1
|
Coavoy-Sanchez SA, da Costa Marques LA, Costa SKP, Muscara MN. Role of Gasotransmitters in Inflammatory Edema. Antioxid Redox Signal 2024; 40:272-291. [PMID: 36974358 DOI: 10.1089/ars.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Significance: Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are, to date, the identified members of the gasotransmitter family, which consists of gaseous signaling molecules that play central roles in the regulation of a wide variety of physiological and pathophysiological processes, including inflammatory edema. Recent Advances: Recent studies show the potential anti-inflammatory and antiedematogenic effects of NO-, CO-, and H2S-donors in vivo. In general, it has been observed that the therapeutical effects of NO-donors are more relevant when administered at low doses at the onset of the inflammatory process. Regarding CO-donors, their antiedematogenic effects are mainly associated with inhibition of proinflammatory mediators (such as inducible NO synthase [iNOS]-derived NO), and the observed protective effects of H2S-donors seem to be mediated by reducing some proinflammatory enzyme activities. Critical Issues: The most recent investigations focus on the interactions among the gasotransmitters under different pathophysiological conditions. However, the biochemical/pharmacological nature of these interactions is neither general nor fully understood, although specifically dependent on the site where the inflammatory edema occurs. Future Directions: Considering the nature of the involved mechanisms, a deeper knowledge of the interactions among the gasotransmitters is mandatory. In addition, the development of new pharmacological tools, either donors or synthesis inhibitors of the three gasotransmitters, will certainly aid the basic investigations and open new strategies for the therapeutic treatment of inflammatory edema. Antioxid. Redox Signal. 40, 272-291.
Collapse
Affiliation(s)
| | | | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
3
|
Cai YM, Zhang YD, Yang L. NO donors and NO delivery methods for controlling biofilms in chronic lung infections. Appl Microbiol Biotechnol 2021; 105:3931-3954. [PMID: 33937932 PMCID: PMC8140970 DOI: 10.1007/s00253-021-11274-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO), the highly reactive radical gas, provides an attractive strategy in the control of microbial infections. NO not only exhibits bactericidal effect at high concentrations but also prevents bacterial attachment and disperses biofilms at low, nontoxic concentrations, rendering bacteria less tolerant to antibiotic treatment. The endogenously generated NO by airway epithelium in healthy populations significantly contributes to the eradication of invading pathogens. However, this pathway is often compromised in patients suffering from chronic lung infections where biofilms dominate. Thus, exogenous supplementation of NO is suggested to improve the therapeutic outcomes of these infectious diseases. Compared to previous reviews focusing on the mechanism of NO-mediated biofilm inhibition, this review explores the applications of NO for inhibiting biofilms in chronic lung infections. It discusses how abnormal levels of NO in the airways contribute to chronic infections in cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and primary ciliary dyskinesia (PCD) patients and why exogenous NO can be a promising antibiofilm strategy in clinical settings, as well as current and potential in vivo NO delivery methods. KEY POINTS : • The relationship between abnormal NO levels and biofilm development in lungs • The antibiofilm property of NO and current applications in lungs • Potential NO delivery methods and research directions in the future.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ying-Dan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Zuo H, Li Y, Cui Y, An Y. Cardioprotective effect of Malva sylvestris L. in myocardial ischemic/reprefused rats. Biomed Pharmacother 2017; 95:679-684. [PMID: 28886527 DOI: 10.1016/j.biopha.2017.08.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 02/04/2023] Open
Abstract
PURPOSE The present investigation evaluated the cardioprotective effect of Malva sylvestris L. (MS) on myocardial ischemic/reperfusion (MI/R) in rats. METHODS All animals were divided into four groups: the sham operated group, ischemia/reperfusion group (MI/R), and the MS (250 and 500mg/kg) treated groups, who received MS 250 and 500mg/kg intragastrically for 15 consecutive days, respectively. At the end of the protocol, concentrations of aspartate transaminase (AST), creatine kinase-MB fraction (CK-MB) and lactate dehydrogenase (LDH) were estimated in serum and the concentrations of other parameters, such as C-reactive protein, macrophage inflammatory protein 1 alpha (MIP-1α), and nitric oxide (NO) were also estimated in the blood. Tissue homogenate concentrations of inflammatory cytokines, such as tumour necrosis factor-α (TNF-α), interlukin-1β (IL-1β), IL-10 and IL-6 as well as oxidative stress parameters, such as lipid peroxidation, catalase, and superoxide dismutase were estimated in MI/R rats. RESULT Significant decreases (p<0.01) in AST, LDH, and CK-MB levels were observed in the MS-treated group compared with those in the MI/R group. C-reactive protein and MIP-1α levels decreased in the MS-treated group compared with those in the MI/R group. Plasma NO level was significantly enhanced in the MS-treated group than in the MI/R group. Moreover, treatment with MS significantly reduced TNF-α, IL-1β, and IL-6 levels and increased IL-10 levels in the MS group compared with the MI/R group. Treatment with MS also attenuated the altered oxidative stress parameters in MI/R rats. CONCLUSION The present results indicate the cardioprotective effects of MS of reducing oxidative stress and the inflammatory response in MI/R rats.
