1
|
Garhyan P, Pratt E, Klein O, Famulla S, Zijlstra E, Lalonde A, Swinney M, Kazda C, Dassau E. Evaluation of Insulin Lispro Pharmacokinetics and Pharmacodynamics Over 10 Days of Continuous Insulin Infusion in People With Type 1 Diabetes. J Diabetes Sci Technol 2023; 17:274-282. [PMID: 36575993 PMCID: PMC10012385 DOI: 10.1177/19322968221145200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND We evaluated the effect of meloxicam on insulin lispro pharmacokinetics and glucose pharmacodynamics over 10 days of continuous subcutaneous insulin infusion (CSII) at one infusion site in people with type 1 diabetes (T1D). METHOD This phase 1, randomized, double-blind, single-center, two-way crossover study enrolled adults with T1D for ≥1 year on stable CSII for ≥3 months. Participants randomly received U100 insulin lispro and LY900027 (U100 insulin lispro + 0.25 mg/mL meloxicam). Primary end points were area under the insulin lispro curve from 0 to 5 hours (AUCIns.0-5h) after bolus administration prior to a mixed-meal tolerance test (MMTT) and maximum observed concentration of insulin lispro (CIns.max) on days 5, 7, and 10, versus day 3 (baseline). RESULTS A total of 20 participants were randomized. Insulin absorption was accelerated for insulin lispro and LY900027 from days 1 to 7. The AUCIns.0-5h was significantly lower on day 10 versus day 3 for LY900027 (-19%) and insulin lispro (-14%); the AUCIns.0-5h did not differ significantly between treatments. The CIns.max increased with LY900027 and insulin lispro (by ~14%-23% and ~16%-51%) on days 5, 7, and 10 versus day 3. The CIns.max of LY900027 was ~14%-23% lower than insulin lispro CIns.max on days 7 and 10 (P ≤ .0805). Accelerated insulin absorption and a modest loss of total insulin exposure led to a loss of MMTT glycemic control at later time points. CONCLUSIONS The pharmacokinetics of insulin changed over catheter wear time even when an anti-inflammatory agent was present. Postprandial glycemic control was adversely affected by the accelerated insulin absorption and decreased insulin exposure.
Collapse
Affiliation(s)
| | - Edward Pratt
- Lilly Centre for Clinical Pharmacology,
Singapore, Singapore
| | | | | | | | - Amy Lalonde
- Eli Lilly and Company, Indianapolis,
IN, USA
| | | | | | - Eyal Dassau
- Eli Lilly and Company, Indianapolis,
IN, USA
- Eli Lilly and Company, Cambridge, MA,
USA
| |
Collapse
|
2
|
Ward WK, Castle JR, El Youssef J. Safe glycemic management during closed-loop treatment of type 1 diabetes: the role of glucagon, use of multiple sensors, and compensation for stress hyperglycemia. J Diabetes Sci Technol 2011; 5:1373-80. [PMID: 22226254 PMCID: PMC3262703 DOI: 10.1177/193229681100500608] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patients with type 1 diabetes mellitus (T1DM) must make frequent decisions and lifestyle adjustments in order to manage their disorder. Automated treatment would reduce the need for these self-management decisions and reduce the risk for long-term complications. Investigators in the field of closed-loop glycemic control systems are now moving from inpatient to outpatient testing of such systems. As outpatient systems are developed, the element of safety increases in importance. One such concern is the risk for hypoglycemia, due in part to the delayed onset and prolonged action duration of currently available subcutaneous insulin preparations. We found that, as compared to an insulin-only closed-loop system, a system that also delivers glucagon when needed led to substantially less hypoglycemia. Though the capability of glucagon delivery would mandate the need for a second hormone chamber, glucagon in small doses is tolerated very well. People with T1DM often develop hyperglycemia from emotional stress or medical stress. Automated closed-loop systems should be able to detect such changes in insulin sensitivity and adapt insulin delivery accordingly. We recently verified the adaptability of a model-based closed-loop system in which the gain factors that govern a proportional-integral-derivative-like system are adjusted according to frequently measured insulin sensitivity. Automated systems can be tested by physical exercise to increase glucose uptake and insulin sensitivity or by administering corticosteroids to reduce insulin sensitivity. Another source of risk in closed-loop systems is suboptimal performance of amperometric glucose sensors. Inaccuracy can result from calibration error, biofouling, and current drift. We found that concurrent use of more than one sensor typically leads to better sensor accuracy than use of a single sensor. For example, using the average of two sensors substantially reduces the proportion of large sensor errors. The use of more than two allows the use of voting algorithms, which can temporarily exclude a sensor whose signal is outlying. Elements such as the use of glucagon to minimize hypoglycemia, adaptation to changes in insulin sensitivity, and sensor redundancy will likely increase safety during outpatient use of closed-loop glycemic control systems.
