1
|
Bertram EH, Dudek FE. Addressing the problems of treatment failure in epilepsy: You cannot fix what you do not understand. Epilepsia 2024; 65:2248-2254. [PMID: 38878057 DOI: 10.1111/epi.18044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 08/10/2024]
Affiliation(s)
- Edward H Bertram
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Zhao W, Li Y, Sun H, Zhang W, Li J, Jiang T, Jiang L, Meng H. Effect of intranasal and oral administration of levetiracetam on the temporal and spatial distributions of SV2A in the KA-induced rat model of SE. J Cell Mol Med 2023; 27:4045-4055. [PMID: 37845841 PMCID: PMC10746941 DOI: 10.1111/jcmm.17986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023] Open
Abstract
To investigate the effectiveness of nasal delivery of levetiracetam (LEV) on the distributions of synaptic vesicle protein 2 isoform A (SV2A) in epileptic rats with injection of kainic acid (KA) into amygdala. A total of 138 rats were randomly divided into four groups, including the Sham surgery group, the epilepsy group (EP), and the LEV oral administration (LPO) and nasal delivery (LND) groups. The rat intra-amygdala KA model of epilepsy was constructed. Pathological changes of rat brain tissue after status epilepticus (SE) were detected using haematoxylin and eosin staining. Expression of SV2A in rat hippocampus after SE was evaluated using the western blotting analysis. Expression and distribution of SV2A in rat hippocampus after SE were detected based on immunofluorescence staining. The EP group showed evident cell loss and tissue necrosis in the CA3 area of hippocampus, whereas the tissue damage in both LPO and LND groups was significantly reduced. Western blotting analysis showed that the expressions of SV2A in the hippocampus of both EP and LND groups were significantly decreased 1 week after SE, increased to the similar levels of the Sham group in 2 weeks, and continuously increased 4 weeks after SE to the level significantly higher than that of the Sham group. Results of immunofluorescence revealed largely the same expression patterns of SV2A in the CA3 area of hippocampus as those in the entire hippocampus. Our study revealed the same antiepileptic and neuronal protective effects by the nasal and oral administrations of LEV, without changing the expression level of SV2A.
Collapse
Affiliation(s)
- Weixuan Zhao
- Department of Neurology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Yue Li
- Department of Neurology, Qingdao Women and Children's Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
| | - Huaiyu Sun
- Department of Neurology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Wuqiong Zhang
- Department of Neurology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Jiaai Li
- Department of Neurology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Ting Jiang
- Department of Neurology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Li Jiang
- Department of NeurologyThe First People's Hospital of Lishu CountySipingChina
| | - Hongmei Meng
- Department of Neurology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
| |
Collapse
|
3
|
Contreras-García IJ, Cárdenas-Rodríguez N, Romo-Mancillas A, Bandala C, Zamudio SR, Gómez-Manzo S, Hernández-Ochoa B, Mendoza-Torreblanca JG, Pichardo-Macías LA. Levetiracetam Mechanisms of Action: From Molecules to Systems. Pharmaceuticals (Basel) 2022; 15:ph15040475. [PMID: 35455472 PMCID: PMC9030752 DOI: 10.3390/ph15040475] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.
Collapse
Affiliation(s)
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico;
| | - Cindy Bandala
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Sergio R. Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Julieta Griselda Mendoza-Torreblanca
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Correspondence: (J.G.M.-T.); (L.A.P.-M.); Tel.: +52-55-1084-0900 (ext. 1441) (J.G.M.-T.)
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
- Correspondence: (J.G.M.-T.); (L.A.P.-M.); Tel.: +52-55-1084-0900 (ext. 1441) (J.G.M.-T.)
| |
Collapse
|
4
|
Bertram EH, Edelbroek P. Chronic limbic epilepsy models for therapy discovery: Protocols to improve efficiency. Epilepsia 2021; 62:2252-2262. [PMID: 34289109 DOI: 10.1111/epi.16995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/23/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE There have been recommendations to improve therapy discovery for epilepsy by incorporating chronic epilepsy models into the preclinical process, but unpredictable seizures and difficulties in maintaining drug levels over prolonged periods have been obstacles to using these animals. We report new protocols in which drugs are administered through a new chronic gastric tube to rats with higher seizure frequencies to minimize these obstacles. METHODS Adult rats with spontaneous limbic seizures following an episode of limbic status epilepticus induced by electrical hippocampal stimulation were monitored with long-term video- electroencephalography (EEG). Animals with a predetermined baseline seizure frequency received an intragastric tube for drug administration. Carbamazepine, levetiracetam, phenobarbital, and phenytoin were tested with either an acute protocol (an increasing single dose every other day for a maximum of three doses) or with a chronic protocol (multiple administrations of one dose for a week). Drug levels were obtained to correlate the effect with the level. RESULTS With the acute protocol, all four drugs induced a clear dose-related response. Similar dose-related responses were seen following the week-long dosing protocol for carbamazepine, phenobarbital, and phenytoin, and these responses were associated with drug levels that were in the human therapeutic range. The response to chronic levetiracetam was much less robust. The gastric tube route of administration was well tolerated over a number of months. SIGNIFICANCE Using rats with stable, higher seizure frequencies made it possible to identify the potential of a drug to suppress seizures in a realistic model of epilepsy with drug levels that are similar to those of human therapeutic levels. The acute protocol provided a full dose response in 1 week. The chronic administration protocol further differentiated drugs that may be effective long term. The gastric tube facilitates a less stressful, humane, and consistent administration of multiple doses.
Collapse
Affiliation(s)
- Edward H Bertram
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Peter Edelbroek
- SEIN: Epilepsy Institute in the Netherlands Foundation Heemstede, Heemstede, The Netherlands
| |
Collapse
|
5
|
Goossens MG, Boon P, Wadman W, Van den Haute C, Baekelandt V, Verstraete AG, Vonck K, Larsen LE, Sprengers M, Carrette E, Desloovere J, Meurs A, Delbeke J, Vanhove C, Raedt R. Long-term chemogenetic suppression of seizures in a multifocal rat model of temporal lobe epilepsy. Epilepsia 2021; 62:659-670. [PMID: 33570167 DOI: 10.1111/epi.16840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE One third of epilepsy patients do not become seizure-free using conventional medication. Therefore, there is a need for alternative treatments. Preclinical research using designer receptors exclusively activated by designer drugs (DREADDs) has demonstrated initial success in suppressing epileptic activity. Here, we evaluated whether long-term chemogenetic seizure suppression could be obtained in the intraperitoneal kainic acid rat model of temporal lobe epilepsy, when DREADDs were selectively expressed in excitatory hippocampal neurons. METHODS Epileptic male Sprague Dawley rats received unilateral hippocampal injections of adeno-associated viral vector encoding the inhibitory DREADD hM4D(Gi), preceded by a cell-specific promotor targeting excitatory neurons. The effect of clozapine-mediated DREADD activation on dentate gyrus evoked potentials and spontaneous electrographic seizures was evaluated. Animals were systemically treated with single (.1 mg/kg/24 h) or repeated (.1 mg/kg/6 h) injections of clozapine. In addition, long-term continuous release of clozapine and olanzapine (2.8 mg/kg/7 days) using implantable minipumps was evaluated. All treatments were administered during the chronic epileptic phase and between 1.5 and 13.5 months after viral transduction. RESULTS In the DREADD group, dentate gyrus evoked potentials were inhibited after clozapine treatment. Only in DREADD-expressing animals, clozapine reduced seizure frequency during the first 6 h postinjection. When administered repeatedly, seizures were suppressed during the entire day. Long-term treatment with clozapine and olanzapine both resulted in significant seizure-suppressing effects for multiple days. Histological analysis revealed DREADD expression in both hippocampi and some cortical regions. However, lesions were also detected at the site of vector injection. SIGNIFICANCE This study shows that inhibition of the hippocampus using chemogenetics results in potent seizure-suppressing effects in the intraperitoneal kainic acid rat model, even 1 year after viral transduction. Despite a need for further optimization, chemogenetic neuromodulation represents a promising treatment prospect for temporal lobe epilepsy.