Collapse
Affiliation(s)
- Hanheng Zuo
- Cardiovascular Division, The Medical College of Qingdao University, Qingdao, Shandong 266021, China
| | - Yinping Li
- Cardiac Care Unit, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yinghua Cui
- Cardiac Care Unit, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yi An
- Cardiovascular Division, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 222071, China.
| |
Collapse
|
5
|
Nowicka D. Thermography Improves Clinical Assessment in Patients with Systemic Sclerosis Treated with Ozone Therapy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5842723. [PMID: 28349063 PMCID: PMC5352863 DOI: 10.1155/2017/5842723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/05/2016] [Accepted: 01/16/2017] [Indexed: 12/02/2022]
Abstract
Objective. Treatment of scleroderma is challenging and limited. The aim of our study was to evaluate the usefulness of thermography in assessment of the clinical condition (joints movability and skin thickness) in clinically advanced patients with systemic sclerosis before and after ozone therapy. Method. The study included 42 patients aged 32 to 73 years with advanced systemic sclerosis hospitalized in the university clinic between 2003 and 2006. Thermography and clinical examinations were conducted at baseline and after two series of bath in water with ozone. Results. The comparison of results showed significant increase in skin temperature by 2.5°C, significant increase in interphalangeal joints movability by 18 degrees, and significant decrease in skin score by 14.7 points. The skin temperature was correlated with skin score (r = -0.59) and joints movability (r = +0.8). Conclusions. Ozone therapy shows positive effect on clinical parameters and skin temperature as measured with thermography. The study indicated possibility of introducing ozonotherapy as an independent therapy in cases with low level of progression or during remission periods and as additional treatment in patients with advanced disease requiring immunosuppressive treatment. Thermography is useful in assessment of skin condition showing strong correlation between skin temperature and clinical parameters.
Collapse
Affiliation(s)
- Danuta Nowicka
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
6
|
Lo Faro ML, Fox B, Whatmore JL, Winyard PG, Whiteman M. Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide 2014; 41:38-47. [PMID: 24929214 DOI: 10.1016/j.niox.2014.05.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/13/2014] [Accepted: 05/29/2014] [Indexed: 12/30/2022]
Abstract
Together with carbon monoxide (CO), nitric oxide (NO) and hydrogen sulfide (H2S) form a group of physiologically important gaseous transmitters, sometimes referred to as the "gaseous triumvirate". The three molecules share a wide range of physical and physiological properties: they are small gaseous molecules, able to freely penetrate cellular membranes; they are all produced endogenously in the body and they seem to exert similar biological functions. In the cardiovascular system, for example, they are all vasodilators, promote angiogenesis and protect tissues against damage (e.g. ischemia-reperfusion injury). In addition, they have complex roles in inflammation, with both pro- and anti-inflammatory effects reported. Researchers have focused their efforts in understanding and describing the roles of each of these molecules in different physiological systems, and in the past years attention has also been given to the gases interaction or "cross-talk". This review will focus on the role of NO and H2S in inflammation and will give an overview of the evidence collected so far suggesting the importance of their cross-talk in inflammatory processes.
