1
|
Pfeifer LM, Sensbach J, Pipp F, Werkmann D, Hewitt P. Increasing sustainability and reproducibility of in vitro toxicology applications: serum-free cultivation of HepG2 cells. FRONTIERS IN TOXICOLOGY 2024; 6:1439031. [PMID: 39650261 PMCID: PMC11621109 DOI: 10.3389/ftox.2024.1439031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Fetal Bovine Serum (FBS) is an important ingredient in cell culture media and the current standard for most cells in vitro. However, the use of FBS is controversial for several reasons, including ethical concerns, political, and societal pressure, as well as scientific problems due to the undefined and variable nature of FBS. Nevertheless, scientists hesitate to change the paradigm without solid data de-risking the switch of their assays to alternatives. In this study, HepG2 cells, a human hepatoblastoma cell line commonly used to study drug hepatotoxicity, were adapted to serum-free conditions by using different commercially available media and FBS replacements. After transition to these new culture conditions, the success of adaptation was determined based on cell morphology and growth characteristics. Long-term culturing capacity for each medium was defined as the number of passages HepG2 cells could be cultured without any alterations in morphology or growth behavior. Two media (Advanced DMEM/F12 from ThermoFisher and TCM® Serum Replacement from MP Biomedicals) showed a long-term cultivation capacity comparable to media containing FBS and were selected for further analysis. Both media can be characterized as serum-free, however still contain animal-derived components: bovine serum albumin (both media) and bovine transferrin (only TCM® serum replacement). To assess the functionality of the cells cultivated in either of the two media, HepG2 cells were treated with reference compounds, specifically selected for their known hepatotoxicity characteristics in man. Different toxicological assays focusing on viability, mitochondrial toxicity, oxidative stress, and intracellular drug response were performed. Throughout the different assays, response to reference compounds was comparable, with a slightly higher sensitivity of serum-free cultivated HepG2 cells when assessing viability/cell death and a lower sensitivity towards oxidative stress. Taken together, the two selected media were shown to support growth, morphology, and function of serum-free cultivated HepG2 cells in the early preclinical safety space. Therefore, these results can serve as a starting point to further optimize culture conditions with the goal to remove any remaining animal-derived components.
Collapse
Affiliation(s)
| | - Janike Sensbach
- Early Investigative Toxicology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Frederic Pipp
- Corporate Animal Affairs, Merck KGaA, Darmstadt, Germany
| | - Daniela Werkmann
- Cell Design Lab, Molecular Biology, Merck KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Early Investigative Toxicology, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
2
|
Zhong WJ, Zhang CY, Duan JX, Chen MR, Ping-Deng, Zhang BL, Yang NSY, Sha HX, Zhang J, Xiong JB, Guan CX, Zhou Y. Krüppel-like transcription factor 14 alleviates alveolar epithelial cell senescence by inhibiting endoplasmic reticulum stress in pulmonaryfibrosis. Int J Biol Macromol 2024; 280:135351. [PMID: 39270890 DOI: 10.1016/j.ijbiomac.2024.135351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Pulmonary fibrosis (PF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia, occurring primarily in older adults with poor prognosis. Alveolar epithelial cell (AEC) senescence is the critical pathological mechanism of PF. However, the molecular mechanisms regulating AEC senescence in PF are incompletely understood. Herein, we provided evidence to support the function of Krüppel-like factor 14 (KLF14), a novel Krüppel-like transcription factor, in the regulation of AEC senescence during PF. We confirmed that the expression of KLF14 was up-regulated in PF patients and mice treated with bleomycin (BLM). KLF14 knockdown resulted in more pronounced structural disruption of the lung tissue and swelling of the alveolar septum, which led to significantly increased mortality in BLM-induced PF mice. Mechanistically, RNA-seq analysis indicated that KLF14 decreased the senescence of AECs by inhibiting endoplasmic reticulum (ER) stress. Furthermore, the pharmacological activation of KLF14 conferred protection against PF in mice. In conclusion, our findings reveal a protective role for KLF14 in preventing AECs from senescence and shed light on the development of KLF14-targeted therapeutics for PF.
Collapse
Affiliation(s)
- Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Meng-Rui Chen
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Ping-Deng
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Bo-Liang Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Han-Xi Sha
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Jun Zhang
- Department of Physiology, Hunan University of Medicine, Huaihua, China
| | - Jian-Bing Xiong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China.
| |
Collapse
|
3
|
Griffiths K, Grand RJ, Horan I, Certo M, Keeler RC, Mauro C, Tseng CC, Greig I, Morrell NW, Zanda M, Frenneaux MP, Madhani M. Fluorinated perhexiline derivative attenuates vascular proliferation in pulmonary arterial hypertension smooth muscle cells. Vascul Pharmacol 2024; 156:107399. [PMID: 38901807 DOI: 10.1016/j.vph.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
Increased proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs) is recognised as a universal hallmark of pulmonary arterial hypertension (PAH), in part related to the association with reduced pyruvate dehydrogenase (PDH) activity, resulting in decreased oxidative phosphorylation of glucose and increased aerobic glycolysis (Warburg effect). Perhexiline is a well-recognised carnitine palmitoyltransferase-1 (CPT1) inhibitor used in cardiac diseases, which reciprocally increases PDH activity, but is associated with variable pharmacokinetics related to polymorphic variation of the cytochrome P450-2D6 (CYP2D6) enzyme, resulting in the risk of neuro and hepatotoxicity in 'slow metabolisers' unless blood levels are monitored and dose adjusted. We have previously reported that a novel perhexiline fluorinated derivative (FPER-1) has the same therapeutic profile as perhexiline but is not metabolised by CYP2D6, resulting in more predictable pharmacokinetics than the parent drug. We sought to investigate the effects of perhexiline and FPER-1 on PDH flux in PASMCs from patients with PAH. We first confirmed that PAH PASMCs exhibited increased cell proliferation, enhanced phosphorylation of AKTSer473, ERK 1/2Thr202/Tyr204 and PDH-E1αSer293, indicating a Warburg effect when compared to healthy PASMCs. Pre-treatment with perhexiline or FPER-1 significantly attenuated PAH PASMC proliferation in a concentration-dependent manner and suppressed the activation of the AKTSer473 but had no effect on the ERK pathway. Perhexiline and FPER-1 markedly activated PDH (seen as dephosphorylation of PDH-E1αSer293), reduced glycolysis, and upregulated mitochondrial respiration in these PAH PASMCs as detected by Seahorse analysis. However, both perhexiline and FPER-1 did not induce apoptosis as measured by caspase 3/7 activity. We show for the first time that both perhexiline and FPER-1 may represent therapeutic agents for reducing cell proliferation in human PAH PASMCs, by reversing Warburg physiology.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Humans
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Perhexiline/pharmacology
- Perhexiline/analogs & derivatives
- Cells, Cultured
- Male
- Phosphorylation
- Female
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/pathology
- Middle Aged
- Signal Transduction/drug effects
- Antihypertensive Agents/pharmacology
- Adult
- Apoptosis/drug effects
- Case-Control Studies
Collapse
Affiliation(s)
- Kayleigh Griffiths
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Roger J Grand
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ian Horan
- Department for Medicine, University of Cambridge, Cambridge, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Ross C Keeler
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Chih-Chung Tseng
- Kosterlitz Centre for Therapeutics, University of Aberdeen, Aberdeen, UK
| | - Iain Greig
- Kosterlitz Centre for Therapeutics, University of Aberdeen, Aberdeen, UK
| | | | - Matteo Zanda
- The Institute of Chemical Sciences and Technologies, Milan, Italy
| | | | - Melanie Madhani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Wang X, Yang C, Huang C, Wang W. Dysfunction of the carnitine cycle in tumor progression. Heliyon 2024; 10:e35961. [PMID: 39211923 PMCID: PMC11357771 DOI: 10.1016/j.heliyon.2024.e35961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The carnitine cycle is responsible for the transport of cytoplasmic fatty acids to the mitochondria for subsequent β-oxidation to maintain intracellular energy homeostasis. Recent studies have identified abnormalities in the carnitine cycle in various types of tumors; these abnormalities include the altered expression levels of carnitine cycle-related metabolic enzymes and transport proteins. Dysfunction of the carnitine cycle has been shown to influence tumorigenesis and progression by altering intracellular oxidative and inflammatory status or regulating tumor metabolic flexibility. Many therapeutic strategies targeting the carnitine cycle are actively being explored to modify the dysfunction of the carnitine cycle in patients with malignant tumors; such approaches include carnitine cycle-related enzyme inhibitors and exogenous carnitine supplementation. Therefore, here, we review the studies of carnitine in tumors, aiming to scientifically illustrate the dysfunction of the carnitine cycle in tumor progression and provide new ideas for further research.
Collapse
Affiliation(s)
- Xiangjun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chuanxin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Huang
- Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
5
|
Bornstein MR, Tian R, Arany Z. Human cardiac metabolism. Cell Metab 2024; 36:1456-1481. [PMID: 38959861 PMCID: PMC11290709 DOI: 10.1016/j.cmet.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
The heart is the most metabolically active organ in the human body, and cardiac metabolism has been studied for decades. However, the bulk of studies have focused on animal models. The objective of this review is to summarize specifically what is known about cardiac metabolism in humans. Techniques available to study human cardiac metabolism are first discussed, followed by a review of human cardiac metabolism in health and in heart failure. Mechanistic insights, where available, are reviewed, and the evidence for the contribution of metabolic insufficiency to heart failure, as well as past and current attempts at metabolism-based therapies, is also discussed.
Collapse
Affiliation(s)
- Marc R Bornstein
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA
| | - Zoltan Arany
- Cardiovascular Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2024:S2090-1232(24)00178-4. [PMID: 38704087 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Saorin A, Saorin G, Duzagac F, Parisse P, Cao N, Corona G, Cavarzerani E, Rizzolio F. Microfluidic production of amiodarone loaded nanoparticles and application in drug repositioning in ovarian cancer. Sci Rep 2024; 14:6280. [PMID: 38491077 PMCID: PMC10943008 DOI: 10.1038/s41598-024-55801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
Amiodarone repositioning in cancer treatment is promising, however toxicity limits seem to arise, constraining its exploitability. Notably, amiodarone has been investigated for the treatment of ovarian cancer, a tumour known for metastasizing within the peritoneal cavity. This is associated with an increase of fatty acid oxidation, which strongly depends on CPT1A, a transport protein which has been found overexpressed in ovarian cancer. Amiodarone is an inhibitor of CPT1A but its role still has to be explored. Therefore, in the present study, amiodarone was tested on ovarian cancer cell lines with a focus on lipid alteration, confirming its activity. Moreover, considering that drug delivery systems could lower drug side effects, microfluidics was employed for the development of drug delivery systems of amiodarone obtaining simultaneously liposomes with a high payload and amiodarone particles. Prior to amiodarone loading, microfluidics production was optimized in term of temperature and flow rate ratio. Moreover, stability over time of particles was evaluated. In vitro tests confirmed the efficacy of the drug delivery systems.