Collapse
Affiliation(s)
| | - Paul Boon
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Wytse Wadman
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Center for Molecular Medicine and Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Center for Molecular Medicine and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Alain G Verstraete
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kristl Vonck
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Lars E Larsen
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Mathieu Sprengers
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Evelien Carrette
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Jana Desloovere
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Alfred Meurs
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Jean Delbeke
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- IBiTech, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Relationship between Delta Rhythm, Seizure Occurrence and Allopregnanolone Hippocampal Levels in Epileptic Rats Exposed to the Rebound Effect. Pharmaceuticals (Basel) 2021; 14:ph14020127. [PMID: 33561937 PMCID: PMC7914513 DOI: 10.3390/ph14020127] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
Abrupt withdrawal from antiepileptic drugs is followed by increased occurrence of epileptic seizures, a phenomenon known as the “rebound effect”. By stopping treatment with levetiracetam (LEV 300 mg/kg/day, n = 15; vs. saline, n = 15), we investigated the rebound effect in adult male Sprague-Dawley rats. LEV was continuously administered using osmotic minipumps, 7 weeks after the intraperitoneal administration of kainic acid (15 mg/kg). The effects of LEV were determined by comparing time intervals, treatments, and interactions between these main factors. Seizures were evaluated by video-electrocorticographic recordings and power band spectrum analysis. Furthermore, we assessed endogenous neurosteroid levels by liquid chromatography-electrospray-tandem mass spectrometry. LEV significantly reduced the percentage of rats experiencing seizures, reduced the seizure duration, and altered cerebral levels of neurosteroids. In the first week of LEV discontinuation, seizures increased abruptly up to 700% (p = 0.002, Tukey’s test). The power of delta band in the seizure postictal component was related to the seizure occurrence after LEV withdrawal (r2 = 0.73, p < 0.001). Notably, allopregnanolone hippocampal levels were positively related to the seizure occurrence (r2 = 0.51, p = 0.02) and to the power of delta band (r2 = 0.67, p = 0.004). These findings suggest a role for the seizure postictal component in the rebound effect, which involves an imbalance of hippocampal neurosteroid levels.
Collapse
|
7
|
Thomson KE, Metcalf CS, Newell TG, Huff J, Edwards SF, West PJ, Wilcox KS. Evaluation of subchronic administration of antiseizure drugs in spontaneously seizing rats. Epilepsia 2020; 61:1301-1311. [PMID: 32420627 PMCID: PMC7383749 DOI: 10.1111/epi.16531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Approximately 30% of patients with epilepsy do not experience full seizure control on their antiseizure drug (ASD) regimen. Historically, screening for novel ASDs has relied on evaluating efficacy following a single administration of a test compound in either acute electrical or chemical seizure induction. However, the use of animal models of spontaneous seizures and repeated administration of test compounds may better differentiate novel compounds. Therefore, this approach has been instituted as part of the National Institute of Neurological Disorders and Stroke Epilepsy Therapy Screening Program screening paradigm for pharmacoresistant epilepsy. METHODS Rats were treated with intraperitoneal kainic acid to induce status epilepticus and subsequent spontaneous recurrent seizures. After 12 weeks, rats were enrolled in drug screening studies. Using a 2-week crossover design, selected ASDs were evaluated for their ability to protect against spontaneous seizures, using a video-electroencephalographic monitoring system and automated seizure detection. Sixteen clinically available compounds were administered at maximally tolerated doses in this model. Dose intervals (1-3 treatments/d) were selected based on known half-lives for each compound. RESULTS Carbamazepine (90 mg/kg/d), phenobarbital (30 mg/kg/d), and ezogabine (15 mg/kg/d) significantly reduced seizure burden at the doses evaluated. In addition, a dose-response study of topiramate (20-600 mg/kg/d) demonstrated that this compound reduced seizure burden at both therapeutic and supratherapeutic doses. However, none of the 16 ASDs conferred complete seizure freedom during the testing period at the doses tested. SIGNIFICANCE Despite reductions in seizure burden, the lack of full seizure freedom for any ASD tested suggests that this screening paradigm may be useful for testing novel compounds with potential utility in pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Kyle E. Thomson
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUtahUSA
- Epilepsy Therapy Screening ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Cameron S. Metcalf
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUtahUSA
- Epilepsy Therapy Screening ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Thomas G. Newell
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUtahUSA
- Epilepsy Therapy Screening ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Jennifer Huff
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUtahUSA
- Epilepsy Therapy Screening ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Sharon F. Edwards
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUtahUSA
- Epilepsy Therapy Screening ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Peter J. West
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUtahUSA
- Epilepsy Therapy Screening ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Karen S. Wilcox
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUtahUSA
- Epilepsy Therapy Screening ProgramUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
8
|
McCarren HS, Eisen MR, Nguyen DL, Dubée PB, Ardinger CE, Dunn EN, Haines KM, Santoro AN, Bodner PM, Ondeck CA, Honnold CL, McDonough JH, Beske PH, McNutt PM. Characterization and treatment of spontaneous recurrent seizures following nerve agent-induced status epilepticus in mice. Epilepsy Res 2020; 162:106320. [PMID: 32182542 PMCID: PMC7156324 DOI: 10.1016/j.eplepsyres.2020.106320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop and characterize a mouse model of spontaneous recurrent seizures following nerve agent-induced status epilepticus (SE) and test the efficacy of existing antiepileptic drugs. METHODS SE was induced in telemeterized male C57Bl6/J mice by soman exposure, and electroencephalographic activity was recorded for 4-6 weeks. Mice were treated with antiepileptic drugs (levetiracetam, valproic acid, phenobarbital) or corresponding vehicles for 14 d after exposure, followed by 14 d of drug washout. Survival, body weight, seizure characteristics, and histopathology were used to characterize the acute and chronic effects of nerve agent exposure and to evaluate the efficacy of treatments in mitigating or preventing neurological effects. RESULTS Spontaneous recurrent seizures manifested in all survivors, but the number and frequency of seizures varied considerably among mice. In untreated mice, seizures became longer over time. Moderate to severe histopathology was observed in the amygdala, piriform cortex, and CA1. Levetiracetam provided modest improvements in neurological parameters such as reduced spike rate and improved histopathology scores, whereas valproic acid and phenobarbital were largely ineffective. CONCLUSIONS This model of post-SE spontaneous recurrent seizures differs from other experimental models in the brief latency to seizure development, the occurrence of seizures in 100 % of exposed animals, and the lack of damage to CA4/dentate gyrus. It may serve as a useful tool for rapidly and efficiently screening novel therapies that would be effective against severe epilepsy cases.