Collapse
Affiliation(s)
- Maria Letizia Lo Faro
- University of Exeter Medical School, Saint Luke's Campus, Heavitree Road, EX1 2LU Exeter, UK.
| | - Bridget Fox
- University of Exeter Medical School, Saint Luke's Campus, Heavitree Road, EX1 2LU Exeter, UK.
| | - Jacqueline L Whatmore
- University of Exeter Medical School, Saint Luke's Campus, Heavitree Road, EX1 2LU Exeter, UK.
| | - Paul G Winyard
- University of Exeter Medical School, Saint Luke's Campus, Heavitree Road, EX1 2LU Exeter, UK.
| | - Matthew Whiteman
- University of Exeter Medical School, Saint Luke's Campus, Heavitree Road, EX1 2LU Exeter, UK.
| |
Collapse
|
7
|
Carpenter AW, Schoenfisch MH. Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev 2012; 41:3742-52. [PMID: 22362384 DOI: 10.1039/c2cs15273h] [Citation(s) in RCA: 670] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A wide range of nitric oxide (NO)-releasing materials has emerged as potential therapeutics that exploit NO's vast biological roles. Macromolecular NO-releasing scaffolds are particularly promising due to their ability to store and deliver larger NO payloads in a more controlled and effective manner compared to low molecular weight NO donors. While a variety of scaffolds (e.g., particles, dendrimers, and polymers/films) have been cleverly designed, the ultimate clinical utility of most NO-releasing macromolecules remains unrealized. Although not wholly predictive of clinical success, in vitro and in vivo investigations have enabled a preliminary evaluation of the therapeutic potential of such materials. In this tutorial review, we review the application of macromolecular NO therapies for cardiovascular disease, cancer, bacterial infections, and wound healing.
Collapse
Affiliation(s)
- Alexis W Carpenter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
8
|
Anderson JT, Zeng M, Li Q, Stapley R, Moore DR, Chenna B, Fineberg N, Zmijewski J, Eltoum IE, Siegal GP, Gaggar A, Barnes S, Velu SE, Thannickal VJ, Abraham E, Patel RP, Lancaster JR, Chaplin DD, Dransfield MT, Deshane JS. Elevated levels of NO are localized to distal airways in asthma. Free Radic Biol Med 2011; 50:1679-88. [PMID: 21419218 PMCID: PMC3124865 DOI: 10.1016/j.freeradbiomed.2011.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 03/03/2011] [Accepted: 03/10/2011] [Indexed: 12/27/2022]
Abstract
The contribution of nitric oxide (NO) to the pathophysiology of asthma remains incompletely defined despite its established pro- and anti-inflammatory effects. Induction of the inducible nitric oxide synthase (iNOS), arginase, and superoxide pathways is correlated with increased airway hyperresponsiveness in asthmatic subjects. To determine the contributions of these pathways in proximal and distal airways, we compared bronchial wash (BW) to traditional bronchoalveolar lavage (BAL) for measurements of reactive nitrogen/oxygen species, arginase activation, and cytokine/chemokine levels in asthmatic and normal subjects. Levels of NO were preferentially elevated in the BAL, demonstrating higher level NOS activation in the distal airway compartment of asthmatic subjects. In contrast, DHE(+) cells, which have the potential to generate reactive oxygen species, were increased in both proximal and distal airway compartments of asthmatics compared to controls. Different patterns of cytokines and chemokines were observed, with a predominance of epithelial cell-associated mediators in the BW compared to macrophage/monocyte-derived mediators in the BAL of asthmatic subjects. Our study demonstrates differential production of reactive species and soluble mediators within the distal airways compared to the proximal airways in asthma. These results indicate that cellular mechanisms are activated in the distal airways of asthmatics and must be considered in the development of therapeutic strategies for this chronic inflammatory disorder.
