosis in Ciona, highlighting the cross-talk between different signaling pathways.
Collapse
|
14
|
Glebov K, Voronezhskaya EE, Khabarova MY, Ivashkin E, Nezlin LP, Ponimaskin EG. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). BMC DEVELOPMENTAL BIOLOGY 2014; 14:14. [PMID: 24625099 PMCID: PMC4007640 DOI: 10.1186/1471-213x-14-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/21/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Serotonin (5-HT) is well known as widely distributed modulator of developmental processes in both vertebrates and invertebrates. It is also the earliest neurotransmitter to appear during neuronal development. In aquatic invertebrates, which have larvae in their life cycle, 5-HT is involved in regulation of stages transition including larval metamorphosis and settlement. However, molecular and cellular mechanisms underlying developmental transition in aquatic invertebrate species are yet poorly understood. Earlier we demonstrated that in larvae of freshwater molluscs and marine polychaetes, endogenous 5-HT released from the neurons of the apical sensory organ (ASO) in response to external stimuli retarded larval development at premetamorphic stages, and accelerated it at metamorphic stages. Here we used a freshwater snail Helisoma trivolvis to study molecular mechanisms underlying these dual developmental effects of 5-HT. RESULTS Larval development of H. trivolvis includes transition from premetamorphic to metamorphic stages and shares the main features of metamorphosis with free-swimming aquatic larvae. Three types of 5-HT receptors (5-HT1-, 5-HT4- and 5-HT7-like) are functionally active at premetamorphic (trochophore, veliger) and metamorphic (veliconcha) stages, and expression patterns of these receptors and respective G proteins undergo coordinated changes during development. Stimulation of these receptors modulated cAMP-dependent regulation of cell divisions. Expression of 5-HT4- and 5-HT7-like receptors and their downstream Gs protein was down-regulated during the transition of pre- to metamorphic stage, while expression of 5-HT1 -like receptor and its downstream Gi protein was upregulated. In accordance with relative amount of these receptors, stimulation of 5-HTRs at premetamorphic stages induces developmental retardation, while their stimulation at metamorphic stages induces developmental acceleration. CONCLUSIONS We present a novel molecular mechanism that underlies stage-specific changes in developmental tempo of H. trivolvis larvae in response to endogenous 5-HT produced by the neurons of the ASO. We suggest that consecutive changes in expression patterns of different receptors and their downstream partners in the course of larval development represent the molecular base of larval transition from premetamorphic (non-competent) to metamorphic (competent) state.
Collapse
Affiliation(s)
| | | | | | | | | | - Evgeni G Ponimaskin
- DFG-Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
| |
Collapse
|
15
|
Ueda N, Degnan SM. Nitric oxide acts as a positive regulator to induce metamorphosis of the ascidian Herdmania momus. PLoS One 2013; 8:e72797. [PMID: 24019877 PMCID: PMC3760835 DOI: 10.1371/journal.pone.0072797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/12/2013] [Indexed: 12/13/2022] Open
Abstract
Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO) is synthesised by nitric oxide synthase (NOS), which is a client protein of the molecular chaperon heat shock protein 90 (HSP90). It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation in ascidian metamorphosis.
Collapse
Affiliation(s)
- Nobuo Ueda
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Sandie M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
16
|
Romero MR, Phuong MA, Bishop C, Krug PJ. Nitric oxide signaling differentially affects habitat choice by two larval morphs of the sea slug Alderia willowi: mechanistic insight into evolutionary transitions in dispersal strategies. ACTA ACUST UNITED AC 2012. [PMID: 23197096 DOI: 10.1242/jeb.080747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In many marine animals, adult habitat is selected by lecithotrophic (non-feeding) larvae with a limited lifespan. In generalist species, larvae may increasingly accept sub-optimal habitat over time as energy stores are depleted ('desperate larva' hypothesis). If the fitness cost of suboptimal habitat is too high, larvae of specialists may prolong the searching phase until they encounter a high-quality patch or die ('death before dishonor' hypothesis). In generalists, starvation is hypothesized to lead to a decline in inhibitory nitric oxide (NO) signaling, thereby triggering metamorphosis. Here, we document alternative functions for identified signaling pathways in larvae having 'desperate' versus 'death before dishonor' strategies in lecithotrophic clutches of a habitat specialist, the sea slug Alderia willowi. In an unusual dimorphism, each clutch of A. willowi hatches both non-selective larvae that settle soon after hatching and siblings that delay settlement in the absence of cues from the alga Vaucheria, the sole adult food. Pharmacological manipulation of NO signaling induced metamorphosis in non-selective but not selective stages. However, decreased NO signaling in selective larvae lowered the threshold for response to habitat cues, mimicking the effect of declining energy levels. Manipulation of cGMP or dopamine production induced metamorphosis in selective and non-selective larvae alike, highlighting a distinct role for the NO pathway in the two larval morphs. We propose a model in which NO production (1) links nitrogen metabolism with sensory receptor signaling, and (2) shifts from a regulatory role in 'desperate larva' strategies to a modulatory role in 'death before dishonor' strategies. This study provides new mechanistic insight into how the function of conserved signaling pathways may change in response to selection on larval habitat choice behaviors.