Collapse
Affiliation(s)
- Hilary S McCarren
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States.
| | - Margaret R Eisen
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Dominique L Nguyen
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Parker B Dubée
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Cherish E Ardinger
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Emily N Dunn
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Kari M Haines
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Antonia N Santoro
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Paige M Bodner
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Celinia A Ondeck
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Cary L Honnold
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - John H McDonough
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Phillip H Beske
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Patrick M McNutt
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| |
Collapse
|
9
|
Wolking S, Schulz H, Nies AT, McCormack M, Schaeffeler E, Auce P, Avbersek A, Becker F, Klein KM, Krenn M, Møller RS, Nikanorova M, Weckhuysen S, Consortium E, Cavalleri GL, Delanty N, Depondt C, Johnson MR, Koeleman BPC, Kunz WS, Marson AG, Sander JW, Sills GJ, Striano P, Zara F, Zimprich F, Weber YG, Krause R, Sisodiya S, Schwab M, Sander T, Lerche H. Pharmacoresponse in genetic generalized epilepsy: a genome-wide association study. Pharmacogenomics 2020; 21:325-335. [DOI: 10.2217/pgs-2019-0179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: Pharmacoresistance is a major burden in epilepsy treatment. We aimed to identify genetic biomarkers in response to specific antiepileptic drugs (AEDs) in genetic generalized epilepsies (GGE). Materials & methods: We conducted a genome-wide association study (GWAS) of 3.3 million autosomal SNPs in 893 European subjects with GGE – responsive or nonresponsive to lamotrigine, levetiracetam and valproic acid. Results: Our GWAS of AED response revealed suggestive evidence for association at 29 genomic loci (p <10-5) but no significant association reflecting its limited power. The suggestive associations highlight candidate genes that are implicated in epileptogenesis and neurodevelopment. Conclusion: This first GWAS of AED response in GGE provides a comprehensive reference of SNP associations for hypothesis-driven candidate gene analyses in upcoming pharmacogenetic studies.
Collapse
Affiliation(s)
- Stefan Wolking
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- Department of Neurosciences, CHUM Research Center, University of Montreal, Montreal, H2X 0A9, Canada
| | - Herbert Schulz
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Anne T Nies
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72076 Tübingen, Germany
| | - Mark McCormack
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Elke Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72076 Tübingen, Germany
| | - Pauls Auce
- Walton Centre NHS Foundation Trust, Liverpool, L33 4YD, UK
| | - Andreja Avbersek
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London & Chalfont Centre for Epilepsy, London, SL9 0RJ, UK
| | - Felicitas Becker
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Karl M Klein
- Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rikke S Møller
- Danish Epilepsy Centre – Filadelfia, 4293 Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | | | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB-University of Antwerp, 2650 Edegem, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, 2650 Edegem, Belgium
- Department of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium
| | | | - Gianpiero L Cavalleri
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, SW2 2AZ, UK
| | - Norman Delanty
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Division of Neurology, Beaumont Hospital, Dublin 9, Ireland
- The FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, SW2 2AZ, UK
| | - Bobby PC Koeleman
- Department of Genetics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Wolfram S Kunz
- Institute of Experimental Epileptology & Cognition Research & Department of Epileptology, University of Bonn, 53127 Bonn, Germany
| | - Anthony G Marson
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London & Chalfont Centre for Epilepsy, London, SL9 0RJ, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 Heemstede, The Netherlands
| | - Graeme J Sills
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Pasquale Striano
- Pediatric Neurology & Muscular Diseases Unit, IRCCS ‘G. Gaslini’ Institute, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal & Child Health, University of Genova, 16147 Genova, Italy
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, IRCCS ‘G. Gaslini’ Institute, 16147 Genova, Italy
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yvonne G Weber
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Sanjay Sisodiya
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London & Chalfont Centre for Epilepsy, London, SL9 0RJ, UK
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Pharmacy & Biochemistry, University Tübingen, 72076 Tübingen, Germany
| | - Thomas Sander
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Holger Lerche
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Litvinova Svetlana A, Voroninа Tatyana A, Nerobkova Lubov N, Kutepova Inga S, Avakyan Georgii G, Avakyan Gagik N. Levetiracetam effect and electrophysiological mechanism of action in rats with cobalt-induced chronic epilepsy. Eur J Pharmacol 2019; 854:380-386. [PMID: 31034820 DOI: 10.1016/j.ejphar.2019.04.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/05/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023]
Abstract
Levetiracetam was initially developed as a nootropic drug, although since 2002 it has been used as anticonvulsant for the treatment of partial and generalized epilepsy syndromes. The purpose of the research was to investigate anti-paroxysmal activity of levetiracetam (LEV) on the model of cobalt-induced chronic epilepsy caused by the application of cobalt to the sensorimotor area of the rat cortex to evaluate LEV impact on the different stages of epileptogenesis. LEV effects were studied at the initial stage of the epileptogenesis (2nd day after the cobalt application) and at the stage of generalized paroxysmal activity (6th day after the cobalt application). The research showed that levetiracetam administration (dosages 50 mg/kg and 200 mg/kg) at the early stage of the epileptogenesis had no statistically significant effect on the development of paroxysmal activity in both primary and secondary epileptic areas: in the ipsi- and contralateral cortex, hypothalamus and hippocampus. LEV administration on 6th day (dosage 50 mg/kg) did not have statistical effect on the epileptogenesis, while at a dosage of 200 mg/kg on 6th day LEV significantly suppressed paroxysmal activity in the studied structures of rats with cobalt epilepsy. The strongest anti-paroxysmal effect was detected in hippocampus and was expressed as the normalization of bioelectrical activity and the appearance of a regular theta rhythm. Thus, LEV effects are mostly directed to the hippocampal area of epileptiform activity and, to a lesser extent, to the cortical area.
Collapse
Affiliation(s)
- A Litvinova Svetlana
- FSBI Zakusov Institute of Pharmacology, Baltiiskaya str, 8, Moscow, 125315, Russia.
| | - A Voroninа Tatyana
- Laboratory of Psychopharmacology, FSBI Zakusov Institute of Pharmacology, Russia.
| | - N Nerobkova Lubov
- FSBI Zakusov Institute of Pharmacology, Baltiiskaya str, 8, Moscow, 125315, Russia.
| | - S Kutepova Inga
- FSBI Zakusov Institute of Pharmacology, Baltiiskaya str, 8, Moscow, 125315, Russia.
| | - G Avakyan Georgii
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova str., 1, Moscow, 117997, Russia.
| | - N Avakyan Gagik
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova str., 1, Moscow, 117997, Russia.