Collapse
Affiliation(s)
- Asia Saorin
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Gloria Saorin
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Fahriye Duzagac
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, Strada Statale 14 km 163.5, Basovizza, 34149, Trieste, Italy
- CNR-IOM - Istituto Officina dei Materiali, Area Science Park, s.s. 14 Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Ni Cao
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Enrico Cavarzerani
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy.
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy.
| |
Collapse
|
8
|
Wu Z, Zuo X, Zhang W, Li Y, Gui R, Leng J, Shen H, Pan B, Fan L, Li J, Jin H. m6A-Modified circTET2 Interacting with HNRNPC Regulates Fatty Acid Oxidation to Promote the Proliferation of Chronic Lymphocytic Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304895. [PMID: 37821382 PMCID: PMC10700176 DOI: 10.1002/advs.202304895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Indexed: 10/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a hematological malignancy with high metabolic heterogeneity. N6-methyladenosine (m6A) modification plays an important role in metabolism through regulating circular RNAs (circRNAs). However, the underlying mechanism is not yet fully understood in CLL. Herein, an m6A scoring system and an m6A-related circRNA prognostic signature are established, and circTET2 as a potential prognostic biomarker for CLL is identified. The level of m6A modification is found to affect the transport of circTET2 out of the nucleus. By interacting with the RNA-binding protein (RBP) heterogeneous nuclear ribonucleoprotein C (HNRNPC), circTET2 regulates the stability of CPT1A and participates in the lipid metabolism and proliferation of CLL cells through mTORC1 signaling pathway. The mTOR inhibitor dactolisib and FAO inhibitor perhexiline exert a synergistic effect on CLL cells. In addition, the biogenesis of circTET2 can be affected by the splicing process and the RBPs RBMX and YTHDC1. CP028, a splicing inhibitor, modulates the expression of circTET2 and shows pronounced inhibitory effects. In summary, circTET2 plays an important role in the modulation of lipid metabolism and cell proliferation in CLL. This study demonstrates the clinical value of circTET2 as a prognostic indicator as well as provides novel insights in targeting treatment for CLL.
Collapse
Affiliation(s)
- Zijuan Wu
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Xiaoling Zuo
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- Anqing First People's Hospital of Anhui Medical UniversityAnqing First People's Hospital of Anhui ProvinceAnqing246004China
| | - Wei Zhang
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Yongle Li
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Renfu Gui
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Jiayan Leng
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiang212002China
| | - Haorui Shen
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Bihui Pan
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Lei Fan
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Jianyong Li
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Hui Jin
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| |
Collapse
|
9
|
Banerjee P, Gaddam N, Chandler V, Chakraborty S. Oxidative Stress-Induced Liver Damage and Remodeling of the Liver Vasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1400-1414. [PMID: 37355037 DOI: 10.1016/j.ajpath.2023.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
As an organ critically important for targeting and clearing viruses, bacteria, and other foreign material, the liver operates via immune-tolerant, anti-inflammatory mechanisms indispensable to the immune response. Stress and stress-induced factors disrupt the homeostatic balance in the liver, inflicting tissue damage, injury, and remodeling. These factors include oxidative stress (OS) induced by viral infections, environmental toxins, drugs, alcohol, and diet. A recurrent theme seen among stressors common to multiple liver diseases is the induction of mitochondrial dysfunction, increased reactive oxygen species expression, and depletion of ATP. Inflammatory signaling additionally exacerbates the condition, generating a proinflammatory, immunosuppressive microenvironment and activation of apoptotic and necrotic mechanisms that disrupt the integrity of liver morphology. These pathways initiate signaling pathways that significantly contribute to the development of liver steatosis, inflammation, fibrosis, cirrhosis, and liver cancers. In addition, hypoxia and OS directly enhance angiogenesis and lymphangiogenesis in chronic liver diseases. Late-stage consequences of these conditions often narrow the outcomes for liver transplantation or result in death. This review provides a detailed perspective on various stress-induced factors and the specific focus on role of OS in different liver diseases with special emphasis on different molecular mechanisms. It also highlights how resultant changes in the liver vasculature correlate with pathogenesis.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Vanessa Chandler
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| |
Collapse
|
10
|
Qin J, Ye L, Wen X, Zhang X, Di Y, Chen Z, Wang Z. Fatty acids in cancer chemoresistance. Cancer Lett 2023; 572:216352. [PMID: 37597652 DOI: 10.1016/j.canlet.2023.216352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Despite the remarkable clinical success of immunotherapy and molecular targeted therapy in patients with advanced tumors, chemotherapy remains the most commonly used treatment for most tumor patients. Chemotherapy drugs effectively inhibit tumor cell proliferation and survival through their remarkable mechanisms. However, tumor cells often develop severe intrinsic and acquired chemoresistance under chemotherapy stress, limiting the effectiveness of chemotherapy and leading to treatment failure. Growing evidence suggests that alterations in lipid metabolism may be implicated in the development of chemoresistance in tumors. Therefore, in this review, we provide a comprehensive overview of fatty acid metabolism and its impact on chemoresistance mechanisms. Additionally, we discuss the potential of targeting fatty acid metabolism as a therapeutic strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lvlan Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Guangxi, 530025, China.
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
11
|
Heiserman JP, Minhas Z, Nikpayam E, Cheon DJ. Targeting Heat Shock Protein 27 and Fatty Acid Oxidation Augments Cisplatin Treatment in Cisplatin-Resistant Ovarian Cancer Cell Lines. Int J Mol Sci 2023; 24:12638. [PMID: 37628819 PMCID: PMC10454186 DOI: 10.3390/ijms241612638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Most ovarian cancer patients develop recurrent cancers which are often resistant to commonly employed chemotherapy agents, such as cisplatin. We have previously shown that the inhibition of heat shock protein 27 (HSP27) or fatty acid oxidation (FAO) sensitizes cisplatin-resistant ovarian cancer cell lines to cisplatin and dual inhibition of both HSP27 and FAO induces substantial cell death in vitro. However, it is unclear how HSP27 and FAO promote cisplatin resistance, and if dual inhibition of both HSP27 and FAO would augment cisplatin treatment in vivo. Here we showed that HSP27 knockdown in two cisplatin-resistant ovarian cancer cell lines (A2780CIS and PEO4) resulted in more ROS production upon cisplatin treatment. HSP27-knockdown cancer cells exhibited decreased levels of reduced glutathione (GSH) and glucose6phosphate dehydrogenase (G6PD), a crucial pentose phosphate pathway enzyme. ROS depletion with the compound N-acetyl cysteine (NAC) attenuated cisplatin-induced upregulation of HSP27, FAO, and markers of apoptosis and ferroptosis in cisplatin-resistant ovarian cancer cell lines. Finally, inhibition of HSP27 and FAO with ivermectin and perhexiline enhanced the cytotoxic effect of cisplatin in A2780CIS xenograft tumors in vivo. Our results suggest that two different cisplatin-resistant ovarian cancer cell lines upregulate HSP27 and FAO to deplete cisplatin-induced ROS to attenuate cisplatin's cytotoxic effect.
Collapse
Affiliation(s)
| | | | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (J.P.H.); (E.N.)
| |
Collapse
|
12
|
Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol 2023; 149:8051-8076. [PMID: 37002510 DOI: 10.1007/s00432-022-04501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Abnormal metabolism is the main hallmark of cancer, and cancer metabolism plays an important role in tumorigenesis, metastasis, and drug resistance. Therefore, studying the changes of tumor metabolic pathways is beneficial to find targets for the treatment of cancer diseases. The success of metabolism-targeted chemotherapy suggests that cancer metabolism research will provide potential new targets for the treatment of malignant tumors. PURPOSE The aim of this study was to systemically review recent research findings on targeted inhibitors of tumor metabolism. In addition, we summarized new insights into tumor metabolic reprogramming and discussed how to guide the exploration of new strategies for cancer-targeted therapy. CONCLUSION Cancer cells have shown various altered metabolic pathways, providing sufficient fuel for their survival. The combination of these pathways is considered to be a more useful method for screening multilateral pathways. Better understanding of the clinical research progress of small molecule inhibitors of potential targets of tumor metabolism will help to explore more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - HongPing Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - XingXing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - JiFang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - YanLing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
13
|
Rosenzveig A, Garg N, Rao SJ, Kanwal AK, Kanwal A, Aronow WS, Martinez MW. Current and emerging pharmacotherapy for the management of hypertrophic cardiomyopathy. Expert Opin Pharmacother 2023; 24:1349-1360. [PMID: 37272195 DOI: 10.1080/14656566.2023.2219840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is one of the most common genetic causes of heart disease. Since the initial description of HCM, there have been minimal strides in management options. Obstructive HCM constitutes a larger subset of patients with increased left ventricular outflow tract gradients causing symptoms. Septal reduction therapy (SRT) has been successful, but it is not the answer for all patients and is not disease modifying. AREAS COVERED Current guideline recommendations include beta-blockers, calcium channel blockers, or disopyramides for medical management, but there lacks evidence of much benefit with these drugs. In recent years, there has been the emergence of cardiac myosin inhibitors (CMI) which have demonstrated positive results in patients with both obstructive and non-obstructive HCM. In addition to CMIs, other drugs have been investigated as we have learned more about HCM's pathological mechanisms. Drugs targeting sodium channels and myocardial energetics, as well as repurposed drugs that have demonstrated positive remodeling are being investigated as potential therapeutic targets. Gene therapy is being explored with vast potential for the treatment of HCM. EXPERT OPINION The armamentarium of therapeutic options for HCM is continuously increasing with the emergence of CMIs as mainstays of treatment. The future of HCM treatment is promising.
Collapse
Affiliation(s)
| | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA
| | - Shiavax J Rao
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | | | - Arjun Kanwal
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center and Department of Medicine, New York Medical College, Valhalla, NY, USA
| | | |
Collapse
|
14
|
Dhakal B, Tomita Y, Drew P, Price T, Maddern G, Smith E, Fenix K. Perhexiline: Old Drug, New Tricks? A Summary of Its Anti-Cancer Effects. Molecules 2023; 28:molecules28083624. [PMID: 37110858 PMCID: PMC10145508 DOI: 10.3390/molecules28083624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer metabolic plasticity, including changes in fatty acid metabolism utilisation, is now widely appreciated as a key driver for cancer cell growth, survival and malignancy. Hence, cancer metabolic pathways have been the focus of much recent drug development. Perhexiline is a prophylactic antianginal drug known to act by inhibiting carnitine palmitoyltransferase 1 (CPT1) and 2 (CPT2), mitochondrial enzymes critical for fatty acid metabolism. In this review, we discuss the growing evidence that perhexiline has potent anti-cancer properties when tested as a monotherapy or in combination with traditional chemotherapeutics. We review the CPT1/2 dependent and independent mechanisms of its anti-cancer activities. Finally, we speculate on the clinical feasibility and utility of repurposing perhexiline as an anti-cancer agent, its limitations including known side effects and its potential added benefit of limiting cardiotoxicity induced by other chemotherapeutics.
