1
|
Oliva MK, Bourke J, Kornienko D, Mattei C, Mao M, Kuanyshbek A, Ovchinnikov D, Bryson A, Karle TJ, Maljevic S, Petrou S. Standardizing a method for functional assessment of neural networks in brain organoids. J Neurosci Methods 2024; 409:110178. [PMID: 38825241 DOI: 10.1016/j.jneumeth.2024.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
During the last decade brain organoids have emerged as an attractive model system, allowing stem cells to be differentiated into complex 3D models, recapitulating many aspects of human brain development. Whilst many studies have analysed anatomical and cytoarchitectural characteristics of organoids, their functional characterisation has been limited, and highly variable between studies. Standardised, consistent methods for recording functional activity are critical to providing a functional understanding of neuronal networks at the synaptic and network level that can yield useful information about functional network phenotypes in disease and healthy states. In this study we outline a detailed methodology for calcium imaging and Multi-Electrode Array (MEA) recordings in brain organoids. To illustrate the utility of these functional interrogation techniques in uncovering induced differences in neural network activity we applied various stimulating media protocols. We demonstrate overlapping information from the two modalities, with comparable numbers of active cells in the four treatment groups and an increase in synchronous behaviour in BrainPhys treated groups. Further development of analysis pipelines to reveal network level changes in brain organoids will enrich our understanding of network formation and perturbation in these structures, and aid in the future development of drugs that target neurological disorders at the network level.
Collapse
Affiliation(s)
- M K Oliva
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - J Bourke
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - D Kornienko
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - C Mattei
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - M Mao
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - A Kuanyshbek
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - D Ovchinnikov
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - A Bryson
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - T J Karle
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - S Maljevic
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - S Petrou
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia; Praxis Precision Medicines, Inc., Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Sills GJ. Pharmacological diversity amongst approved and emerging antiseizure medications for the treatment of developmental and epileptic encephalopathies. Ther Adv Neurol Disord 2023; 16:17562864231191000. [PMID: 37655228 PMCID: PMC10467199 DOI: 10.1177/17562864231191000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are rare neurodevelopmental disorders characterised by early-onset and often intractable seizures and developmental delay/regression, and include Dravet syndrome and Lennox-Gastaut syndrome (LGS). Rufinamide, fenfluramine, stiripentol, cannabidiol and ganaxolone are antiseizure medications (ASMs) with diverse mechanisms of action that have been approved for treating specific DEEs. Rufinamide is thought to suppress neuronal hyperexcitability by preventing the functional recycling of voltage-gated sodium channels from the inactivated to resting state. It is licensed for adjunctive treatment of seizures associated with LGS. Fenfluramine increases extracellular serotonin levels and may reduce seizures via activation of specific serotonin receptors and positive modulation of the sigma-1 receptor. Fenfluramine is licensed for adjunctive treatment of seizures associated with Dravet syndrome and LGS. Stiripentol is a positive allosteric modulator of type-A gamma-aminobutyric acid (GABAA) receptors. As a broad-spectrum inhibitor of cytochrome P450 enzymes, its antiseizure effects may additionally arise through pharmacokinetic interactions with co-administered ASMs. Stiripentol is licensed for treating seizures associated with Dravet syndrome in patients taking clobazam and/or valproate. The mechanism(s) of action of cannabidiol remains largely unclear although multiple targets have been proposed, including transient receptor potential vanilloid 1, G protein-coupled receptor 55 and equilibrative nucleoside transporter 1. Cannabidiol is licensed as adjunctive treatment in conjunction with clobazam for seizures associated with Dravet syndrome and LGS, and as adjunctive treatment of seizures associated with tuberous sclerosis complex. Like stiripentol, ganaxolone is a positive allosteric modulator at GABAA receptors. It has recently been licensed in the USA for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder. Greater understanding of the causes of DEEs has driven research into the potential use of other novel and repurposed agents. Putative ASMs currently in clinical development for use in DEEs include soticlestat, carisbamate, verapamil, radiprodil, clemizole and lorcaserin.