Collapse
Affiliation(s)
- W Kenneth Ward
- Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|
3
|
Ward WK, Hansen JC, Massoud RG, Engle JM, Takeno MM, Hauch KD. Controlled release of dexamethasone from subcutaneously-implanted biosensors in pigs: localized anti-inflammatory benefit without systemic effects. J Biomed Mater Res A 2010; 94:280-7. [PMID: 20186727 DOI: 10.1002/jbm.a.32651] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chronically implanted biosensors typically lose sensitivity 1-2 months after implantation, due in large part to the development of a collagen-rich capsule that prevents analytes of interest from reaching the biosensor. Corticosteroids are likely candidates for reducing collagen deposition but these compounds have many serious side effects when given over a prolonged period. One method of assessing whether or not locally released corticosteroids have a systemic effect is to measure cortisol concentrations in venous serum. We hypothesized that a very low release rate of the potent corticosteroid, dexamethasone, would lead to a localized anti-inflammatory effect without systemic effects. We found that reduction in subcutaneous granulocytes (primarily eosinophils), and to a lesser extent, reduction of macrophages served as a good local indicator of the steroid effect. When released over a 28-day period, a total dexamethasone dose of < or =0.1 mg/kg led to a consistent reduction in the number of granulocytes and macrophages found in the local vicinity of the implant without a reduction of these cells at distant tissue locations. The lack of suppression of serum cortisol with these doses confirmed that low-release rates of dexamethasone can lead to consistent local anti-inflammatory effects without distant, systemic effects. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.
Collapse
|
4
|
A Review of Closed-Loop Algorithms for Glycemic Control in the Treatment of Type 1 Diabetes. ALGORITHMS 2009. [DOI: 10.3390/a2010518] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Dungel P, Long N, Yu B, Moussy Y, Moussy F. Study of the effects of tissue reactions on the function of implanted glucose sensors. J Biomed Mater Res A 2008; 85:699-706. [PMID: 17876777 DOI: 10.1002/jbm.a.31593] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The relationship between tissue reactions to a subcutaneously implanted glucose sensor and the function of the sensor was evaluated over a period of 4-weeks using tubular, porous polyvinyl alcohol (PVA) sponges implanted subcutaneously in rats. The PVA sponges were used as scaffolds in which the foreign body response could develop. Coil-type glucose sensors were then placed in the center of the PVA sponges and tested on day 3, and weekly thereafter. In the first approach, the sensors were placed in the sponges still implanted in the rats and tested. In vivo glucose sensor sensitivity peaked at day 7 and steadily decreased until day 35. In the second approach, the sensors were placed in the explanted sponges and then tested. This test showed no sensor function after day 7, indicating that functional blood vessels are critical in maintaining any function whatsoever. In both cases the sensors themselves were never implanted to eliminate any potential in vivo degradation of the sensors that could have affected the outcome of this study. Sensors were then tested in absence of sponges and found to be working properly with no change from preimplantation sensitivity. Once sensor testing was concluded, the PVA sponge/tissue samples were prepared for quantitative histological analysis. It was determined that the increase in collagen deposition within the sponge correlated with the decrease in sensor sensitivity. It was also observed that natural angiogenesis (peak at day 14) did not overcome the barrier to glucose diffusion created by the fibrous capsule.