Collapse
Affiliation(s)
- Bimala Dhakal
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Yoko Tomita
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul Drew
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Timothy Price
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Guy Maddern
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Eric Smith
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Kevin Fenix
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| |
Collapse
|
15
|
Dhakal B, Li CMY, Ramezanpour M, Houtak G, Li R, Bouras G, Collela A, Chegeni N, Chataway TK, Drew P, Sallustio BC, Vreugde S, Smith E, Maddern G, Licari G, Fenix K. Proteomic characterisation of perhexiline treatment on THP-1 M1 macrophage differentiation. Front Immunol 2023; 14:1054588. [PMID: 36993962 PMCID: PMC10040681 DOI: 10.3389/fimmu.2023.1054588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundDysregulated inflammation is important in the pathogenesis of many diseases including cancer, allergy, and autoimmunity. Macrophage activation and polarisation are commonly involved in the initiation, maintenance and resolution of inflammation. Perhexiline (PHX), an antianginal drug, has been suggested to modulate macrophage function, but the molecular effects of PHX on macrophages are unknown. In this study we investigated the effect of PHX treatment on macrophage activation and polarization and reveal the underlying proteomic changes induced.MethodsWe used an established protocol to differentiate human THP-1 monocytes into M1 or M2 macrophages involving three distinct, sequential stages (priming, rest, and differentiation). We examined the effect of PHX treatment at each stage on the polarization into either M1 or M2 macrophages using flow cytometry, quantitative polymerase chain reaction (qPCR) and enzyme linked immunosorbent assay (ELISA). Quantitative changes in the proteome were investigated using data independent acquisition mass spectrometry (DIA MS).ResultsPHX treatment promoted M1 macrophage polarization, including increased STAT1 and CCL2 expression and IL-1β secretion. This effect occurred when PHX was added at the differentiation stage of the M1 cultures. Proteomic profiling of PHX treated M1 cultures identified changes in metabolic (fatty acid metabolism, cholesterol homeostasis and oxidative phosphorylation) and immune signalling (Receptor Tyrosine Kinase, Rho GTPase and interferon) pathways.ConclusionThis is the first study to report on the action of PHX on THP-1 macrophage polarization and the associated changes in the proteome of these cells.
Collapse
Affiliation(s)
- Bimala Dhakal
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Celine Man Ying Li
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Mahnaz Ramezanpour
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Ghais Houtak
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Runhao Li
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - George Bouras
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Alex Collela
- Flinders Omics Facility, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - Nusha Chegeni
- Flinders Omics Facility, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - Tim Kennion Chataway
- Flinders Omics Facility, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - Paul Drew
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Benedetta C. Sallustio
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah Vreugde
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Eric Smith
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Guy Maddern
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Giovanni Licari
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kevin Fenix
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
- *Correspondence: Kevin Fenix,
| |
Collapse
|
16
|
Liang K. Mitochondrial CPT1A: Insights into structure, function, and basis for drug development. Front Pharmacol 2023; 14:1160440. [PMID: 37033619 PMCID: PMC10076611 DOI: 10.3389/fphar.2023.1160440] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Carnitine Palmitoyl-Transferase1A (CPT1A) is the rate-limiting enzyme in the fatty acid β-oxidation, and its deficiency or abnormal regulation can result in diseases like metabolic disorders and various cancers. Therefore, CPT1A is a desirable drug target for clinical therapy. The deep comprehension of human CPT1A is crucial for developing the therapeutic inhibitors like Etomoxir. CPT1A is an appealing druggable target for cancer therapies since it is essential for the survival, proliferation, and drug resistance of cancer cells. It will help to lower the risk of cancer recurrence and metastasis, reduce mortality, and offer prospective therapy options for clinical treatment if the effects of CPT1A on the lipid metabolism of cancer cells are inhibited. Targeted inhibition of CPT1A can be developed as an effective treatment strategy for cancers from a metabolic perspective. However, the pathogenic mechanism and recent progress of CPT1A in diseases have not been systematically summarized. Here we discuss the functions of CPT1A in health and diseases, and prospective therapies targeting CPT1A. This review summarizes the current knowledge of CPT1A, hoping to prompt further understanding of it, and provide foundation for CPT1A-targeting drug development.
Collapse
|
17
|
Liang K, Dai JY. Progress of potential drugs targeted in lipid metabolism research. Front Pharmacol 2022; 13:1067652. [PMID: 36588702 PMCID: PMC9800514 DOI: 10.3389/fphar.2022.1067652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Lipids are a class of complex hydrophobic molecules derived from fatty acids that not only form the structural basis of biological membranes but also regulate metabolism and maintain energy balance. The role of lipids in obesity and other metabolic diseases has recently received much attention, making lipid metabolism one of the attractive research areas. Several metabolic diseases are linked to lipid metabolism, including diabetes, obesity, and atherosclerosis. Additionally, lipid metabolism contributes to the rapid growth of cancer cells as abnormal lipid synthesis or uptake enhances the growth of cancer cells. This review introduces the potential drug targets in lipid metabolism and summarizes the important potential drug targets with recent research progress on the corresponding small molecule inhibitor drugs. The significance of this review is to provide a reference for the clinical treatment of metabolic diseases related to lipid metabolism and the treatment of tumors, hoping to deepen the understanding of lipid metabolism and health.
Collapse
Affiliation(s)
- Kai Liang
- School of Life Science, Peking University, Beijing, China,*Correspondence: Kai Liang, ; Jian-Ye Dai,
| | - Jian-Ye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China,Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China,*Correspondence: Kai Liang, ; Jian-Ye Dai,
| |
Collapse
|
18
|
Ren Z, Chen S, Qin X, Li F, Guo L. Study of the roles of cytochrome P450 (CYPs) in the metabolism and cytotoxicity of perhexiline. Arch Toxicol 2022; 96:3219-3231. [PMID: 36083301 PMCID: PMC10395006 DOI: 10.1007/s00204-022-03369-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/25/2022] [Indexed: 12/21/2022]
Abstract
Perhexiline is a prophylactic antianginal agent developed in the 1970s. Although, therapeutically, it remained a success, the concerns of its severe adverse effects including hepatotoxicity caused the restricted use of the drug, and eventually its withdrawal from the market in multiple countries. In the clinical setting, cytochrome P450 (CYP) 2D6 is considered as a possible risk factor for the adverse effects of perhexiline. However, the role of CYP-mediated metabolism in the toxicity of perhexiline, particularly in the intact cells, remains unclear. Using our previously established HepG2 cell lines that individually express 14 CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7) and human liver microsomes, we identified that CYP2D6 plays a major role in the hydroxylation of perhexiline. We also determined that CYP1A2, 2C19, and 3A4 contribute to the metabolism of perhexiline. The toxic effect of perhexiline was reduced significantly in CYP2D6-overexpressing HepG2 cells, in comparison to the control cells. In contrast, overexpression of CYP1A2, 2C19, and 3A4 did not show a significant protective effect against the toxicity of perhexiline. Pre-incubation with quinidine, a well-recognized CYP2D6 inhibitor, significantly attenuated the protective effect in CYP2D6-overexpressing HepG2 cells. Furthermore, perhexiline-induced mitochondrial damage, apoptosis, and ER stress were also attenuated in CYP2D6-overexpressing HepG2 cells. These findings suggest that CYP2D6-mediated metabolism protects the cells from perhexiline-induced cytotoxicity and support the clinical observation that CYP2D6 poor metabolizers may have higher risk for perhexiline-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhen Ren
- Division of Biochemical Toxicology, HFT-110, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, HFT-110, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Xuan Qin
- Department of Pathology and Immunology, Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030, USA
| | - Feng Li
- Department of Pathology and Immunology, Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030, USA
| | - Lei Guo
- Division of Biochemical Toxicology, HFT-110, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
19
|
Perhexiline Therapy in Patients with Type 2 Diabetes: Incremental Insulin Resistance despite Potentiation of Nitric Oxide Signaling. Biomedicines 2022; 10:biomedicines10102381. [PMID: 36289640 PMCID: PMC9598312 DOI: 10.3390/biomedicines10102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
Perhexiline (Px) inhibits carnitine palmitoyltransferase 1 (CPT1), which controls uptake of long chain fatty acids into mitochondria. However, occasional cases of hypoglycaemia have been reported in Px-treated patients, raising the possibility that Px may also increase sensitivity to insulin. Furthermore, Px increases anti-aggregatory responses to nitric oxide (NO), an effect which may theoretically parallel insulin sensitization. We therefore sought to examine these relationships in patients with stable Type 2 diabetes (T2D) and cardiovascular disease (n = 30). Px was initiated, and dosage was titrated, to reach the therapeutic range and thus prevent toxicity. Investigations were performed before and after 2 weeks, to examine changes in insulin sensitivity and, utilizing aggregometry in whole blood, platelet responsiveness to the anti-aggregatory effects of the NO donor sodium nitroprusside (SNP). Other parameters that affect may affect NO signalling were also evaluated. Px substantially potentiated inhibition of platelet aggregation by SNP (from 16.7 ± 3.0 to 27.3 ± 3.7%; p = 0.005). Px did not change fasting blood glucose concentrations but reduced insulin sensitivity (HOMA-IR score increased from median of 4.47 to 6.08; p = 0.028), and increased fasting plasma insulin concentrations (median 16.5 to 19.0 mU/L; p = 0.014). Increases in SNP responses tended (r = −0.30; p = 0.11) to be reciprocally related to increases in HOMA-IR, and increases in HOMA-IR were greater (p = 0.002) in patients without NO-sensitizing effects. No patient developed symptomatic hypoglycaemia, nor was there any other short-term toxicity of Px. Thus, in patients with stable T2D and cardiovascular disease, Px increases anti-aggregatory responsiveness to NO, but is not an insulin sensitizer, and does not induce hypoglycaemia. Absence of NO-sensitizing effect occurs in approximately 30% of Px-treated patients with T2D, and is associated with induction of insulin resistance in these patients.
Collapse
|
20
|
Metabolic Reprogramming in Tumor Endothelial Cells. Int J Mol Sci 2022; 23:ijms231911052. [PMID: 36232355 PMCID: PMC9570383 DOI: 10.3390/ijms231911052] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
The dynamic crosstalk between the different components of the tumor microenvironment is critical to determine cancer progression, metastatic dissemination, tumor immunity, and therapeutic responses. Angiogenesis is critical for tumor growth, and abnormal blood vessels contribute to hypoxia and acidosis in the tumor microenvironment. In this hostile environment, cancer and stromal cells have the ability to alter their metabolism in order to support the high energetic demands and favor rapid tumor proliferation. Recent advances have shown that tumor endothelial cell metabolism is reprogrammed, and that targeting endothelial metabolic pathways impacts developmental and pathological vessel sprouting. Therefore, the use of metabolic antiangiogenic therapies to normalize the blood vasculature, in combination with immunotherapies, offers a clinical niche to treat cancer.