Collapse
Affiliation(s)
- Melissa R Romero
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032-8201, USA
| | | | | | | |
Collapse
|
17
|
Zhang Y, He LS, Zhang G, Xu Y, Lee OO, Matsumura K, Qian PY. The regulatory role of the NO/cGMP signal transduction cascade during larval attachment and metamorphosis of the barnacle Balanus (=Amphibalanus) amphitrite. ACTA ACUST UNITED AC 2012; 215:3813-22. [PMID: 22855617 DOI: 10.1242/jeb.070235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The barnacle Balanus amphitrite is among the most dominant fouling species on intertidal rocky shores in tropical and subtropical areas and is thus a target organism in antifouling research. After being released from adults, the swimming nauplius undertakes six molting cycles and then transforms into a cyprid. Using paired antennules, a competent cyprid actively explores and selects a suitable substratum for attachment and metamorphosis (collectively known as settlement). This selection process involves the reception of exogenous signals and subsequent endogenous signal transduction. To investigate the involvement of nitric oxide (NO) and cyclic GMP (cGMP) during larval settlement of B. amphitrite, we examined the effects of an NO donor and an NO scavenger, two nitric oxide synthase (NOS) inhibitors and a soluble guanylyl cyclase (sGC) inhibitor on settling cyprids. We found that the NO donor sodium nitroprusside (SNP) inhibited larval settlement in a dose-dependent manner. In contrast, both the NO scavenger carboxy-PTIO and the NOS inhibitors aminoguanidine hemisulfate (AGH) and S-methylisothiourea sulfate (SMIS) significantly accelerated larval settlement. Suppression of the downstream guanylyl cyclase (GC) activity using a GC-selective inhibitor ODQ could also significantly accelerate larval settlement. Interestingly, the settlement inhibition effects of SNP could be attenuated by ODQ at all concentrations tested. In the developmental expression profiling of NOS and sGC, the lowest expression of both genes was detected in the cyprid stage, a crucial stage for the larval decision to attach and metamorphose. In summary, we concluded that NO regulates larval settlement via mediating downstream cGMP signaling.
Collapse
Affiliation(s)
- Yu Zhang
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Sutherby J, Giardini JL, Nguyen J, Wessel G, Leguia M, Heyland A. Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea). BMC DEVELOPMENTAL BIOLOGY 2012; 12:14. [PMID: 22541006 PMCID: PMC3460732 DOI: 10.1186/1471-213x-12-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/13/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus. RESULTS Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae. CONCLUSIONS We conclude that HA is a modulator of metamorphic competence in S. purpuratus development and hypothesize that HA may have played an important role in the evolution of settlement strategies in echinoids. Our findings provide novel insights into the evolution of HA signalling and its function in one of the most important and widespread life history transitions in the animal kingdom--metamorphosis.
Collapse
Affiliation(s)
- Josh Sutherby
- University of Guelph, Integrative Biology, Guelph, ON N1G-2 W1, Canada
| | | | - Julia Nguyen
- University of Guelph, Integrative Biology, Guelph, ON N1G-2 W1, Canada
| | - Gary Wessel
- Brown University, MCB, Providence, RI 02912, USA
| | - Mariana Leguia
- Brown University, MCB, Providence, RI 02912, USA
- Current address: U.S. Naval Medical Research Unit No.6, Lima, Peru
| | - Andreas Heyland
- University of Guelph, Integrative Biology, Guelph, ON N1G-2 W1, Canada
| |
Collapse
|
19
|
Biggers WJ, Pires A, Pechenik JA, Johns E, Patel P, Polson T, Polson J. Inhibitors of nitric oxide synthase induce larval settlement and metamorphosis of the polychaete annelidCapitella teleta. INVERTEBR REPROD DEV 2012. [DOI: 10.1080/07924259.2011.588006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Mattiello T, Costantini M, Di Matteo B, Livigni S, Andouche A, Bonnaud L, Palumbo A. The dynamic nitric oxide pattern in developing cuttlefish Sepia officinalis. Dev Dyn 2012; 241:390-402. [PMID: 22275228 DOI: 10.1002/dvdy.23722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2011] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is implied in many important biological processes in all metazoans from porifera to chordates. In the cuttlefish Sepia officinalis NO plays a key role in the defense system and neurotransmission. RESULTS Here, we detected for the first time NO, NO synthase (NOS) and transcript levels during the development of S. officinalis. The spatial pattern of NO and NOS is very dynamic, it begins during organogenesis in ganglia and epithelial tissues, as well as in sensory cells. At later stages, NO and NOS appear in organs and/or structures, including Hoyle organ, gills and suckers. Temporal expression of NOS, followed by real-time PCR, changes during development reaching the maximum level of expression at stage 26. CONCLUSIONS Overall these data suggest the involvement of NO during cuttlefish development in different fundamental processes, such as differentiation of neural and nonneural structures, ciliary beating, sensory cell maintaining, and organ functioning.