Collapse
Affiliation(s)
- Paul Dungel
- Department of Chemical Engineering, The University of South Florida, 4202 East Fowler Avenue, ENB 118, Tampa, Florida 33620-5350, USA
| | | | | | | | | |
Collapse
|
6
|
Yu B, Ju Y, West L, Moussy Y, Moussy F. An investigation of long-term performance of minimally invasive glucose biosensors. Diabetes Technol Ther 2007; 9:265-75. [PMID: 17561797 DOI: 10.1089/dia.2006.0020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The long-term performance stability of minimally invasive glucose biosensors was evaluated in vitro and in vivo. METHODS Coil-type glucose biosensors were constructed using an epoxy-polyurethane membrane. Seven sensors were continuously polarized for 12 weeks in a 5 mM glucose-phosphate-buffered saline (PBS) solution, and the sensor sensitivities were tested weekly. Glucose biosensors (n = 44) were also subcutaneously implanted in rats, and the in vivo sensitivities were determined for up to 4 weeks. Histological analysis was performed on the tissue surrounding the sensors. RESULTS During a period of 12 weeks, the normalized sensitivity (S/S(0)) of the sensors tested in vitro first increased from 1.10 +/- 0.13 (week 1) to 2.30 +/- 0.90 at week 6 and then decreased to 1.07 +/- 0.24 at week 12 (n = 7). After 6 weeks, the sensors showed a much more significant response to acetaminophen. With continuous polarization in 5 mM glucose-PBS, the sensor functioned for at least 3 months, or about a half of the observed lifetime of sensors stored in the solution with occasional sensitivity measurements (e.g., tested twice each month). For the 15 implanted sensors that lasted for at least 28 days, the average sensitivities values were 4.4 +/- 2.0 (S(0), in vitro), 3.5 +/- 1.3 (day 7, in vivo), 3.3 +/- 1.1 (day 14), 3.6 +/- 1.4 (day 21), and 2.9 +/- 2.2 nA/mM (day 28). Histological analysis showed that the implanted sensors were covered by a 200-800-mu-thick fibrous capsule after 1 week. Blood vessels were found in the fibrous tissue from day 7 through day 34. In addition, the background current that was observed during in vivo sensor testing could be successfully eliminated by using an enzyme-free sensor. CONCLUSION This study confirms that coil-type glucose biosensors based on an epoxy-polyurethane membrane can perform stably in vitro for months and in vivo for weeks.
Collapse
Affiliation(s)
- Bazhang Yu
- Department of Chemical Engineering, University of South Florida, Tampa, Florida 33620-5350, USA
| | | | | | | | | |
Collapse
|
7
|
Kondepati VR, Heise HM. Recent progress in analytical instrumentation for glycemic control in diabetic and critically ill patients. Anal Bioanal Chem 2007; 388:545-63. [PMID: 17431594 DOI: 10.1007/s00216-007-1229-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 02/16/2007] [Accepted: 02/22/2007] [Indexed: 01/08/2023]
Abstract
Implementing strict glycemic control can reduce the risk of serious complications in both diabetic and critically ill patients. For this reason, many different analytical, mainly electrochemical and optical sensor approaches for glucose measurements have been developed. Self-monitoring of blood glucose (SMBG) has been recognised as being an indispensable tool for intensive diabetes therapy. Recent progress in analytical instrumentation, allowing submicroliter samples of blood, alternative site testing, reduced test time, autocalibration, and improved precision, is comprehensively described in this review. Continuous blood glucose monitoring techniques and insulin infusion strategies, developmental steps towards the realization of the dream of an artificial pancreas under closed loop control, are presented. Progress in glucose sensing and glycemic control for both patient groups is discussed by assessing recent published literature (up to 2006). The state-of-the-art and trends in analytical techniques (either episodic, intermittent or continuous, minimal-invasive, or noninvasive) detailed in this review will provide researchers, health professionals and the diabetic community with a comprehensive overview of the potential of next-generation instrumentation suited to either short- and long-term implantation or ex vivo measurement in combination with appropriate body interfaces such as microdialysis catheters.