Collapse
|
21
|
Jedrzejewska A, Braczko A, Kawecka A, Hellmann M, Siondalski P, Slominska E, Kutryb-Zajac B, Yacoub MH, Smolenski RT. Novel Targets for a Combination of Mechanical Unloading with Pharmacotherapy in Advanced Heart Failure. Int J Mol Sci 2022; 23:9886. [PMID: 36077285 PMCID: PMC9456495 DOI: 10.3390/ijms23179886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022] Open
Abstract
LVAD therapy is an effective rescue in acute and especially chronic cardiac failure. In several scenarios, it provides a platform for regeneration and sustained myocardial recovery. While unloading seems to be a key element, pharmacotherapy may provide powerful tools to enhance effective cardiac regeneration. The synergy between LVAD support and medical agents may ensure satisfying outcomes on cardiomyocyte recovery followed by improved quality and quantity of patient life. This review summarizes the previous and contemporary strategies for combining LVAD with pharmacotherapy and proposes new therapeutic targets. Regulation of metabolic pathways, enhancing mitochondrial biogenesis and function, immunomodulating treatment, and stem-cell therapies represent therapeutic areas that require further experimental and clinical studies on their effectiveness in combination with mechanical unloading.
Collapse
Affiliation(s)
- Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Piotr Siondalski
- Department of Cardiac Surgery, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland
| | - Ewa Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Magdi H. Yacoub
- Heart Science Centre, Imperial College of London at Harefield Hospital, Harefield UB9 6JH, UK
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| |
Collapse
|
22
|
Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ 2022; 29:1304-1317. [PMID: 35831624 PMCID: PMC9287557 DOI: 10.1038/s41418-022-01022-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
During decades, the research field of cancer metabolism was based on the Warburg effect, described almost one century ago. Lately, the key role of mitochondria in cancer development has been demonstrated. Many mitochondrial pathways including oxidative phosphorylation, fatty acid, glutamine, and one carbon metabolism are altered in tumors, due to mutations in oncogenes and tumor suppressor genes, as well as in metabolic enzymes. This results in metabolic reprogramming that sustains rapid cell proliferation and can lead to an increase in reactive oxygen species used by cancer cells to maintain pro-tumorigenic signaling pathways while avoiding cellular death. The knowledge acquired on the importance of mitochondrial cancer metabolism is now being translated into clinical practice. Detailed genomic, transcriptomic, and metabolomic analysis of tumors are necessary to develop more precise treatments. The successful use of drugs targeting metabolic mitochondrial enzymes has highlighted the potential for their use in precision medicine and many therapeutic candidates are in clinical trials. However, development of efficient personalized drugs has proved challenging and the combination with other strategies such as chemocytotoxic drugs, immunotherapy, and ketogenic or calorie restriction diets is likely necessary to boost their potential. In this review, we summarize the main mitochondrial features, metabolic pathways, and their alterations in different cancer types. We also present an overview of current inhibitors, highlight enzymes that are attractive targets, and discuss challenges with translation of these approaches into clinical practice. The role of mitochondria in cancer is indisputable and presents several attractive targets for both tailored and personalized cancer therapy. ![]()
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
23
|
Kubik J, Humeniuk E, Adamczuk G, Madej-Czerwonka B, Korga-Plewko A. Targeting Energy Metabolism in Cancer Treatment. Int J Mol Sci 2022; 23:ijms23105572. [PMID: 35628385 PMCID: PMC9146201 DOI: 10.3390/ijms23105572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second most common cause of death worldwide after cardiovascular diseases. The development of molecular and biochemical techniques has expanded the knowledge of changes occurring in specific metabolic pathways of cancer cells. Increased aerobic glycolysis, the promotion of anaplerotic responses, and especially the dependence of cells on glutamine and fatty acid metabolism have become subjects of study. Despite many cancer treatment strategies, many patients with neoplastic diseases cannot be completely cured due to the development of resistance in cancer cells to currently used therapeutic approaches. It is now becoming a priority to develop new treatment strategies that are highly effective and have few side effects. In this review, we present the current knowledge of the enzymes involved in the different steps of glycolysis, the Krebs cycle, and the pentose phosphate pathway, and possible targeted therapies. The review also focuses on presenting the differences between cancer cells and normal cells in terms of metabolic phenotype. Knowledge of cancer cell metabolism is constantly evolving, and further research is needed to develop new strategies for anti-cancer therapies.
Collapse
Affiliation(s)
- Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
- Correspondence: ; Tel.: +48-81-448-65-20
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Barbara Madej-Czerwonka
- Human Anatomy Department, Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| |
Collapse
|
24
|
Dhakal B, Li CMY, Li R, Yeo K, Wright JA, Gieniec KA, Vrbanac L, Sammour T, Lawrence M, Thomas M, Lewis M, Perry J, Worthley DL, Woods SL, Drew P, Sallustio BC, Smith E, Horowitz JD, Maddern GJ, Licari G, Fenix K. The Antianginal Drug Perhexiline Displays Cytotoxicity against Colorectal Cancer Cells In Vitro: A Potential for Drug Repurposing. Cancers (Basel) 2022; 14:cancers14041043. [PMID: 35205791 PMCID: PMC8869789 DOI: 10.3390/cancers14041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Perhexiline, a prophylactic anti-anginal drug, has been reported to have anti-tumour effects both in vitro and in vivo. Perhexiline as used clinically is a 50:50 racemic mixture ((R)-P) of (-) and (+) enantiomers. It is not known if the enantiomers differ in terms of their effects on cancer. In this study, we examined the cytotoxic capacity of perhexiline and its enantiomers ((-)-P and (+)-P) on CRC cell lines, grown as monolayers or spheroids, and patient-derived organoids. Treatment of CRC cell lines with (R)-P, (-)-P or (+)-P reduced cell viability, with IC50 values of ~4 µM. Treatment was associated with an increase in annexin V staining and caspase 3/7 activation, indicating apoptosis induction. Caspase 3/7 activation and loss of structural integrity were also observed in CRC cell lines grown as spheroids. Drug treatment at clinically relevant concentrations significantly reduced the viability of patient-derived CRC organoids. Given these in vitro findings, perhexiline, as a racemic mixture or its enantiomers, warrants further investigation as a repurposed drug for use in the management of CRC.
Collapse
Affiliation(s)
- Bimala Dhakal
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Celine Man Ying Li
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Runhao Li
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Kenny Yeo
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Josephine A. Wright
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
| | - Krystyna A. Gieniec
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Laura Vrbanac
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tarik Sammour
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA 5005, Australia; (M.L.); (M.T.); (M.L.); (J.P.)
| | - Matthew Lawrence
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA 5005, Australia; (M.L.); (M.T.); (M.L.); (J.P.)
| | - Michelle Thomas
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA 5005, Australia; (M.L.); (M.T.); (M.L.); (J.P.)
| | - Mark Lewis
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA 5005, Australia; (M.L.); (M.T.); (M.L.); (J.P.)
| | - Joanne Perry
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA 5005, Australia; (M.L.); (M.T.); (M.L.); (J.P.)
| | - Daniel L. Worthley
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
| | - Susan L. Woods
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; (J.A.W.); (K.A.G.); (L.V.); (T.S.); (D.L.W.); (S.L.W.)
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul Drew
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Benedetta C. Sallustio
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Eric Smith
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - John D. Horowitz
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Guy J. Maddern
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
| | - Giovanni Licari
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (G.L.); (K.F.)
| | - Kevin Fenix
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (B.D.); (C.M.Y.L.); (R.L.); (K.Y.); (P.D.); (E.S.); (G.J.M.)
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, Woodville, SA 5011, Australia; (B.C.S.); (J.D.H.)
- Correspondence: (G.L.); (K.F.)
| |
Collapse
|
25
|
Wang H, Guo Y, Lu H, Luo Y, Hu W, Liang W, Garcia-Barrio MT, Chang L, Schwendeman A, Zhang J, Chen YE. Krüppel-like factor 14 deletion in myeloid cells accelerates atherosclerotic lesion development. Cardiovasc Res 2022; 118:475-488. [PMID: 33538785 PMCID: PMC8803076 DOI: 10.1093/cvr/cvab027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
AIMS Atherosclerosis is the dominant pathologic basis of many cardiovascular diseases. Large genome-wide association studies have identified that single-nucleotide polymorphisms proximal to Krüppel-like factor 14 (KLF14), a member of the zinc finger family of transcription factors, are associated with higher cardiovascular risks. Macrophage dysfunction contributes to atherosclerosis development and has been recognized as a potential therapeutic target for treating many cardiovascular diseases. Herein, we address the biologic function of KLF14 in macrophages and its role during the development of atherosclerosis. METHODS AND RESULTS KLF14 expression was markedly decreased in cholesterol loaded foam cells, and overexpression of KLF14 significantly increased cholesterol efflux and inhibited the inflammatory response in macrophages. We generated myeloid cell-selective Klf14 knockout (Klf14LysM) mice in the ApoE-/- background for the atherosclerosis study. Klf14LysMApoE-/- and litter-mate control mice (Klf14fl/flApoE-/-) were placed on the Western Diet for 12 weeks to induce atherosclerosis. Macrophage Klf14 deficiency resulted in increased atherosclerosis development without affecting the plasma lipid profiles. Klf14-deficient peritoneal macrophages showed significantly reduced cholesterol efflux resulting in increased lipid accumulation and exacerbated inflammatory response. Mechanistically, KLF14 upregulates the expression of a key cholesterol efflux transporter, ABCA1 (ATP-binding cassette transporter A1), while it suppresses the expression of several critical components of the inflammatory cascade. In macrophages, activation of KLF14 by its activator, perhexiline, a drug clinically used to treat angina, significantly inhibited the inflammatory response and increased cholesterol efflux in a KLF14-dependent manner in macrophages without triggering hepatic lipogenesis. CONCLUSIONS This study provides insights into the anti-atherosclerotic effects of myeloid KLF14 through promoting cholesterol efflux and suppressing the inflammatory response. Activation of KLF14 may represent a potential new therapeutic approach to prevent or treat atherosclerosis.
Collapse
Affiliation(s)
- Huilun Wang
- Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yonghong Luo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wenting Hu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Fidelito G, Watt MJ, Taylor RA. Personalized Medicine for Prostate Cancer: Is Targeting Metabolism a Reality? Front Oncol 2022; 11:778761. [PMID: 35127483 PMCID: PMC8813754 DOI: 10.3389/fonc.2021.778761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer invokes major shifts in gene transcription and metabolic signaling to mediate alterations in nutrient acquisition and metabolic substrate selection when compared to normal tissues. Exploiting such metabolic reprogramming is proposed to enable the development of targeted therapies for prostate cancer, yet there are several challenges to overcome before this becomes a reality. Herein, we outline the role of several nutrients known to contribute to prostate tumorigenesis, including fatty acids, glucose, lactate and glutamine, and discuss the major factors contributing to variability in prostate cancer metabolism, including cellular heterogeneity, genetic drivers and mutations, as well as complexity in the tumor microenvironment. The review draws from original studies employing immortalized prostate cancer cells, as well as more complex experimental models, including animals and humans, that more accurately reflect the complexity of the in vivo tumor microenvironment. In synthesizing this information, we consider the feasibility and potential limitations of implementing metabolic therapies for prostate cancer management.