Collapse
Affiliation(s)
- Teresa Mattiello
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Stricker SA. Inhibition of germinal vesicle breakdown by antioxidants and the roles of signaling pathways related to nitric oxide and cGMP during meiotic resumption in oocytes of a marine worm. Reproduction 2011; 143:261-70. [PMID: 22187672 DOI: 10.1530/rep-11-0358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In mammalian oocytes, cAMP elevations prevent the resumption of meiotic maturation and thereby block nuclear disassembly (germinal vesicle breakdown (GVBD)), whereas nitric oxide (NO) and its downstream mediator cGMP can either inhibit or induce GVBD. Alternatively, some invertebrate oocytes use cAMP to stimulate, rather than inhibit, GVBD, and in such cases, the effects of NO/cGMP signaling on GVBD remain unknown. Moreover, potential interactions between NO/cGMP and AMP-activated kinase (AMPK) have not been assessed during GVBD. Thus, this study analyzed intraoocytic signaling pathways related to NO/cGMP in a marine nemertean worm that uses cAMP to induce GVBD. For such tests, follicle-free nemertean oocytes were stimulated to mature by seawater (SW) and cAMP elevators. Based on immunoblots and NO assays of maturing oocytes, SW triggered AMPK deactivation, NO synthase (NOS) phosphorylation, and an NO elevation. Accordingly, SW-induced GVBD was blocked by treatments involving the AMPK agonist AICAR, antioxidants, the NO scavenger carboxy-PTIO, NOS inhibitors, and cGMP antagonists that target the NO-stimulated enzyme, soluble guanylate cyclase (sGC). Conversely, SW solutions combining NO/cGMP antagonists with a cAMP elevator restored GVBD. Similarly, AICAR plus a cAMP-elevating drug reestablished GVBD while deactivating AMPK and phosphorylating NOS. Furthermore, sGC stimulators and 8-Br-cGMP triggered GVBD. Such novel results indicate that NO/cGMP signaling can upregulate SW-induced GVBD and that cAMP-elevating drugs restore GVBD by overriding the inhibition of various NO/cGMP downregulators, including AMPK. Moreover, considering the opposite effects of intraoocytic cAMP in nemerteans vs mammals, these data coincide with previous reports that NO/cGMP signaling blocks GVBD in rats.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| |
Collapse
|
22
|
Moroz LL, Kohn AB. Parallel evolution of nitric oxide signaling: diversity of synthesis and memory pathways. FRONT BIOSCI-LANDMRK 2011; 16:2008-51. [PMID: 21622160 PMCID: PMC4041873 DOI: 10.2741/3837] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin of NO signaling can be traceable back to the origin of life with the large scale of parallel evolution of NO synthases (NOSs). Inducible-like NOSs may be the most basal prototype of all NOSs and that neuronal-like NOS might have evolved several times from this prototype. Other enzymatic and non-enzymatic pathways for NO synthesis have been discovered using reduction of nitrites, an alternative source of NO. Diverse synthetic mechanisms can co-exist within the same cell providing a complex NO-oxygen microenvironment tightly coupled with cellular energetics. The dissection of multiple sources of NO formation is crucial in analysis of complex biological processes such as neuronal integration and learning mechanisms when NO can act as a volume transmitter within memory-forming circuits. In particular, the molecular analysis of learning mechanisms (most notably in insects and gastropod molluscs) opens conceptually different perspectives to understand the logic of recruiting evolutionarily conserved pathways for novel functions. Giant uniquely identified cells from Aplysia and related species precent unuque opportunities for integrative analysis of NO signaling at the single cell level.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080-8623, USA.