| |
Collapse
|
11
|
Perampanel chronic treatment does not induce tolerance and decreases tolerance to clobazam in genetically epilepsy prone rats. Epilepsy Res 2018; 146:94-102. [DOI: 10.1016/j.eplepsyres.2018.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/08/2018] [Accepted: 07/24/2018] [Indexed: 11/24/2022]
|
12
|
Wieshmann UC, Baker G. Efficacy and tolerability of anti-epileptic drugs-an internet study. Acta Neurol Scand 2017; 135:533-539. [PMID: 27757951 DOI: 10.1111/ane.12698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To ascertain efficacy and tolerability of carbamazepine (CBZ), sodium valproate (VPA), lamotrigine (LTG) and levetiracetam (LEV) using the UKAED register (www.ukaed.info). METHODS Patients on CBZ (n=91), VPA (n=61), LTG (n=105), LEV (n=72) and healthy control subjects (CTR) on no medication (n=51) were extracted. All patients had anonymously provided information on seizure type and frequency and completed the Liverpool Adverse Event Profile (LAEP). RESULTS The number of seizure-free patients in the last 4 weeks was overall CBZ/VPA/LTG/LEV=60%/79%/67%/67%, for generalized epilepsy was CBZ/VPA/LTG/LEV=67%/89%/65%/94%, and for localization-related epilepsy was CBZ/VPA/LTG/LEV=59%/71%/67%/57%. Mean LAEP scores were CBZ/VPA/LTG/LEV/CTR=42.21/39.66/39.86/43.01/29.69. The mean LAEP was significantly higher in patients reporting depression and in patients with active epilepsy than in patients without depression and remission. Central nervous system (CNS) adverse effects including memory problems, difficulty concentrating, depression, unsteadiness, restlessness, feelings of anger, shaky hands and dizziness were significantly more frequent in CBZ, VPA, LTG and LEV than in CTR. The feeling of anger was significantly more frequent in LEV, and depression was significantly more frequent in CBZ compared to the other drugs. CONCLUSION In this Internet-based register of self-reported efficacy and tolerability, CBZ, VPA, LTG and LEV were similar. Self-reported CNS adverse effects were significantly more frequent than in controls. In addition, anger was associated with LEV and depression with CBZ. Confounding factors were depression and uncontrolled epilepsy.
Collapse
Affiliation(s)
- U. C. Wieshmann
- The Walton Centre for Neurology and Neurosurgery and University of Liverpool; Liverpool UK
| | - G. Baker
- The Walton Centre for Neurology and Neurosurgery and University of Liverpool; Liverpool UK
| |
Collapse
|
13
|
Synaptic vesicle protein2A decreases in amygdaloid-kindling pharmcoresistant epileptic rats. ACTA ACUST UNITED AC 2015; 35:716-722. [PMID: 26489628 DOI: 10.1007/s11596-015-1496-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 07/01/2015] [Indexed: 10/22/2022]
Abstract
Synaptic vesicle protein 2A (SV2A) involvement has been reported in the animal models of epilepsy and in human intractable epilepsy. The difference between pharmacosensitive epilepsy and pharmacoresistant epilepsy remains poorly understood. The present study aimed to observe the hippocampus SV2A protein expression in amygdale-kindling pharmacoresistant epileptic rats. The pharmacosensitive epileptic rats served as control. Amygdaloid-kindling model of epilepsy was established in 100 healthy adult male Sprague-Dawley rats. The kindled rat model of epilepsy was used to select pharmacoresistance by testing their seizure response to phenytoin and phenobarbital. The selected pharmacoresistant rats were assigned to a pharmacoresistant epileptic group (PRE group). Another 12 pharmacosensitive epileptic rats (PSE group) served as control. Immunohistochemistry, real-time PCR and Western blotting were used to determine SV2A expression in the hippocampus tissue samples from both the PRE and the PSE rats. Immunohistochemistry staining showed that SV2A was mainly accumulated in the cytoplasm of the neurons, as well as along their dendrites throughout all subfields of the hippocampus. Immunoreactive staining level of SV2A-positive cells was 0.483 ± 0.304 in the PRE group and 0.866 ± 0.090 in the PSE group (P < 0.05). Real-time PCR analysis demonstrated that 2(-ΔΔCt) value of SV2A mRNA was 0.30 ± 0.43 in the PRE group and 0.76 ± 0.18 in the PSE group (P < 0.05). Western blotting analysis obtained the similar findings (0.27 ± 0.21 versus 1.12 ± 0.21, P < 0.05). PRE rats displayed a significant decrease of SV2A in the brain. SV2A may be associated with the pathogenesis of intractable epilepsy of the amygdaloid-kindling rats.
Collapse
|
14
|
Gorter JA, van Vliet EA, Lopes da Silva FH. Which insights have we gained from the kindling and post-status epilepticus models? J Neurosci Methods 2015; 260:96-108. [PMID: 25842270 DOI: 10.1016/j.jneumeth.2015.03.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/24/2022]
Abstract
Experimental animal epilepsy research got a big boost since the discovery that daily mild and short (seconds) tetanic stimulations in selected brain regions led to seizures with increasing duration and severity. This model that was developed by Goddard (1967) became known as the kindling model for epileptogenesis and has become a widely used model for temporal lobe epilepsy with complex partial seizures. During the late ninety-eighties the number of publications related to electrical kindling reached its maximum. However, since the kindling procedure is rather labor intensive and animals only develop spontaneous seizures (epilepsy) after hundreds of stimulations, research has shifted toward models in which the animals exhibit spontaneous seizures after a relatively short latent period. This led to post-status epilepticus (SE) models in which animals experience SE after injection of pharmacological compounds (e.g. kainate or pilocarpine) or via electrical stimulation of (limbic) brain regions. These post-SE models are the most widely used models in epilepsy research today. However, not all aspects of mesial temporal lobe epilepsy (MTLE) are reproduced and the widespread brain damage is often a caricature of the situation in the patient. Therefore, there is a need for models that can better replicate the disease. Kindling, although already a classic model, can still offer valid clues in this context. In this paper, we review different aspects of the kindling model with emphasis on experiments in the rat. Next, we review characteristic properties of the post-SE models and compare the neuropathological, electrophysiological and molecular differences between kindling and post-SE epilepsy models. Finally, we shortly discuss the advantages and disadvantages of these models.
Collapse
Affiliation(s)
- Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Fernando H Lopes da Silva
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| |
Collapse
|
15
|
Gáll Z, Vancea S, Szilágyi T, Gáll O, Kolcsár M. Dose-dependent pharmacokinetics and brain penetration of rufinamide following intravenous and oral administration to rats. Eur J Pharm Sci 2014; 68:106-13. [PMID: 25530452 DOI: 10.1016/j.ejps.2014.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/07/2014] [Accepted: 12/13/2014] [Indexed: 11/30/2022]
Abstract
Rufinamide is a third-generation antiepileptic drug, approved recently as an orphan drug for the treatment of Lennox-Gastaut syndrome. Although extensive research was conducted, its pharmacokinetics in rats was not described. This work addresses that area by describing in a rapid pharmacokinetic study the main pharmacokinetic properties of rufinamide at three different doses of 1 mg/kg body weight (bw), 5 mg/kg bw, and 20 mg/kg bw. Furthermore, total brain concentrations of the drug were determined in order to characterize its brain-to-plasma partition coefficient. Adult Wistar male rats, weighing 200-450 g, were administered rufinamide by intravenous and oral routes. Rufinamide concentrations from plasma samples and brain tissue homogenate were determined using a liquid chromatography-mass spectrometric method and pharmacokinetic parameters were calculated. The mean half-life was between 7 and 13 h, depending on route of administration--intravenously administered drug was eliminated faster than orally administered drug. Mean (S.E.M.) total plasma clearance was 84.01 ± 3.80 ml/h/kg for intravenous administration, while the apparent plasma clearance for oral administration was 95.52 ± 39.45 ml/h/kg. The mean (S.E.M.) maximum plasma concentration reached after oral administration of 1 mg/kg bw and 5 mg/kg bw was 0.89 ± 0.09 μg/ml and 3.188 ± 0.71 μg/ml, respectively. The median (range) time to reach maximum plasma concentration (t(max)) was 4 (2-8)h. Mean (S.E.M.) brain-to-plasma concentration ratio of rufinamide was 0.514 ± 0.036, consistent with the brain-to-plasma ratio calculated from the area under curves (AUC(0-t)) of 0.441 ± 0.047. No influence of dose, route of administration, or post-dosing time was observed on brain-to-plasma ratio.