Collapse
Affiliation(s)
- Gio Fidelito
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthew J. Watt
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Renea A. Taylor, ; Matthew J. Watt,
| | - Renea A. Taylor
- Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, VIC, Australia
- Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Renea A. Taylor, ; Matthew J. Watt,
| |
Collapse
|
27
|
Di Pasqua LG, Cagna M, Berardo C, Vairetti M, Ferrigno A. Detailed Molecular Mechanisms Involved in Drug-Induced Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: An Update. Biomedicines 2022; 10:194. [PMID: 35052872 PMCID: PMC8774221 DOI: 10.3390/biomedicines10010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are some of the biggest public health challenges due to their spread and increasing incidence around the world. NAFLD is characterized by intrahepatic lipid deposition, accompanied by dyslipidemia, hypertension, and insulin resistance, leading to more serious complications. Among the various causes, drug administration for the treatment of numerous kinds of diseases, such as antiarrhythmic and antihypertensive drugs, promotes the onset and progression of steatosis, causing drug-induced hepatic steatosis (DIHS). Here, we reviewed in detail the major classes of drugs that cause DIHS and the specific molecular mechanisms involved in these processes. Eight classes of drugs, among the most used for the treatment of common pathologies, were considered. The most diffused mechanism whereby drugs can induce NAFLD/NASH is interfering with mitochondrial activity, inhibiting fatty acid oxidation, but other pathways involved in lipid homeostasis are also affected. PubMed research was performed to obtain significant papers published up to November 2021. The key words included the class of drugs, or the specific compound, combined with steatosis, nonalcoholic steatohepatitis, fibrosis, fatty liver and hepatic lipid deposition. Additional information was found in the citations listed in other papers, when they were not displayed in the original search.
Collapse
Affiliation(s)
- Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Marta Cagna
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Clarissa Berardo
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
28
|
Yu Y, Jin C, Zhao C, Zhu S, Meng S, Ma H, Wang J, Xiang M. Serum Free Fatty Acids Independently Predict Adverse Outcomes in Acute Heart Failure Patients. Front Cardiovasc Med 2022; 8:761537. [PMID: 35004879 PMCID: PMC8727366 DOI: 10.3389/fcvm.2021.761537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Perturbation of energy metabolism exacerbates cardiac dysfunction, serving as a potential therapeutic target in congestive heart failure. Although circulating free fatty acids (FFAs) are linked to insulin resistance and risk of coronary heart disease, it still remains unclear whether circulating FFAs are associated with the prognosis of patients with acute heart failure (AHF). Methods: This single-center, observational cohort study enrolled 183 AHF patients (de novo heart failure or decompensated chronic heart failure) in the Second Affiliated Hospital, Zhejiang University School of Medicine. All-cause mortality and heart failure (HF) rehospitalization within 1 year after discharge were investigated. Serum FFAs were modeled as quartiles as well as a continuous variable (per SD of FFAs). The restricted cubic splines and cox proportional hazards models were applied to evaluate the association between the serum FFAs level and all-cause mortality or HF rehospitalization. Results: During a 1-year follow-up, a total of 71 (38.8%) patients had all-cause mortality or HF rehospitalization. The levels of serum FFAs positively contributed to the risk of death or HF rehospitalization, which was not associated with the status of insulin resistance. When modeled with restricted cubic splines, the serum FFAs increased linearly for the incidence of death or HF rehospitalization. In a multivariable analysis adjusting for sex, age, body-mass index, coronary artery disease, diabetes mellitus, hypertension, left ventricular ejection fraction and N-terminal pro-brain natriuretic peptid, each SD (303.07 μmol/L) higher FFAs were associated with 26% higher risk of death or HF rehospitalization (95% confidence interval, 2–55%). Each increasing quartile of FFAs was associated with differentially elevated hazard ratios for death or HF rehospitalization of 1 (reference), 1.71 (95% confidence interval, [0.81, 3.62]), 1.41 (95% confidence interval, [0.64, 3.09]), and 3.18 (95% confidence interval, [1.53, 6.63]), respectively. Conclusion: Serum FFA levels at admission among patients with AHF were associated with an increased risk of adverse outcomes. Additional studies are needed to determine the causal-effect relationship between FFAs and acute cardiac dysfunction and whether FFAs could be a potential target for AHF management.
Collapse
Affiliation(s)
- Yi Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunna Jin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengchen Zhao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiyu Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Simin Meng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Ananthakrishna R, Lee SL, Foote J, Sallustio BC, Binda G, Mangoni AA, Woodman R, Semsarian C, Horowitz JD, Selvanayagam JB. Randomized controlled trial of perhexiline on regression of left ventricular hypertrophy in patients with symptomatic hypertrophic cardiomyopathy (RESOLVE-HCM trial). Am Heart J 2021; 240:101-113. [PMID: 34175315 DOI: 10.1016/j.ahj.2021.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/20/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The presence and extent of left ventricular hypertrophy (LVH) is a major determinant of symptoms in patients with hypertrophic cardiomyopathy (HCM). There is increasing evidence to suggest that myocardial energetic impairment represents a central mechanism leading to LVH in HCM. There is currently a significant unmet need for disease-modifying therapy that regresses LVH in HCM patients. Perhexiline, a potent carnitine palmitoyl transferase-1 (CPT-1) inhibitor, improves myocardial energetics in HCM, and has the potential to reduce LVH in HCM. OBJECTIVE The primary objective is to evaluate the effects of perhexiline treatment on the extent of LVH, in symptomatic HCM patients with at least moderate LVH. METHODS/DESIGN RESOLVE-HCM is a prospective, multicenter double-blind placebo-controlled randomized trial enrolling symptomatic HCM patients with at least moderate LVH. Sixty patients will be randomized to receive either perhexiline or matching placebo. The primary endpoint is change in LVH, assessed utilizing cardiovascular magnetic resonance (CMR) imaging, after 12-months treatment with perhexiline. SUMMARY RESOLVE-HCM will provide novel information on the utility of perhexiline in regression of LVH in symptomatic HCM patients. A positive result would lead to the design of a Phase 3 clinical trial addressing long-term effects of perhexiline on risk of heart failure and mortality in HCM patients.
Collapse
Affiliation(s)
- Rajiv Ananthakrishna
- College of Medicine and Public Health, Flinders University, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Sau L Lee
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Jonathon Foote
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Benedetta C Sallustio
- Department of Clinical Pharmacology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, Australia; Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Australia
| | - Giulia Binda
- South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Richard Woodman
- Flinders Centre for Epidemiology and Biostatistics, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute and Sydney Medical School, University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - John D Horowitz
- The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Research, University of Adelaide, Adelaide, Australia
| | - Joseph B Selvanayagam
- College of Medicine and Public Health, Flinders University, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia.
| |
Collapse
|
30
|
Heiserman JP, Nallanthighal S, Gifford CC, Graham K, Samarakoon R, Gao C, Sage JJ, Zhang W, Higgins PJ, Cheon DJ. Heat Shock Protein 27, a Novel Downstream Target of Collagen Type XI alpha 1, Synergizes with Fatty Acid Oxidation to Confer Cisplatin Resistance in Ovarian Cancer Cells. Cancers (Basel) 2021; 13:cancers13194855. [PMID: 34638339 PMCID: PMC8508313 DOI: 10.3390/cancers13194855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Collagen type XI alpha 1 (COL11A1) is a novel biomarker associated with poor survival in ovarian cancer and a promoter of ovarian cancer cell resistance to cisplatin. However, it is poorly understood how COL11A1 promotes ovarian cancer cisplatin resistance. We performed assays to discover the biological molecules that are activated by COL11A1 in ovarian cancer cells. We found that heat shock protein 27 (HSP27), a cellular stress response protein, is activated by COL11A1. Furthermore, we observed that depletion and drug inhibition of HSP27 makes ovarian cancer cells grown on COL11A1 to be more susceptible to cisplatin treatment. We also discovered that ovarian cancer cells upregulate fatty acid oxidation (FAO), a metabolic process that breaks down fats to generate energy and biomolecules, to compensate for the loss of HSP27. Our findings have therapeutic implications for clinicians who wish to treat ovarian tumors that maintain high levels of COL11A1 and HSP27. Abstract Collagen type XI alpha 1 (COL11A1) is a novel biomarker associated with cisplatin resistance in ovarian cancer. We have previously reported that COL11A1 activates Src-Akt signaling through the collagen receptors discoidin domain receptor 2 (DDR2) and integrin α1β1 to confer cisplatin resistance to ovarian cancer cells. To identify the potential signaling molecules downstream of COL11A1 signaling, we performed protein kinase arrays and identified heat shock protein 27 (HSP27) as a potential mediator of COL11A1-induced cisplatin resistance. Through receptor knockdown and inhibitor experiments, we demonstrated that COL11A1 significantly upregulates HSP27 phosphorylation and expression via DDR2/integrin α1β1 and Src/Akt signaling in ovarian cancer cells. Furthermore, genetic knockdown and pharmacological inhibition of HSP27, via ivermectin treatment, significantly sensitizes ovarian cancer cells cultured on COL11A1 to cisplatin treatment. HSP27 knockdown or inhibition also decreases NFκB activity as well as the expression of inhibitors of apoptosis proteins (IAPs), which are known downstream effector molecules of COL11A1 that promote cisplatin resistance. Interestingly, HSP27 knockdown or inhibition stimulates ovarian cancer cells to upregulate fatty acid oxidation (FAO) for survival and cisplatin resistance, and dual inhibition of HSP27 and FAO synergistically kills ovarian cancer cells that are cultured on COL11A1. Collectively, this study identifies HSP27 as a novel and druggable COL11A1 downstream effector molecule that may be targeted to overcome cisplatin resistance in recurrent ovarian cancer, which often overexpress COL11A1.
Collapse
|
31
|
Midei MG, Darpo B, Ayers G, Brown R, Couderc JP, Daly W, Ferber G, Sager PT, Camm AJ. Electrophysiological and ECG Effects of Perhexiline, a Mixed Cardiac Ion Channel Inhibitor, Evaluated in Nonclinical Assays and in Healthy Subjects. J Clin Pharmacol 2021; 61:1606-1617. [PMID: 34214210 DOI: 10.1002/jcph.1934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/28/2021] [Indexed: 11/10/2022]
Abstract
Perhexiline has been used to treat hypertrophic cardiomyopathy. In addition to its effect on carnitine-palmitoyltransferase-1, it has mixed ion channel effects through inhibition of several cardiac ion currents. Effects on cardiac ion channels expressed in mammalian cells were assayed using a manual patch-clamp technique, action potential duration (APD) was measured in ventricular trabeculae of human donor hearts, and electrocardiogram effects were evaluated in healthy subjects in a thorough QT (TQT) study. Perhexiline blocked several cardiac ion currents at concentrations within the therapeutic range (150-600 ng/mL) with IC50 for hCav1.2 ∼ hERG < late hNav1.5. A significant APD shortening was observed in perhexiline-treated cardiomyocytes. The TQT study was conducted with a pilot part in 9 subjects to evaluate a dosing schedule that would achieve therapeutic and supratherapeutic perhexiline plasma concentrations on days 4 and 6, respectively. Guided by the results from the pilot, 104 subjects were enrolled in a parallel-designed part with a nested crossover comparison for the positive control. Perhexiline caused QTc prolongation, with the largest effect on ΔΔQTcF, 14.7 milliseconds at therapeutic concentrations and 25.6 milliseconds at supratherapeutic concentrations and a positive and statistically significant slope of the concentration-ΔΔQTcF relationship (0.018 milliseconds per ng/mL; 90%CI, 0.0119-0.0237 milliseconds per ng/mL). In contrast, the JTpeak interval was shortened with a negative concentration-JTpeak relationship, a pattern consistent with multichannel block. Further studies are needed to evaluate whether this results in a low proarrhythmic risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Georg Ferber
- Statistik Georg Ferber GmbH, Riehen, Switzerland
| | - Philip T Sager
- Department of Medicine, Cardiovascular Research Institute, Stanford University, Palo Alto, California, USA
| | - A John Camm
- Division of Clinical Sciences, Cardiovascular and Cell Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
32
|
Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell 2021; 56:1363-1393. [PMID: 33945792 DOI: 10.1016/j.devcel.2021.04.013] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Tumors undergo metabolic transformations to sustain uncontrolled proliferation, avoid cell death, and seed in secondary organs. An increased focus on cancer lipid metabolism has unveiled a number of mechanisms that promote tumor growth and survival, many of which are independent of classical cellular bioenergetics. These mechanisms include modulation of ferroptotic-mediated cell death, support during tumor metastasis, and interactions with the cells of the tumor microenvironment. As such, targeting lipid metabolism for anti-cancer therapies is attractive, with recent work on small-molecule inhibitors identifying compounds to target lipid metabolism. Here, we discuss these topics and identify open questions.