| | | |
Collapse
|
23
|
Ruiz-Jones GJ, Hadfield MG. Loss of sensory elements in the apical sensory organ during metamorphosis in the nudibranch Phestilla sibogae. THE BIOLOGICAL BULLETIN 2011; 220:39-46. [PMID: 21385956 DOI: 10.1086/bblv220n1p39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Larvae of the nudibranch Phestilla sibogae are induced to metamorphose by a water-borne chemical cue released by the adult nudibranch's prey, the coral Porites compressa. In competent larvae, the apical sensory organ (ASO) includes five serotonergic parampullary neurons; five ampullary neurons, the ampullae of which are filled with sensory cilia; and a basal neuropil. After sensing the coral cue, the ASO undergoes radical morphological changes: a deterioration of sensory elements in the ASO and serotonergic axons originating from them to innervate the velum. Three hours after metamorphic induction, the velar lobes are lost, the serotonergic axons begin to break apart, the five parampullary neurons begin to degenerate, and the five ampullary neurons retract away from the epidermal surface. The extent of deterioration evident by this time suggests that the parampullary and ampullary components of the ASO are no longer functional. By 10 h after metamorphic induction, labeling of the ciliary bundles in the ampullary neurons has disappeared, and it is likely that these cells have degenerated. The results presented here provide evidence that the sensory neurons of the ASO and probably the entire organ are solely larval structures that do not persist into the adult sensory-nervous system in P. sibogae.
Collapse
Affiliation(s)
- Guadalupe J Ruiz-Jones
- Kewalo Marine Laboratory, University of Hawai'i at Manoa, 41 Ahui St., Honolulu, HI 96813, USA
| | | |
Collapse
|
24
|
Rószer T, Kiss-Tóth E, Rózsa D, Józsa T, Szentmiklósi AJ, Bánfalvi G. Hypothermia translocates nitric oxide synthase from cytosol to membrane in snail neurons. Cell Tissue Res 2010; 342:191-203. [PMID: 20953631 DOI: 10.1007/s00441-010-1063-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 09/15/2010] [Indexed: 01/28/2023]
Abstract
Neuronal nitric oxide (NO) levels are modulated through the control of catalytic activity of NO synthase (NOS). Although signals limiting excess NO synthesis are being extensively studied in the vertebrate nervous system, our knowledge is rather limited on the control of NOS in neurons of invertebrates. We have previously reported a transient inactivation of NOS in hibernating snails. In the present study, we aimed to understand the mechanism leading to blocked NO production during hypothermic periods of Helix pomatia. We have found that hypothermic challenge translocated NOS from the cytosol to the perinuclear endoplasmic reticulum, and that this cytosol to membrane trafficking was essential for inhibition of NO synthesis. Cold stress also downregulated NOS mRNA levels in snail neurons, although the amount of NOS protein remained unaffected in response to hypothermia. Our studies with cultured neurons and glia cells revealed that glia-neuron signaling may inhibit membrane binding and inactivation of NOS. We provide evidence that hypothermia keeps NO synthesis "hibernated" through subcellular redistribution of NOS.
Collapse
Affiliation(s)
- Tamás Rószer
- Department of Microbial Biotechnology and Cell Biology (formerly Animal Anatomy and Physiology), Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
25
|
Degnan SM, Degnan BM. The initiation of metamorphosis as an ancient polyphenic trait and its role in metazoan life-cycle evolution. Philos Trans R Soc Lond B Biol Sci 2010; 365:641-51. [PMID: 20083639 DOI: 10.1098/rstb.2009.0248] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Comparative genomics of representative basal metazoans leaves little doubt that the most recent common ancestor to all modern metazoans was morphogenetically complex. Here, we support this interpretation by demonstrating that the demosponge Amphimedon queenslandica has a biphasic pelagobenthic life cycle resembling that present in a wide range of bilaterians and anthozoan cnidarians. The A. queenslandica life cycle includes a compulsory planktonic larval phase that can end only once the larva develops competence to respond to benthic signals that induce settlement and metamorphosis. The temporal onset of competence varies between individuals as revealed by idiosyncratic responses to inductive cues. Thus, the biphasic life cycle with a dispersing larval phase of variable length appears to be a metazoan synapomorphy and may be viewed as an ancestral polyphenic trait. Larvae of a particular age that are subjected to an inductive cue either maintain the larval form or metamorphose into the post-larval/juvenile form. Variance in the development of competence dictates that only a subset of a larval cohort will settle and undergo metamorphosis at a given time, which in turn leads to variation in dispersal distance and in location of settlement. Population divergence and allopatric speciation are likely outcomes of this conserved developmental polyphenic trait.
Collapse
Affiliation(s)
- Sandie M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
26
|
Inhibitory function of nitric oxide on the onset of metamorphosis in competent larvae of Crepidula fornicata: A transcriptional perspective. Mar Genomics 2009; 2:161-7. [DOI: 10.1016/j.margen.2009.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 11/18/2022]
|