Collapse
Affiliation(s)
- Zsolt Gáll
- University of Medicine and Pharmacy of Tirgu Mures, Faculty of Medicine, Department of Physiology, Doctoral School, Romania; University of Medicine and Pharmacy of Tirgu Mures, Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Romania
| | - Szende Vancea
- University of Medicine and Pharmacy of Tirgu Mures, Faculty of Pharmacy, Department of Physical Chemistry, Romania.
| | - Tibor Szilágyi
- University of Medicine and Pharmacy of Tirgu Mures, Faculty of Medicine, Department of Physiology, Doctoral School, Romania; University of Medicine and Pharmacy of Tirgu Mures, Faculty of Medicine, Department of Physiology, Romania
| | - Orsolya Gáll
- University of Medicine and Pharmacy of Tirgu Mures, Faculty of Medicine, Department of Physiology, Romania
| | - Melinda Kolcsár
- University of Medicine and Pharmacy of Tirgu Mures, Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Romania
| |
Collapse
|
16
|
Lévesque M, Behr C, Avoli M. The anti-ictogenic effects of levetiracetam are mirrored by interictal spiking and high-frequency oscillation changes in a model of temporal lobe epilepsy. Seizure 2014; 25:18-25. [PMID: 25645630 DOI: 10.1016/j.seizure.2014.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Mesial temporal lobe epilepsy (MTLE) is the most prevalent type of partial epileptic disorders. In this study, we have analyzed the impact of levetiracetam (LEV) in the pilocarpine model of MTLE. METHODS Sprague-Dawley rats (n=19) were injected with pilocarpine (380 mg/kg, i.p.) to induce a status epilepticus. Twelve animals were used as controls and seven were treated with LEV. They were implanted with bipolar electrodes in the CA3 subfield of the hippocampus, entorhinal cortex (EC), dentate gyrus (DG) and subiculum and EEG-video monitored continuously from day 4 to day 14 after SE. RESULTS Only 29% of LEV-treated animals had seizures compared to all controls following a latent period that was similar in duration. Seizure rates were lower in LEV-treated animals. In LEV-treated animals without seizures, lower interictal spike rates were found in all regions compared to controls. Analysis of interictal high-frequency oscillations (HFO s) revealed that LEV-treated animals without seizures had lower rates of interictal spikes with ripples (80-200 Hz) in CA3, EC and subiculum (p<0.01), whereas rates of interictal spikes with fast ripples (250-500 Hz) were significantly lower in CA3 and subiculum, compared to controls. CONCLUSION Our findings indicate that the anti-ictogenic properties of LEV are mirrored by decreases of interictal spike rate in temporal lobe regions, and are accompanied by subregion-specific decreases of HFO occurrence in CA3 and subiculum. Overall, this evidence suggest that LEV may inhibit neural network activity in regions that are known to play important roles in MTLE.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, Montréal, Qc H3A 2B4, Canada
| | - Charles Behr
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, Montréal, Qc H3A 2B4, Canada
| | - Massimo Avoli
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, Montréal, Qc H3A 2B4, Canada.
| |
Collapse
|
17
|
Hippocampal low-frequency stimulation increased SV2A expression and inhibited the seizure degree in pharmacoresistant amygdala-kindling epileptic rats. Epilepsy Res 2014; 108:1483-91. [DOI: 10.1016/j.eplepsyres.2014.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/21/2014] [Accepted: 07/27/2014] [Indexed: 11/19/2022]
|
18
|
Moon J, Lee ST, Choi J, Jung KH, Yang H, Khalid A, Kim JM, Park KI, Shin JW, Ban JJ, Yi GS, Lee SK, Jeon D, Chu K. Unique behavioral characteristics and microRNA signatures in a drug resistant epilepsy model. PLoS One 2014; 9:e85617. [PMID: 24454901 PMCID: PMC3893246 DOI: 10.1371/journal.pone.0085617] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/05/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pharmacoresistance is a major issue in the treatment of epilepsy. However, the mechanism underlying pharmacoresistance to antiepileptic drugs (AEDs) is still unclear, and few animal models have been established for studying drug resistant epilepsy (DRE). In our study, spontaneous recurrent seizures (SRSs) were investigated by video-EEG monitoring during the entire procedure. METHODS/PRINCIPAL FINDINGS In the mouse pilocarpine-induced epilepsy model, we administered levetiracetam (LEV) and valproate (VPA) in sequence. AED-responsive and AED-resistant mice were naturally selected after 7-day treatment of LEV and VPA. Behavioral tests (open field, object exploration, elevated plus maze, and light-dark transition test) and a microRNA microarray test were performed. Among the 37 epileptic mice with SRS, 23 showed significantly fewer SRSs during administration of LEV (n = 16, LEV sensitive (LS) group) or VPA (n = 7, LEV resistant/VPA sensitive (LRVS) group), while 7 epileptic mice did not show any amelioration with either of the AEDs (n = 7, multidrug resistant (MDR) group). On the behavioral assessment, MDR mice displayed distinctive behaviors in the object exploration and elevated plus maze tests, which were not observed in the LS group. Expression of miRNA was altered in LS and MDR groups, and we identified 4 miRNAs (miR-206, miR-374, miR-468, and miR-142-5p), which were differently modulated in the MDR group versus both control and LS groups. CONCLUSION This is the first study to identify a pharmacoresistant subgroup, resistant to 2 AEDs, in the pilocarpine-induced epilepsy model. We hypothesize that modulation of the identified miRNAs may play a key role in developing pharmacoresistance and behavioral alterations in the MDR group.