Collapse
Affiliation(s)
- Lindsay A Broadfield
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Antonino Alejandro Pane
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ali Talebi
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute (LKI), KU Leuven, University of Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute (LKI), KU Leuven, University of Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
33
|
Du W, Ren L, Hamblin MH, Fan Y. Endothelial Cell Glucose Metabolism and Angiogenesis. Biomedicines 2021; 9:biomedicines9020147. [PMID: 33546224 PMCID: PMC7913320 DOI: 10.3390/biomedicines9020147] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis, a process of new blood vessel formation from the pre-existing vascular bed, is a critical event in various physiological and pathological settings. Over the last few years, the role of endothelial cell (EC) metabolism in angiogenesis has received considerable attention. Accumulating studies suggest that ECs rely on aerobic glycolysis, rather than the oxidative phosphorylation pathway, to produce ATP during angiogenesis. To date, numerous critical regulators of glucose metabolism, fatty acid oxidation, and glutamine metabolism have been identified to modulate the EC angiogenic switch and pathological angiogenesis. The unique glycolytic feature of ECs is critical for cell proliferation, migration, and responses to environmental changes. In this review, we provide an overview of recent EC glucose metabolism studies, particularly glycolysis, in quiescent and angiogenic ECs. We also summarize and discuss potential therapeutic strategies that take advantage of EC metabolism. The elucidation of metabolic regulation and the precise underlying mechanisms could facilitate drug development targeting EC metabolism to treat angiogenesis-related diseases.
Collapse
Affiliation(s)
- Wa Du
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.); (L.R.)
| | - Lu Ren
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.); (L.R.)
| | - Milton H. Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.); (L.R.)
- Department of Internal Medicine, Division of Cardiovascular Health and Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
34
|
Abstract
Bilateral optic disc swelling is an important clinical sign for potentially life-threatening and sight-threatening conditions, with the most common being raised intracranial pressure and pseudopapillitis. Perhexiline-related and amiodarone-related optic disc swellings are diagnoses of exclusion. This report describes the diagnosis of a man with perhexiline-induced and amiodarone-induced optic neuropathy after extensive investigation consisting of full ophthalmic examination, biochemical screen, temporal artery biopsy, CT, MRI, positron emission tomography and lumbar puncture. There was partial to complete resolution of optic neuropathy following cessation of the causative medication. We postulate that the underlying mechanism of perhexiline toxicity could be mitochondrial dysfunction related. Our case demonstrates that patients treated with perhexiline and amiodarone should be monitored closely for ocular side effects.
Collapse
Affiliation(s)
- Yiran Tan
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia,Discipline of Ophthalmology and Visual Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Sia
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Sumu Simon
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Hoang G, Nguyen K, Le A. Metabolic Intersection of Cancer and Cardiovascular Diseases: Opportunities for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:249-263. [PMID: 34014548 PMCID: PMC9703259 DOI: 10.1007/978-3-030-65768-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
According to data from the World Health Organization, cardiovascular diseases and cancer are the two leading causes of mortality in the world [1]. Despite the immense effort to study these diseases and the constant innovation in treatment modalities, the number of deaths associated with cardiovascular diseases and cancer is predicted to increase in the coming decades [1]. From 2008 to 2030, due to population growth and population aging in many parts of the world, the number of deaths caused by cancer globally is projected to increase by 45%, corresponding to an annual increase of around four million people [1]. For cardiovascular diseases, this number is six million people [1]. In the United States, treatments for these two diseases are among the most costly and result in a disproportionate impact on low- and middleincome people. As the fight against these fatal diseases continues, it is crucial that we continue our investigation and broaden our understanding of cancer and cardiovascular diseases to innovate our prognostic and treatment approaches. Even though cardiovascular diseases and cancer are usually studied independently [2-12], there are some striking overlaps between their metabolic behaviors and therapeutic targets, suggesting the potential application of cardiovascular disease treatments for cancer therapy. More specifically, both cancer and many cardiovascular diseases have an upregulated glutaminolysis pathway, resulting in low glutamine and high glutamate circulating levels. Similar treatment modalities, such as glutaminase (GLS) inhibition and glutamine supplementation, have been identified to target glutamine metabolism in both cancer and some cardiovascular diseases. Studies have also found similarities in lipid metabolism, specifically fatty acid oxidation (FAO) and synthesis. Pharmacological inhibition of FAO and fatty acid synthesis have proven effective against many cancer types as well as specific cardiovascular conditions. Many of these treatments have been tested in clinical trials, and some have been medically prescribed to patients to treat certain diseases, such as angina pectoris [13, 14]. Other metabolic pathways, such as tryptophan catabolism and pyruvate metabolism, were also dysregulated in both diseases, making them promising treatment targets. Understanding the overlapping traits exhibited by both cancer metabolism and cardiovascular disease metabolism can give us a more holistic view of how important metabolic dysregulation is in the progression of diseases. Using established links between these illnesses, researchers can take advantage of the discoveries from one field and potentially apply them to the other. In this chapter, we highlight some promising therapeutic discoveries that can support our fight against cancer, based on common metabolic traits displayed in both cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Giang Hoang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Kiet Nguyen
- Department of Chemistry and Biology, Emory University, Atlanta, GA, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
36
|
Hypertrophic Cardiomyopathy: Diverse Pathophysiology Revealed by Genetic Research, Toward Future Therapy. Keio J Med 2020; 69:77-87. [PMID: 32224552 DOI: 10.2302/kjm.2019-0012-oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is an intractable disease that causes heart failure mainly due to unexplained severe cardiac hypertrophy and diastolic dysfunction. HCM, which occurs in 0.2% of the general population, is the most common cause of sudden cardiac death in young people. HCM has been studied extensively using molecular genetic approaches. Genes encoding cardiac β-myosin heavy chain, cardiac myosin-binding protein C, and troponin complex, which were originally identified as causative genes, were subsequently reported to be frequently implicated in HCM. Indeed, HCM has been considered a disease of sarcomere gene mutations. However, fewer than half of patients with HCM have mutations in sarcomere genes. The others have been documented to have mutations in cardiac proteins in various other locations, including the Z disc, sarcoplasmic reticulum, plasma membrane, nucleus, and mitochondria. Next-generation sequencing makes it possible to detect mutations at high throughput, and it has become increasingly common to identify multiple cardiomyopathy-causing gene mutations in a single HCM patient. Elucidating how mutations in different genes contribute to the disease pathophysiology will be a challenge. In studies using animal models, sarcomere mutations generally tend to increase myocardial Ca2+ sensitivity, and some mutations increase the activity of myosin ATPase. Clinical trials of drugs to treat HCM are ongoing, and further new therapies based on pathophysiological analyses of the causative genes are eagerly anticipated.
Collapse
|
37
|
Hepatic synthesis of triacylglycerols containing medium-chain fatty acids is dominated by diacylglycerol acyltransferase 1 and efficiently inhibited by etomoxir. Mol Metab 2020; 45:101150. [PMID: 33359403 PMCID: PMC7843514 DOI: 10.1016/j.molmet.2020.101150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022] Open
Abstract
Objective Medium-chain fatty acids (MCFAs) play an increasing role in human nutrition. In the liver, one fraction is used for synthesis of MCFA-containing triacylglycerol (MCFA-TG), and the rest is used for oxidative energy production or ketogenesis. We investigated which enzymes catalyse the synthesis of MCFA-TG and how inhibition of MCFA-TG synthesis or fatty acid (FA) oxidation influences the metabolic fate of the MCFAs. Methods FA metabolism was followed by time-resolved tracing of alkyne-labelled FAs in freshly isolated mouse hepatocytes. Quantitative data were obtained by mass spectrometry of several hundred labelled lipid species. Wild-type hepatocytes and cells from diacylglycerol acyltransferase (DGAT)1−/− mice were treated with inhibitors against DGAT1, DGAT2, or FA β-oxidation. Results Inhibition or deletion of DGAT1 resulted in a reduction of MCFA-TG synthesis by 70%, while long-chain (LC)FA-TG synthesis was reduced by 20%. In contrast, DGAT2 inhibition increased MCFA-TG formation by 50%, while LCFA-TG synthesis was reduced by 5–25%. Inhibition of β-oxidation by the specific inhibitor teglicar strongly increased MCFA-TG synthesis. In contrast, the widely used β-oxidation inhibitor etomoxir blocked MCFA-TG synthesis, phenocopying DGAT1 inhibition. Conclusions DGAT1 is the major enzyme for hepatic MCFA-TG synthesis. Its loss can only partially be compensated by DGAT2. Specific inhibition of β-oxidation leads to a compensatory increase in MCFA-TG synthesis, whereas etomoxir blocks both β-oxidation and MCFA-TG synthesis, indicating a strong off-target effect on DGAT1.