Collapse
Affiliation(s)
| | | | - Qian Li
- Department of Anesthesiology
- UAB Center for Free Radical Biology, Birmingham, AL
| | - Ryan Stapley
- Department of Pathology, Birmingham, AL
- UAB Center for Free Radical Biology, Birmingham, AL
| | | | | | | | - Jaroslaw Zmijewski
- Department of Medicine
- UAB Center for Free Radical Biology, Birmingham, AL
| | | | - Gene P. Siegal
- Department of Pathology, Birmingham, AL
- Department of Cell Biology, Birmingham, AL
- Department of Surgery, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
| | - Amit Gaggar
- Department of Medicine
- VA Medical Center, Birmingham, AL
| | | | - Sadanandan E. Velu
- Department of Chemistry, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
| | - Victor J. Thannickal
- Department of Medicine
- Department of Pathology, Birmingham, AL
- UAB Center for Free Radical Biology, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
| | - Edward Abraham
- Department of Medicine
- UAB Center for Free Radical Biology, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
| | - Rakesh P. Patel
- Department of Pathology, Birmingham, AL
- UAB Center for Free Radical Biology, Birmingham, AL
| | - Jack R. Lancaster
- Department of Anesthesiology
- Department of Physiology & Biophysics, Birmingham, AL
- Department of Environmental Health Sciences, Birmingham, AL
- UAB Center for Free Radical Biology, Birmingham, AL
| | - David D. Chaplin
- Department of Medicine
- Department of Microbiology
- UAB Center for Free Radical Biology, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
- Comprehensive Arthritis, Musculoskeletal and Autoimmunity Center, Birmingham, AL
| | | | - Jessy S. Deshane
- Department of Medicine
- Department of Microbiology
- UAB Center for Free Radical Biology, Birmingham, AL
- UAB Center for Clinical and Translational Science, Birmingham, AL
| |
Collapse
|
9
|
Effect of Ligusticum wallichii aqueous extract on oxidative injury and immunity activity in myocardial ischemic reperfusion rats. Int J Mol Sci 2011; 12:1991-2006. [PMID: 21673935 PMCID: PMC3111646 DOI: 10.3390/ijms12031991] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/22/2011] [Accepted: 03/09/2011] [Indexed: 11/17/2022] Open
Abstract
We investigated the efficacy of Ligusticum wallichi aqueous extract (LWE) for myocardial protection against ischemia-reperfusion injury. Rats were fed for five weeks with either a control diet (sham and ischemia reperfusion (IR) model control groups) or a diet mixed with 0.2%, 0.4% or 0.6% Ligusticum wallichi extract. At the end of the five week period, hearts were excised and subjected to global ischemia for 30 min followed by reperfusion for 2 h. The hearts were compared for indices of oxidative stress and immunity activities. Administration of Ligusticum wallichi extract significantly decreased serum TNF-α, IL-6, IL-8, NO, MIP-1α, CRP and myocardium MDA levels, and serum CK, LDH and AST activities, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, NOS, SOD, CAT, GSH-Px and TAOC activities. The results indicate that Ligusticum wallichii extract treatment can enhance myocardial antioxidant status and improve the immunity profile in ischemic-reperfusion rats.
Collapse
|
10
|
Li L, Hsu A, Moore PK. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation--a tale of three gases! Pharmacol Ther 2009; 123:386-400. [PMID: 19486912 DOI: 10.1016/j.pharmthera.2009.05.005] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/15/2009] [Indexed: 01/17/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulphide (H(2)S) together make up a family of biologically active gases (the so-called 'gaseous triumvirate') with an increasingly well defined range of physiological effects plus roles to play in a number of disease states. Over the years, most researchers have concentrated their attention on understanding the part played by a single gas in one or more body systems. It is becoming more clear that all three gases are synthesised naturally in the body, often by the same cells within the same organs, and that all three gases exert essentially similar biological effects albeit via different mechanisms. Within the cardiovascular system, for example, all are vasodilators, promote angiogenesis and vascular remodelling and are protective towards tissue damage in for example, ischaemia-reperfusion injury in the heart. Similarly, all exhibit complex effects in inflammation with both pro- and anti-inflammatory effects recognised. It seems likely that cell function is controlled not by the activity of single gases working in isolation but by the concerted activity of all three of these gases working together.
Collapse
Affiliation(s)
- Ling Li
- Pharmaceutical Science Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE19NH, UK
| | | | | |
Collapse
|
11
|
Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2008; 46:309-17. [PMID: 19133271 DOI: 10.1016/j.yjmcc.2008.12.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 01/10/2023]
Abstract
Flavonoids have long been acknowledged for their unique antioxidant properties, and possess other activities that may be relevant to heart ischemia-reperfusion. They may prevent production of oxidants (e.g. by inhibition of xanthine oxidase and chelation of transition metals), inhibit oxidants from attacking cellular targets (e.g. by electron donation and scavenging activities), block propagation of oxidative reactions (by chain-breaking antioxidant activity), and reinforce cellular antioxidant capacity (through sparing effects on other antioxidants and inducing expression of endogenous antioxidants). Flavonoids also possess anti-inflammatory and anti-platelet aggregation effects through inhibiting relevant enzymes and signaling pathways, resulting ultimately in lower oxidant production and better re-establishment of blood in the ischemic zone. Finally, flavonoids are vasodilatory through a variety of mechanisms, one of which is likely interaction with ion channels. These multifaceted activities of flavonoids raise their utility as possible therapeutic interventions to ameliorate ischemia-reperfusion injury.
Collapse
|
12
|
|