Collapse
Affiliation(s)
- Jangsup Moon
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiye Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Keun-Hwa Jung
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunwoo Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Arshi Khalid
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeong-Min Kim
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Jung-Won Shin
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jun Ban
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sang Kun Lee
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Daejong Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- * E-mail: (DJ); (KC)
| | - Kon Chu
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (DJ); (KC)
| |
Collapse
|
19
|
|
20
|
Lee GH, Kim BM, Kang JK, Lee SA. Loss of the initial efficacy of levetiracetam in patients with refractory epilepsy. Seizure 2012; 22:185-8. [PMID: 23280273 DOI: 10.1016/j.seizure.2012.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The efficacy and safety of the anti-convulsive drug levetiracetam (LEV) has been well documented but few clinical studies have investigated tolerance to LEV. The aim of this study was to evaluate the loss of the initial efficacy of LEV in adult patients with refractory partial-onset seizures. METHODS We enrolled patients with refractory partial epilepsy who were started on add-on LEV treatment. The efficacy of LEV was evaluated every three months and the seizure frequency was decided by the average number of monthly seizures. A responder was defined as a patient with a ≥50% reduction in seizure frequency from the baseline. Seizure freedom was defined as a seizure-free status from the beginning of LEV treatment to the evaluation period. Loss of the initial efficacy was defined as a shift from responder status during the first three months of LEV treatment to non-responder status during the follow-up period. RESULTS A total of 95 epilepsy patients were analyzed. During the first three months of LEV treatment, 50 (52.6%) of the 95 patients were responders with a ≥50% seizure reduction. Nine patients (18.0%) showed a loss of initial efficacy during the second three-month period. In contrast, only two (4.0%) of the non-responders during the first three months became responders during the next three months. However, this difference did not reach statistical significance (P=0.054). Based on Kaplan-Meier survival estimates, 49.2% of the patients who initially responded to LEV treatment during the first three months were predicted to lose this response at 42 months. Loss of the initial efficacy of LEV treatment occurred mostly within 18 months. CONCLUSION This study suggests that the occurrence of tolerance is more common than late gain of efficacy of treatment although larger prospective studies would have to be carried out to prove this observation.
Collapse
Affiliation(s)
- Gha-hyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-gil, Songpa-gu, Seoul 138-736, Republic of Korea
| | | | | | | |
Collapse
|
21
|
Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, Devidze N, Ho K, Yu GQ, Palop JJ, Mucke L. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model. Proc Natl Acad Sci U S A 2012; 109:E2895-903. [PMID: 22869752 PMCID: PMC3479491 DOI: 10.1073/pnas.1121081109] [Citation(s) in RCA: 480] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In light of the rising prevalence of Alzheimer's disease (AD), new strategies to prevent, halt, and reverse this condition are needed urgently. Perturbations of brain network activity are observed in AD patients and in conditions that increase the risk of developing AD, suggesting that aberrant network activity might contribute to AD-related cognitive decline. Human amyloid precursor protein (hAPP) transgenic mice simulate key aspects of AD, including pathologically elevated levels of amyloid-β peptides in brain, aberrant neural network activity, remodeling of hippocampal circuits, synaptic deficits, and behavioral abnormalities. Whether these alterations are linked in a causal chain remains unknown. To explore whether hAPP/amyloid-β-induced aberrant network activity contributes to synaptic and cognitive deficits, we treated hAPP mice with different antiepileptic drugs. Among the drugs tested, only levetiracetam (LEV) effectively reduced abnormal spike activity detected by electroencephalography. Chronic treatment with LEV also reversed hippocampal remodeling, behavioral abnormalities, synaptic dysfunction, and deficits in learning and memory in hAPP mice. Our findings support the hypothesis that aberrant network activity contributes causally to synaptic and cognitive deficits in hAPP mice. LEV might also help ameliorate related abnormalities in people who have or are at risk for AD.
Collapse
Affiliation(s)
- Pascal E. Sanchez
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Department of Neurology, University of California, San Francisco, CA 94158; and
| | - Lei Zhu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Department of Neurology, University of California, San Francisco, CA 94158; and
| | - Laure Verret
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Department of Neurology, University of California, San Francisco, CA 94158; and
| | - Keith A. Vossel
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Department of Neurology, University of California, San Francisco, CA 94158; and
| | - Anna G. Orr
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Department of Neurology, University of California, San Francisco, CA 94158; and
| | - John R. Cirrito
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nino Devidze
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Department of Neurology, University of California, San Francisco, CA 94158; and
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Department of Neurology, University of California, San Francisco, CA 94158; and
| |
Collapse
|
22
|
Zhang C, Kwan P, Zuo Z, Baum L. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 2012; 64:930-42. [PMID: 22197850 DOI: 10.1016/j.addr.2011.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 01/16/2023]
Abstract
Epilepsy is the most common serious chronic neurological disorder. Current data show that one-third of patients do not respond to anti-epileptic drugs (AEDs). Most non-responsive epilepsy patients are resistant to several, often all, AEDs, even though the drugs differ from each other in pharmacokinetics, mechanisms of action, and interaction potential. The mechanisms underlying drug resistance of epilepsy patients are still not clear. In recent years, one of the potential mechanisms interesting researchers is over-expression of P-glycoprotein (P-gp, also known as ABCB1 or MDR1) in endothelial cells of the blood-brain barrier (BBB) in epilepsy patients. P-gp plays a central role in drug absorption and distribution in many organisms. The expression of P-gp is greater in drug-resistant than in drug-responsive patients. Some studies also indicate that several AEDs are substrates or inhibitors of P-gp, implying that P-gp may play an important role in drug resistance in refractory epilepsy. In this article, we review the clinical and laboratory evidence that P-gp expression is increased in epileptic brain tissues and that AEDs are substrates of P-gp in vitro and in vivo. We discuss criteria for identifying the substrate status of AEDs and use structure-activity relationship (SAR) models to predict which AEDs act as P-gp substrates.
Collapse
|
23
|
Large CH, Sokal DM, Nehlig A, Gunthorpe MJ, Sankar R, Crean CS, VanLandingham KE, White HS. The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: Implications for clinical use. Epilepsia 2012; 53:425-36. [DOI: 10.1111/j.1528-1167.2011.03364.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Douaud M, Feve K, Pituello F, Gourichon D, Boitard S, Leguern E, Coquerelle G, Vieaud A, Batini C, Naquet R, Vignal A, Tixier-Boichard M, Pitel F. Epilepsy caused by an abnormal alternative splicing with dosage effect of the SV2A gene in a chicken model. PLoS One 2011; 6:e26932. [PMID: 22046416 PMCID: PMC3203167 DOI: 10.1371/journal.pone.0026932] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/06/2011] [Indexed: 11/18/2022] Open
Abstract
Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans.
Collapse
Affiliation(s)
- Marine Douaud
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | - Katia Feve
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | - Fabienne Pituello
- CNRS-Université Toulouse III, Centre de Biologie du Développement, Toulouse, France
| | - David Gourichon
- INRA PEAT, Pôle d'Expérimentation Avicole de Tours, Nouzilly, France
| | - Simon Boitard
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | - Eric Leguern
- INSERM, Neurogénétique Moléculaire et Cellulaire, Paris, France
| | - Gérard Coquerelle
- INRA, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Agathe Vieaud
- INRA, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Cesira Batini
- CNRS, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Paris, France
| | - Robert Naquet
- CNRS, Institut de Neurobiologie Alfred Fessard, Gif-sur-Yvette, France
| | - Alain Vignal
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | | | - Frédérique Pitel
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
25
|
Surges R, Volynski KE, Walker MC. Is levetiracetam different from other antiepileptic drugs? Levetiracetam and its cellular mechanism of action in epilepsy revisited. Ther Adv Neurol Disord 2011; 1:13-24. [PMID: 21180561 DOI: 10.1177/1756285608094212] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Levetiracetam (LEV) is a new antiepileptic drug that is clinically effective in generalized and partial epilepsy syndromes as sole or add-on medication. Nevertheless, its underlying mechanism of action is poorly understood. It has a unique preclinical profile; unlike other antiepileptic drugs (AEDs), it modulates seizure-activity in animal models of chronic epilepsy with no effect in most animal models of acute seizures. Yet it is effective in acute in-vitro 'seizure' models. A possible explanation for these dichotomous findings is that LEV has different mechanisms of actions, whether given acutely or chronically and in 'epileptic' and control tissue. Here we review the general mechanism of action of AEDs, give an updated and critical overview about the experimental findings of LEV's cellular targets (in particular the synaptic vesicular protein SV2A) and ask whether LEV represents a new class of AED.