Collapse
|
38
|
A mechanism of perhexiline's cytotoxicity in hepatic cells involves endoplasmic reticulum stress and p38 signaling pathway. Chem Biol Interact 2020; 334:109353. [PMID: 33309543 DOI: 10.1016/j.cbi.2020.109353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/22/2022]
Abstract
Perhexiline is a coronary vasodilator for angina treatment that was first developed in the 1960s. Perhexiline enjoyed worldwide success before reports of severe side effects, such as hepatotoxicity and neurotoxicity, caused its withdrawal from most of the markets. The underlying mechanism of the cytotoxicity of perhexiline, however, is not yet well understood. Here we demonstrated that perhexiline induced cellular damage in primary human hepatocytes, HepaRG cells and HepG2 cells. Analysis of gene and protein expression levels of endoplasmic reticulum (ER) stress markers showed that perhexiline caused ER stress in primary human hepatocytes and HepG2 cells. The splicing of XBP1 mRNA, a hallmark of ER stress, was observed upon perhexiline treatment. Using Gluc-Fluc-HepG2 cell line, we demonstrated that protein secretion was impaired upon perhexiline treatment, suggesting functional deficits in ER. Inhibition of ER stress using ER inhibitor 4-PBA or salubrinal attenuated the cytotoxicity of perhexiline. Directly knocking down ATF4 using siRNA also partially rescued HepG2 cells upon perhexiline exposure. In addition, inhibition of ER stress using either inhibitors or siRNA transfection attenuated perhexiline-induced increase in caspase 3/7 activity, indicating that ER stress contributed to perhexiline-induced apoptosis. Moreover, perhexiline treatment resulted in activation of p38 and JNK signaling pathways, two branches of MAPK cascade. Pre-treating HepG2 cells with p38 inhibitor SB239063 attenuated perhexiline-induced apoptosis and cell death. The inhibitor also prevented the activation of CHOP and ATF4. Overall, our study demonstrated that ER stress is one important mechanism underlying the hepatotoxicity of perhexiline, and p38 signaling pathway contributes to this process. Our finding shed light on the role of both ER stress and p38 signaling pathway in drug-induced liver injury.
Collapse
|
39
|
Farhadi P, Yarani R, Dokaneheifard S, Mansouri K. The emerging role of targeting cancer metabolism for cancer therapy. Tumour Biol 2020; 42:1010428320965284. [PMID: 33028168 DOI: 10.1177/1010428320965284] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glucose, as the main consuming nutrient of the body, faces different destinies in cancer cells. Glycolysis, oxidative phosphorylation, and pentose phosphate pathways produce different glucose-derived metabolites and thus affect cells' bioenergetics differently. Tumor cells' dependency to aerobic glycolysis and other cancer-specific metabolism changes are known as the cancer hallmarks, distinct cancer cells from normal cells. Therefore, these tumor-specific characteristics receive the limelight as targets for cancer therapy. Glutamine, serine, and fatty acid oxidation together with 5-lipoxygenase are main pathways that have attracted lots of attention for cancer therapy. In this review, we not only discuss different tumor metabolism aspects but also discuss the metabolism roles in the promotion of cancer cells at different stages and their difference with normal cells. Besides, we dissect the inhibitors potential in blocking the main metabolic pathways to introduce the effective and non-effective inhibitors in the field.
Collapse
Affiliation(s)
- Pegah Farhadi
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Sadat Dokaneheifard
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kamran Mansouri
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
40
|
Guidi A, Petrella G, Fustaino V, Saccoccia F, Lentini S, Gimmelli R, Di Pietro G, Bresciani A, Cicero DO, Ruberti G. Drug effects on metabolic profiles of Schistosoma mansoni adult male parasites detected by 1H-NMR spectroscopy. PLoS Negl Trop Dis 2020; 14:e0008767. [PMID: 33044962 PMCID: PMC7580944 DOI: 10.1371/journal.pntd.0008767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/22/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022] Open
Abstract
Schistosomiasis is one of the most devastating neglected tropical parasitic diseases caused by trematodes of the genus Schistosoma. Praziquantel (PZQ) is today the only drug used in humans and animals for the treatment of schistosomiasis but unfortunately it is poorly effective on larval and juvenile stages of the parasite. Therefore, it is urgent the discovery of new drug targets and compounds. We have recently showed that the anti-anginal drug perhexiline maleate (PHX) is very active on multiple developmental stages of Schistosoma mansoni in vitro. It is well known that PHX impacts the lipid metabolism in mammals, but the final target on schistosomes still remains unknown. The aim of this study was to evaluate the ability of 1H nuclear magnetic resonance (NMR) spectroscopy in revealing metabolic perturbations due to PHX treatment of S. mansoni adult male worms. The effects of PHX were compared with the ones induced by vehicle and gambogic acid, in order to detect different metabolic profiles and specificity of the PHX action. Remarkably a list of metabolites associated to PHX-treatment was identified with enrichment in several connected metabolic pathways including also the Kennedy pathway mediating the glycerophospholipid metabolism. Our study represents the first 1H-NMR metabolomic approach to characterize the response of S. mansoni to drug treatment. The obtained "metabolic fingerprint" associated to PHX treatment could represent a strategy for displaying cellular metabolic changes for any given drug and to compare compounds targeting similar or distinct biochemical pathways.
Collapse
Affiliation(s)
- Alessandra Guidi
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Monterotondo (Rome) Italy
| | - Greta Petrella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Fustaino
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Monterotondo (Rome) Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Monterotondo (Rome) Italy
| | - Sara Lentini
- Department of Translational Biology, IRBM Science Park Spa, Pomezia (Rome), Italy
| | - Roberto Gimmelli
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Monterotondo (Rome) Italy
| | - Giulia Di Pietro
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Bresciani
- Department of Translational Biology, IRBM Science Park Spa, Pomezia (Rome), Italy
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Monterotondo (Rome) Italy
| |
Collapse
|
41
|
Solomon T, Filipovska A, Hool L, Viola H. Preventative therapeutic approaches for hypertrophic cardiomyopathy. J Physiol 2020; 599:3495-3512. [PMID: 32822065 PMCID: PMC8359240 DOI: 10.1113/jp279410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 11/08/2022] Open
Abstract
Sarcomeric gene mutations are associated with the development of hypertrophic cardiomyopathy (HCM). Current drug therapeutics for HCM patients are effective in relieving symptoms, but do not prevent or reverse disease progression. Moreover, due to heterogeneity in the clinical manifestations of the disease, patients experience variable outcomes in response to therapeutics. Mechanistically, alterations in calcium handling, sarcomeric disorganization, energy metabolism and contractility participate in HCM disease progression. While some similarities exist, each mutation appears to lead to mutation‐specific pathophysiology. Furthermore, these alterations may precede or proceed development of the pathology. This review assesses the efficacy of HCM therapeutics from studies performed in animal models of HCM and human clinical trials. Evidence suggests that a preventative rather than corrective therapeutic approach may be more efficacious in the treatment of HCM. In addition, a clear understanding of mutation‐specific mechanisms may assist in informing the most effective therapeutic mode of action.
![]()
Collapse
Affiliation(s)
- Tanya Solomon
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.,Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.,Telethon Kids Institute, Perth Children's Hospital, Nedlands, Western Australia, Australia.,School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Hool
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Helena Viola
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
42
|
Attané C, Milhas D, Hoy AJ, Muller C. Metabolic Remodeling Induced by Adipocytes: A New Achilles' Heel in Invasive Breast Cancer? Curr Med Chem 2020; 27:3984-4001. [PMID: 29708068 DOI: 10.2174/0929867325666180426165001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming represents an important hallmark of cancer cells. Besides de novo fatty acid synthesis, it is now clear that cancer cells can acquire Fatty Acids (FA) from tumor-surrounding adipocytes to increase their invasive capacities. Indeed, adipocytes release FA in response to tumor secreted factors that are transferred to tumor cells to be either stored as triglycerides and other complex lipids or oxidized in mitochondria. Like all cells, FA can be released over time from triglyceride stores through lipolysis and then oxidized in mitochondria in cancer cells. This metabolic interaction results in specific metabolic remodeling in cancer cells, and underpins adipocyte stimulated tumor progression. Lipolysis and fatty acid oxidation therefore represent novel targets of interest in the treatment of cancer. In this review, we summarize the recent advances in our understanding of the metabolic reprogramming induced by adipocytes, with a focus on breast cancer. Then, we recapitulate recent reports studying the effect of lipolysis and fatty acid oxidation inhibitors on tumor cells and discuss the interest to target these metabolic pathways as new therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Camille Attané
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Delphine Milhas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, University of Sydney, NSW 2006, Sydney, Australia
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| |
Collapse
|
43
|
Mitochondrial dysfunction and apoptosis underlie the hepatotoxicity of perhexiline. Toxicol In Vitro 2020; 69:104987. [PMID: 32861758 DOI: 10.1016/j.tiv.2020.104987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Perhexiline is an anti-anginal drug developed in the late 1960s. Despite its therapeutic success, it caused severe hepatoxicity in selective patients, which resulted in its withdrawal from the market. In the current study we explored the molecular mechanisms underlying the cytotoxicity of perhexiline. In primary human hepatocytes, HepaRG cells, and HepG2 cells, perhexiline induced cell death in a concentration- and time-dependent manner. Perhexiline treatment also caused a significant increase in caspase 3/7 activity at 2 h and 4 h. Pretreatment with specific caspase inhibitors suggested that both intrinsic and extrinsic apoptotic pathways contributed to perhexiline-induced cytotoxicity, which was confirmed by increased expression of TNF-α, cleavage of caspase 3 and 9 upon perhexiline treatment. Moreover, perhexiline caused mitochondrial dysfunction, demonstrated by the classic glucose-galactose assay at 4 h and 24 h. Results from JC-1 staining suggested perhexiline caused loss of mitochondrial potential. Blocking mitochondrial permeability transition pore using inhibitor bongkrekic acid attenuated the cytotoxicity of perhexiline. Western blotting analysis also showed decreased expression level of pro-survival proteins Bcl-2 and Mcl-1, and increased expression of pro-apoptotic protein Bad. Direct measurement of the activity of individual components of the mitochondrial respiratory complex demonstrated that perhexiline strongly inhibited Complex IV and Complex V and moderately inhibited Complex II and Complex II + III. Overall, our data demonstrated that both mitochondrial dysfunction and apoptosis underlies perhexiline-induced hepatotoxicity.
Collapse
|
44
|
Guidi A, Prasanth Saraswati A, Relitti N, Gimmelli R, Saccoccia F, Sirignano C, Taglialatela-Scafati O, Campiani G, Ruberti G, Gemma S. (+)-(R)- and (-)-(S)-Perhexiline maleate: Enantioselective synthesis and functional studies on Schistosoma mansoni larval and adult stages. Bioorg Chem 2020; 102:104067. [PMID: 32663671 DOI: 10.1016/j.bioorg.2020.104067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/28/2020] [Indexed: 11/26/2022]
Abstract
Schistosomiasis is a neglected tropical disease mainly affecting the poorest tropical and subtropical areas of the world with the impressive number of roughly 200 million infections per year. Schistosomes are blood trematode flukes of the genus Schistosoma causing symptoms in humans and animals. Organ morbidity is caused by the accumulation of parasite eggs and subsequent development of fibrosis. If left untreated, schistosomiasis can result in substantial morbidity and even mortality. Praziquantel (PZQ) is the most effective and widely used compound for the treatment of the disease, in prevention and control programs in the last 30 years. Unfortunately, it has no effect on juvenile immature schistosomes and cannot prevent reinfection or interfere with the schistosome life cycle; moreover drug-resistance represents a serious threat. The search for an alternative or complementary treatment is urgent and drug repurposing could accelerate a solution. The anti-anginal drug perhexiline maleate (PHX) has been previously shown to be effective on larval, juvenile, and adult stages of S. mansoni and to impact egg production in vitro. Since PHX is a racemic mixture of R-(+)- and S-(-)-enantiomers, we designed and realized a stereoselective synthesis of both PHX enantiomers and developed an analytical procedure for the direct quantification of the enantiomeric excess also suitable for semipreparative separation of PHX enantiomers. We next investigated the impact of each enantiomer on viability of newly transformed schistosomula (NTS) and worm pairs of S. mansoni as well as on egg production and vitellarium morphology by in vitro studies. Our results indicate that the R-(+)-PHX is mainly driving the anti-schistosomal activity but that also the S-(-)-PHX possesses a significant activity towards S. mansoni in vitro.