Collapse
Affiliation(s)
- Venkata Radhakrishna Kondepati
- ISAS--Institute for Analytical Sciences at the University of Dortmund, Bunsen-Kirchhoff-Strasse 11, 44139, Dortmund, Germany
| | | |
Collapse
|
8
|
Abstract
An artificial pancreas is a closed-loop system containing only synthetic materials which substitutes for an endocrine pancreas. No artificial pancreas system is currently approved; however, devices that could become components of such a system are now becoming commercially available. An artificial pancreas will consist of functionally integrated components that will continuously sense glucose levels, determine appropriate insulin dosages, and deliver the insulin. Any proposed closed loop system will be closely scrutinized for its safety, efficacy, and economic impact. Closed loop control utilizes models of glucose homeostasis which account for the influences of feeding, stress, insulin, exercise, and other factors on blood glucose levels. Models are necessary for understanding the relationship between blood glucose levels and insulin dosing; developing algorithms to control insulin dosing; and customizing each user's system based on individual responses to factors that influence glycemia. Components of an artificial pancreas are now being developed, including continuous glucose sensors; insulin pumps for parenteral delivery; and control software, all linked through wireless communication systems. Although a closed-loop system providing glucagon has not been reported in 40 years, the use of glucagon to prevent hypoglycemia is physiologically attractive and future devices might utilize this hormone. No demonstration of long-term closed loop control of glucose in a free-living human with diabetes has been reported to date, but many centers around the world are working on closed loop control systems. It is expected that many types of artificial pancreas systems will eventually be available, and they will greatly benefit patients with diabetes.
Collapse
Affiliation(s)
- David C Klonoff
- Mills-Peninsula Health Services, San Mateo, California 94401, USA.
| |
Collapse
|
9
|
Li AG, Quinn MJ, Siddiqui Y, Wood MD, Federiuk IF, Duman HM, Ward WK. Elevation of transforming growth factor beta (TGFβ) and its downstream mediators in subcutaneous foreign body capsule tissue. J Biomed Mater Res A 2007; 82:498-508. [PMID: 17295253 DOI: 10.1002/jbm.a.31168] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Foreign body encapsulation represents a chronic fibrotic response and has been a major obstacle that reduces the useful life of implanted biomedical devices. The precise mechanism underlying such an encapsulation is still unknown. We hypothesized that, considering its central role in many other fibrotic conditions, transforming growth factor beta (TGFbeta) may play an important role during the formation of foreign body capsule (FBC). In the present study, we implanted mock sensors in rats subcutaneously and excised FBC samples at day 7, 21, and 48-55 postimplantation. The most abundant TGFbeta isoform in all tissues was TGFbeta1, which was expressed minimally in control tissue. The expression of both TGFbeta1 RNA and protein was significantly increased in FBC tissues at all time points, with the highest level in day 7 FBC. The number of cells stained for phosphorylated Smad2, an indication of activated TGFbeta signaling, paralleled the expression of TGFbeta. A similar dynamic change was also observed in the numbers of FBC myofibroblasts, which in response to TGFbeta, differentiate from quiescent fibroblasts and synthesize collagen. Type I collagen, the most prominent downstream target of TGFbeta in fibrosis, was found in abundance in the FBC, especially during the latter time periods. We suggest that TGFbeta plays an important role in the FBC formation. Inhibition of TGFbeta signaling could be a promising strategy in the prevention of FBC formation, thereby extending the useful life of subcutaneous implants.
Collapse
Affiliation(s)
- Allen G Li
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
|