Collapse
Affiliation(s)
- Rainer Surges
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | | |
Collapse
|
26
|
Periodic transmeningeal muscimol maintains its antiepileptic efficacy over three weeks without inducing tolerance, in rats. Neurosci Lett 2011; 494:135-8. [DOI: 10.1016/j.neulet.2011.02.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 02/23/2011] [Accepted: 02/27/2011] [Indexed: 11/17/2022]
|
27
|
Ahishali B, Kaya M, Orhan N, Arican N, Ekizoglu O, Elmas I, Kucuk M, Kemikler G, Kalayci R, Gurses C. Effects of levetiracetam on blood-brain barrier disturbances following hyperthermia-induced seizures in rats with cortical dysplasia. Life Sci 2010; 87:609-19. [DOI: 10.1016/j.lfs.2010.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/12/2010] [Accepted: 09/18/2010] [Indexed: 02/02/2023]
|
28
|
Hassel B, Taubøll E, Shaw R, Gjerstad L, Dingledine R. Region-specific changes in gene expression in rat brain after chronic treatment with levetiracetam or phenytoin. Epilepsia 2010; 51:1714-20. [PMID: 20345932 DOI: 10.1111/j.1528-1167.2010.02545.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE It is commonly assumed that antiepileptic drugs (AEDs) act similarly in the various parts of the brain as long as their molecular targets are present. A few experimental studies on metabolic effects of vigabatrin, levetiracetam, valproate, and lamotrigine have shown that these drugs may act differently in different brain regions. We examined effects of chronic treatment with levetiracetam or phenytoin on mRNA levels to detect regional drug effects in a broad, nonbiased manner. METHODS mRNA levels were monitored in three brain regions with oligonucleotide-based microarrays. RESULTS Levetiracetam (150 mg/kg for 90 days) changed the expression of 65 genes in pons/medulla oblongata, two in hippocampus, and one in frontal cortex. Phenytoin (75 mg/kg), in contrast, changed the expression of only three genes in pons/medulla oblongata, but 64 genes in hippocampus, and 327 genes in frontal cortex. Very little overlap between regions or drug treatments was observed with respect to effects on gene expression. DISCUSSION We conclude that chronic treatment with levetiracetam or phenytoin causes region-specific and highly differential effects on gene expression in the brain. Regional effects on gene expression could reflect regional differences in molecular targets of AEDs, and they could influence the clinical profiles of AEDs.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Department of Neurology, Division of Clinical Neuroscience, Rikshospitalet, Oslo, Norway
| | | | | | | | | |
Collapse
|
29
|
Holtman L, van Vliet EA, Edelbroek PM, Aronica E, Gorter JA. Cox-2 inhibition can lead to adverse effects in a rat model for temporal lobe epilepsy. Epilepsy Res 2010; 91:49-56. [DOI: 10.1016/j.eplepsyres.2010.06.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/02/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
|
30
|
Abstract
Decreased Expression of Synaptic Vesicle Protein 2A, the Binding Site for Levetiracetam, during Epileptogenesis and Chronic Epilepsy. van Vliet EA, Aronica E, Redeker S, Boer K, Gorter JA. Epilepsia 2009;50(3):422–433. PURPOSE: We previously showed that gene expression of synaptic vesicle protein 2A (SV2A), the binding site for the antiepileptic drug levetiracetam, is reduced during epileptogenesis in the rat. Since absence of SV2A has been associated with increased epileptogenicity, changes in expression of SV2A could have consequences for the progression of epilepsy. Therefore, we investigated hippocampal SV2A protein expression of temporal lobe epilepsy (TLE) patients and in rats during epileptogenesis and in the chronic epileptic phase. METHODS: SV2A immunocytochemistry and Western blot analysis were performed on the hippocampus of autopsy controls, patients that died from status epilepticus (SE), and pharmacoresistant TLE patients. In addition, in epileptic rats, SV2A expression was determined after SE during the acute, latent, and chronic epileptic phase. RESULTS: In control tissue, presynaptic SV2A was expressed in all hippocampal subfields, with strongest expression in mossy fiber terminals. SV2A positive puncta were distributed in a patchy pattern over the somata and dendrites of neurons. SV2A decreased throughout the hippocampus of TLE patients with hippocampal sclerosis (HS), compared to autopsy control, SE, and non-HS tissue. In most rats, SV2A was already decreased in the latent period especially in the inner molecular layer and stratum lucidum. Similarly as in humans, SV2A was also decreased throughout the hippocampus of chronic epileptic rats, specifically in rats with a progressive form of epilepsy. DISCUSSION: These data support previous findings that reduced expression of SV2A could contribute to the increased epileptogenicity. Whether this affects the effectiveness of levetiracetam needs to be further investigated.
Collapse
|
31
|
Eastman CL, Verley DR, Fender JS, Temkin NR, D'Ambrosio R. ECoG studies of valproate, carbamazepine and halothane in frontal-lobe epilepsy induced by head injury in the rat. Exp Neurol 2010; 224:369-88. [PMID: 20420832 DOI: 10.1016/j.expneurol.2010.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/18/2010] [Accepted: 04/16/2010] [Indexed: 01/16/2023]
Abstract
The use of electrocorticography (ECoG) with etiologically realistic epilepsy models promises to facilitate the discovery of better anti-epileptic drugs (AEDs). However, this novel approach is labor intensive, and must be optimized. To this end, we employed rostral parasagittal fluid percussion injury (rpFPI) in the adolescent rat, which closely replicates human contusive closed head injury and results in posttraumatic epilepsy (PTE). We systematically examined variables affecting the power to detect anti-epileptic effects by ECoG and used a non-parametric bootstrap strategy to test several different statistics, study designs, statistical tests, and impact of non-responders. We found that logarithmically transformed data acquired in repeated-measures experiments provided the greatest statistical power to detect decreases in seizure frequencies of preclinical interest with just 8 subjects and with up to approximately 40% non-responders. We then used this optimized design to study the anti-epileptic effects of acute exposure to halothane, and chronic (1 week) exposures to carbamazepine (CBZ) and valproate (VPA) 1 month post-injury. While CBZ was ineffective in all animals, VPA induced, during treatment, a progressive decrease in seizure frequency in animals primarily suffering from non-spreading neocortical seizures, but was ineffective in animals with a high frequency of spreading seizures. Halothane powerfully blocked all seizure activity. The data show that rpFPI and chronic ECoG can conveniently be employed for the evaluation of AEDs, suggest that VPA may be more effective than CBZ to treat some forms of PTE, and support the theory that pharmacoresistance may depend on the severity of epilepsy. The data also demonstrate the utility of chronic exposures to experimental drugs in preclinical studies and highlight the need for greater attention to etiology in clinical studies of AEDs.