Collapse
Affiliation(s)
- Alessandra Guidi
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso via E. Ramarini, 32 00015 Monterotondo (Rome), Italy
| | - A Prasanth Saraswati
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Roberto Gimmelli
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso via E. Ramarini, 32 00015 Monterotondo (Rome), Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso via E. Ramarini, 32 00015 Monterotondo (Rome), Italy
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso via E. Ramarini, 32 00015 Monterotondo (Rome), Italy.
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
45
|
Abstract
Endothelial cell (EC) metabolism is important for health and disease. Metabolic pathways, such as glycolysis, fatty acid oxidation, and amino acid metabolism, determine vasculature formation. These metabolic pathways have different roles in securing the production of energy and biomass and the maintenance of redox homeostasis in vascular migratory tip cells, proliferating stalk cells, and quiescent phalanx cells, respectively. Emerging evidence demonstrates that perturbation of EC metabolism results in EC dysfunction and vascular pathologies. Here, we summarize recent insights into EC metabolic pathways and their deregulation in vascular diseases. We further discuss the therapeutic implications of targeting EC metabolism in various pathologies.
Collapse
Affiliation(s)
- Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Peter Carmeliet
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; , .,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven B-3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven B-3000, Belgium
| |
Collapse
|
46
|
Snyder J, Zhai R, Lackey AI, Sato PY. Changes in Myocardial Metabolism Preceding Sudden Cardiac Death. Front Physiol 2020; 11:640. [PMID: 32612538 PMCID: PMC7308560 DOI: 10.3389/fphys.2020.00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart disease is widely recognized as a major cause of death worldwide and is the leading cause of mortality in the United States. Centuries of research have focused on defining mechanistic alterations that drive cardiac pathogenesis, yet sudden cardiac death (SCD) remains a common unpredictable event that claims lives in every age group. The heart supplies blood to all tissues while maintaining a constant electrical and hormonal feedback communication with other parts of the body. As such, recent research has focused on understanding how myocardial electrical and structural properties are altered by cardiac metabolism and the various signaling pathways associated with it. The importance of cardiac metabolism in maintaining myocardial function, or lack thereof, is exemplified by shifts in cardiac substrate preference during normal development and various pathological conditions. For instance, a shift from fatty acid (FA) oxidation to oxygen-sparing glycolytic energy production has been reported in many types of cardiac pathologies. Compounded by an uncoupling of glycolysis and glucose oxidation this leads to accumulation of undesirable levels of intermediate metabolites. The resulting accumulation of intermediary metabolites impacts cardiac mitochondrial function and dysregulates metabolic pathways through several mechanisms, which will be reviewed here. Importantly, reversal of metabolic maladaptation has been shown to elicit positive therapeutic effects, limiting cardiac remodeling and at least partially restoring contractile efficiency. Therein, the underlying metabolic adaptations in an array of pathological conditions as well as recently discovered downstream effects of various substrate utilization provide guidance for future therapeutic targeting. Here, we will review recent data on alterations in substrate utilization in the healthy and diseased heart, metabolic pathways governing cardiac pathogenesis, mitochondrial function in the diseased myocardium, and potential metabolism-based therapeutic interventions in disease.
Collapse
Affiliation(s)
- J Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - R Zhai
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A I Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - P Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
47
|
Velagic A, Qin C, Woodman OL, Horowitz JD, Ritchie RH, Kemp-Harper BK. Nitroxyl: A Novel Strategy to Circumvent Diabetes Associated Impairments in Nitric Oxide Signaling. Front Pharmacol 2020; 11:727. [PMID: 32508651 PMCID: PMC7248192 DOI: 10.3389/fphar.2020.00727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is associated with an increased mortality risk due to cardiovascular complications. Hyperglycemia-induced oxidative stress underlies these complications, leading to an impairment in endogenous nitric oxide (NO•) generation, together with reductions in NO• bioavailability and NO• responsiveness in the vasculature, platelets and myocardium. The latter impairment of responsiveness to NO•, termed NO• resistance, compromises the ability of traditional NO•-based therapeutics to improve hemodynamic status during diabetes-associated cardiovascular emergencies, such as acute myocardial infarction. Whilst a number of agents can ameliorate (e.g. angiotensin converting enzyme [ACE] inhibitors, perhexiline, statins and insulin) or circumvent (e.g. nitrite and sGC activators) NO• resistance, nitroxyl (HNO) donors offer a novel opportunity to circumvent NO• resistance in diabetes. With a suite of vasoprotective properties and an ability to enhance cardiac inotropic and lusitropic responses, coupled with preserved efficacy in the setting of oxidative stress, HNO donors have intact therapeutic potential in the face of diminished NO• signaling. This review explores the major mechanisms by which hyperglycemia-induced oxidative stress drives NO• resistance, and the therapeutic potential of HNO donors to circumvent this to treat cardiovascular complications in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Anida Velagic
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Chengxue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Owen L. Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - John D. Horowitz
- Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Kant S, Kesarwani P, Guastella AR, Kumar P, Graham SF, Buelow KL, Nakano I, Chinnaiyan P. Perhexiline Demonstrates FYN-mediated Antitumor Activity in Glioblastoma. Mol Cancer Ther 2020; 19:1415-1422. [PMID: 32430486 DOI: 10.1158/1535-7163.mct-19-1047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Glioblastoma is the most common primary malignant brain tumor in adults. Despite aggressive treatment, outcomes remain poor with few long-term survivors. Therefore, considerable effort is being made to identify novel therapies for this malignancy. Targeting tumor metabolism represents a promising therapeutic strategy and activation of fatty acid oxidation (FAO) has been identified as a central metabolic node contributing toward gliomagenesis. Perhexiline is a compound with a long clinical track record in angina treatment and commonly described as an FAO inhibitor. We therefore sought to determine whether this compound might be repurposed to serve as a novel therapy in glioblastoma. Perhexiline demonstrated potent in vitro cytotoxicity, induction of redox stress and apoptosis in a panel of glioblastoma cell lines. However, the antitumor activity of perhexiline was distinct when compared with the established FAO inhibitor etomoxir. By evaluating mitochondrial respiration and lipid dynamics in glioblastoma cells following treatment with perhexiline, we confirmed this compound did not inhibit FAO in our models. Using in silico approaches, we identified FYN as a probable target of perhexiline and validated the role of this protein in perhexiline sensitivity. We extended studies to patient samples, validating the potential of FYN to serve as therapeutic target in glioma. When evaluated in vivo, perhexiline demonstrated the capacity to cross the blood-brain barrier and antitumor activity in both flank and orthotopic glioblastoma models. Collectively, we identified potent FYN-dependent antitumor activity of perhexiline in glioblastoma, thereby, representing a promising agent to be repurposed for the treatment of this devastating malignancy.
Collapse
Affiliation(s)
- Shiva Kant
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Pravin Kesarwani
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | | | - Praveen Kumar
- Metabolomics and Obstetrics/Gynecology, Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan
| | - Stewart F Graham
- Metabolomics and Obstetrics/Gynecology, Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan
| | - Katie L Buelow
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Ichiro Nakano
- Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan. .,Oakland University William Beaumont School of Medicine, Royal Oak, Michigan
| |
Collapse
|
49
|
Nallanthighal S, Rada M, Heiserman JP, Cha J, Sage J, Zhou B, Yang W, Hu Y, Korgaonkar C, Hanos CT, Ashkavand Z, Norman K, Orsulic S, Cheon DJ. Inhibition of collagen XI alpha 1-induced fatty acid oxidation triggers apoptotic cell death in cisplatin-resistant ovarian cancer. Cell Death Dis 2020; 11:258. [PMID: 32312965 PMCID: PMC7171147 DOI: 10.1038/s41419-020-2442-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
Collagen type XI alpha 1 (COL11A1) is a novel biomarker associated with cisplatin resistance in ovarian cancer. However, the mechanisms underlying how COL11A1 confers cisplatin resistance in ovarian cancer are poorly understood. We identified that fatty acid β-oxidation (FAO) is upregulated by COL11A1 in ovarian cancer cells and that COL11A1-driven cisplatin resistance can be abrogated by inhibition of FAO. Furthermore, our results demonstrate that COL11A1 also enhances the expression of proteins involved in fatty acid synthesis. Interestingly, COL11A1-induced upregulation of fatty acid synthesis and FAO is modulated by the same signaling molecules. We identified that binding of COL11A1 to its receptors, α1β1 integrin and discoidin domain receptor 2 (DDR2), activates Src-Akt-AMPK signaling to increase the expression of both fatty acid synthesis and oxidation enzymes, although DDR2 seems to be the predominant receptor. Inhibition of fatty acid synthesis downregulates FAO despite the presence of COL11A1, suggesting that fatty acid synthesis might be a driver of FAO in ovarian cancer cells. Taken together, our results suggest that COL11A1 upregulates fatty acid metabolism in ovarian cancer cells in a DDR2-Src-Akt-AMPK dependent manner. Therefore, we propose that blocking FAO might serve as a promising therapeutic target to treat ovarian cancer, particularly cisplatin-resistant recurrent ovarian cancers which typically express high levels of COL11A1.
Collapse
Affiliation(s)
- Sameera Nallanthighal
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Miran Rada
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - James Patrick Heiserman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Jennifer Cha
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Jessica Sage
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Bo Zhou
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Wei Yang
- Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ye Hu
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedar-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Chaitali Korgaonkar
- Department of Obstetrics and Gynecology, Albany Medical College, Albany, NY, 12208, USA
| | | | - Zahra Ashkavand
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Kenneth Norman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Sandra Orsulic
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedar-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
50
|
Maltês S, Lopes LR. New perspectives in the pharmacological treatment of hypertrophic cardiomyopathy. Rev Port Cardiol 2020; 39:99-109. [PMID: 32245685 DOI: 10.1016/j.repc.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/17/2019] [Accepted: 03/10/2019] [Indexed: 10/24/2022] Open
Abstract
Hypertrophic cardiomyopathy is an inherited cardiac disease and a major cause of heart failure and sudden death. Even though it was described more than 50 years ago, sarcomeric hypertrophic cardiomyopathy still lacks a disease-specific treatment. The drugs routinely used alleviate symptoms but do not prevent or revert the phenotype. With recent advances in the knowledge about the genetics and pathophysiology of hypertrophic cardiomyopathy, new genetic and pharmacological approaches have been recently discovered and studied that, by influencing different pathways involved in this disease, have the potential to function as disease-modifying therapies. These promising new pharmacological and genetic therapies will be the focus of this review.
Collapse
Affiliation(s)
- Sérgio Maltês
- Clínica Universitária de Cardiologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Luis Rocha Lopes
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, Inglaterra; St. Bartholomew's Hospital, Barts Heart Centre, London, Inglaterra; Centro Cardiovascular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|