Collapse
Affiliation(s)
- Clifford L Eastman
- Department of Neurological Surgery, University of Washington, School of Medicine, Seattle, WA 98104, USA
| | | | | | | | | |
Collapse
|
32
|
van Vliet EA, Edelbroek PM, Gorter JA. Improved seizure control by alternating therapy of levetiracetam and valproate in epileptic rats. Epilepsia 2010; 51:362-70. [DOI: 10.1111/j.1528-1167.2009.02261.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Ishimaru Y, Chiba S, Serikawa T, Sasa M, Inaba H, Tamura Y, Ishimoto T, Takasaki H, Sakamoto K, Yamaguchi K. Effects of levetiracetam on hippocampal kindling in Noda epileptic rats. Brain Res 2010; 1309:104-9. [DOI: 10.1016/j.brainres.2009.10.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 10/16/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
|
34
|
Russo E, Citraro R, Scicchitano F, De Fazio S, Di Paola ED, Constanti A, De Sarro G. Comparison of the antiepileptogenic effects of an early long-term treatment with ethosuximide or levetiracetam in a genetic animal model of absence epilepsy. Epilepsia 2009; 51:1560-9. [PMID: 19919665 DOI: 10.1111/j.1528-1167.2009.02400.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Epilepsy is a heterogeneous syndrome characterized by recurrent, spontaneous seizures; continuous medication is, therefore, necessary, even after the seizures have long been suppressed with antiepileptic drug (AED) treatments. The most disturbing issue is the inability of AEDs to provide a persistent cure, because these compounds generally suppress the occurrence of epileptic seizures without necessarily having antiepileptogenic properties. The aim of our experiments was to determine, in the WAG/Rij model of absence epilepsy, if early long-term treatment with some established antiabsence drugs might prevent the development of seizures, and whether such an effect could be sustained. METHODS WAG/Rij rats were treated for ∼3.5 months (starting at 1.5 months of age, before seizure onset) with either ethosuximide (ETH; drug of choice for absence epilepsy) or levetiracetam (LEV; a broad-spectrum AED with antiabsence and antiepileptogenic properties). RESULTS We have demonstrated that both drugs are able to reduce the development of absence seizures, exhibiting antiepileptogenic effects in this specific animal model. DISCUSSION These findings suggest that absence epilepsy in this strain of rats very likely follows an epileptogenic process during life and that early therapeutic intervention is possible, thereby opening a new area of research for absence epilepsy and AED treatment strategies.
Collapse
Affiliation(s)
- Emilio Russo
- Department of Experimental and Clinical Medicine, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Gurses C, Ekizoglu O, Orhan N, Ustek D, Arican N, Ahishali B, Elmas I, Kucuk M, Bilgic B, Kemikler G, Kalayci R, Karadeniz A, Kaya M. Levetiracetam decreases the seizure activity and blood-brain barrier permeability in pentylenetetrazole-kindled rats with cortical dysplasia. Brain Res 2009; 1281:71-83. [PMID: 19464270 DOI: 10.1016/j.brainres.2009.05.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
This study investigates the effects of levetiracetam (LEV) on the functional and structural properties of blood-brain barrier (BBB) in pentylenetetrazole (PTZ)-kindled rats with cortical dysplasia (CD). Pregnant rats were exposed to 145 cGy of gamma-irradiation on embryonic day 17. In offsprings, kindling was induced by giving subconvulsive doses of PTZ three times per week for 45 days. While all kindled rats with CD died during epileptic seizures evoked by the administration of a convulsive dose of PTZ in 15 to 25 min, one week LEV (80 mg/kg) pretreatment decreased the mortality to 38% in the same setting. LEV caused a remarkable decrease (p<0.01) in extravasation of sodium fluorescein dye into the brain tissue of kindled animals with CD treated with convulsive dose of PTZ. Occludin immunoreactivity and expression remained essentially unchanged in all groups. Immunoreactivity for glial fibrillary acidic protein (GFAP) was observed to be slightly increased by acute convulsive challenge in kindled rats with CD while LEV pretreatment led to GFAP immunoreactivity comparable to that of controls. An increased c-fos immunoreactivity in kindled rats with CD exposed to convulsive PTZ challenge was also observed with LEV pretreatment. Tight junctions were ultrastructurally intact, whereas LEV decreased the increased pinocytotic activity in brain endothelium of kindled rats with CD treated with convulsive dose of PTZ. The present study showed that LEV decreased the increased BBB permeability considerably by diminishing vesicular transport in epileptic seizures induced by convulsive PTZ challenge in kindled animals with CD.
Collapse
Affiliation(s)
- Candan Gurses
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
van Vliet EA, Aronica E, Redeker S, Boer K, Gorter JA. Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy. Epilepsia 2009; 50:422-33. [DOI: 10.1111/j.1528-1167.2008.01727.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Toering ST, Boer K, de Groot M, Troost D, Heimans JJ, Spliet WGM, van Rijen PC, Jansen FE, Gorter JA, Reijneveld JC, Aronica E. Expression patterns of synaptic vesicle protein 2A in focal cortical dysplasia and TSC-cortical tubers. Epilepsia 2009; 50:1409-18. [PMID: 19220410 DOI: 10.1111/j.1528-1167.2008.01955.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Synaptic vesicle protein 2A (SV2A), the binding site for the antiepileptic drug (AED) levetiracetam, has been shown to be involved in the control of neuronal excitability. The aim of the study was to define the expression and cell-specific distribution of SV2A in developmental focal lesions associated with medically intractable epilepsy. METHODS SV2A immunocytochemistry and Western blotting was performed in focal cortical dysplasia (FCD type IIB) and cortical tubers from patients with tuberous sclerosis complex (TSC). RESULTS Autopsy and surgical control neocortical specimens were characterized by strong SV2A immunoreactivity throughout all cortical layers, with punctate labeling around the somata and dendrites of neurons. In FCD and cortical tuber specimens less intense, SV2A immunoreactivity was observed in the neuropil. The reduction in expression was confirmed by Western blot analysis. In both FCD and tuber specimens, clusters of punctate labeling were detected along cell borders and processes (perisomatic synapses) of dysplastic neuronal cells localized in both gray and white matter. The large majority of balloon cells in FCD, or giant cells in tubers, did not show punctate labeling around their somata. SV2A immunoreactivity was observed occasionally within the neuronal perikarya. CONCLUSIONS The pattern of SV2A immunoreactivity with reduced neuropil expression and altered cellular and subcellular distribution suggests a possible contribution of SV2A to the epileptogenicity of these malformations of cortical development. Knowledge of the expression pattern of SV2A in epilepsy-associated pathologies may be valuable for the evaluation of the effectiveness of AEDs targeting this protein.
Collapse
Affiliation(s)
- Sjoukje T Toering
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|