Collapse
Affiliation(s)
- Graeme J. Sills
- School of Life Sciences, University of Glasgow, Room 341, Sir James Black Building, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Chen CS, So EC, Wu SN. Modulating Hyperpolarization-Activated Cation Currents through Small Molecule Perturbations: Magnitude and Gating Control. Biomedicines 2023; 11:2177. [PMID: 37626674 PMCID: PMC10452073 DOI: 10.3390/biomedicines11082177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The hyperpolarization-activated cation current (Ih) exhibits a slowly activating time course of the current (Ih) when the cell membrane is hyperpolarized for an extended duration. It is involved in generating electrical activity in various excitable cells. Numerous structurally distinct compounds or herbal drugs have the potential to impact both the magnitude and gating kinetics of this current. Brivaracetam, a chemical analog of levetiracetam known to be a ligand for synaptic vesicle protein 2A, could directly suppress the Ih magnitude. Carisbamate, an anticonvulsant agent, not only inhibited the Ih amplitude but also reduced the strength of voltage-dependent hysteresis (Hys(V)) associated with Ih. Cilobradine, similar to ivabradine, inhibited the amplitude of Ih; however, it also suppressed the amplitude of delayed-rectifier K+ currents. Dexmedetomidine, an agonist of α2-adrenergic receptor, exerted a depressant action on Ih in a concentration-dependent fashion. Suppression of Ih amplitude was observed when GAL-021, a breathing control modulator, was present at a concentration exceeding 30 μM. Lutein, one of the few xanthophyll carotenoids, was able to suppress the Ih amplitude as well as to depress Hys(V)'s strength of Ih. Pirfenidone, a pyridine derivative known to be an anti-fibrotic agent, depressed the Ih magnitude in a concentration- and voltage-dependent fashion. Tramadol, a synthetic centrally active analgesic, was shown to reduce the Ih magnitude, independent of its interaction with opioid receptors. Various herbal drugs, including ent-kaurane-type diterpenoids from Croton tonkinensis, Ganoderma triterpenoids, honokiol, and pterostilbene, demonstrated efficacy in reducing the magnitude of Ih. Conversely, oxaliplatin, a platinum-based chemotherapeutic compound, was observed to effectively increase the Ih amplitude. Collectively, the regulatory effects of these compounds or herbal drugs on cellular function can be partly attributed to their perturbations on Ih.
Collapse
Affiliation(s)
- Cheng-Shih Chen
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 70965, Taiwan; (C.-S.C.); (E.C.S.)
| | - Edmund Cheung So
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 70965, Taiwan; (C.-S.C.); (E.C.S.)
| | - Sheng-Nan Wu
- School of Medicine, National Sun Yat Sen University College of Medicine, Kaohsiung 804, Taiwan
- Department of Medical Education & Research, An Nan Hospital, China Medical University, Tainan 70965, Taiwan
- Department of Physiology, National Cheng Kung University Medical College, Tainan 701, Taiwan
| |
Collapse
|
4
|
Hung TY, Wu SN, Huang CW. Concerted suppressive effects of carisbamate, an anti-epileptic alkyl-carbamate drug, on voltage-gated Na + and hyperpolarization-activated cation currents. Front Cell Neurosci 2023; 17:1159067. [PMID: 37293624 PMCID: PMC10244622 DOI: 10.3389/fncel.2023.1159067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Carisbamate (CRS, RWJ-333369) is a new anti-seizure medication. It remains unclear whether and how CRS can perturb the magnitude and/or gating kinetics of membrane ionic currents, despite a few reports demonstrating its ability to suppress voltage-gated Na+ currents. In this study, we observed a set of whole-cell current recordings and found that CRS effectively suppressed the voltage-gated Na+ (INa) and hyperpolarization-activated cation currents (Ih) intrinsically in electrically excitable cells (GH3 cells). The effective IC50 values of CRS for the differential suppression of transient (INa(T)) and late INa (INa(L)) were 56.4 and 11.4 μM, respectively. However, CRS strongly decreased the strength (i.e., Δarea) of the nonlinear window component of INa (INa(W)), which was activated by a short ascending ramp voltage (Vramp); the subsequent addition of deltamethrin (DLT, 10 μM) counteracted the ability of CRS (100 μM, continuous exposure) to suppress INa(W). CRS strikingly decreased the decay time constant of INa(T) evoked during pulse train stimulation; however, the addition of telmisartan (10 μM) effectively attenuated the CRS (30 μM, continuous exposure)-mediated decrease in the decay time constant of the current. During continued exposure to deltamethrin (10 μM), known to be a pyrethroid insecticide, the addition of CRS resulted in differential suppression of the amplitudes of INa(T) and INa(L). The amplitude of Ih activated by a 2-s membrane hyperpolarization was diminished by CRS in a concentration-dependent manner, with an IC50 value of 38 μM. For Ih, CRS altered the steady-state I-V relationship and attenuated the strength of voltage-dependent hysteresis (Hys(V)) activated by an inverted isosceles-triangular Vramp. Moreover, the addition of oxaliplatin effectively reversed the CRS-mediated suppression of Hys(V). The predicted docking interaction between CRS and with a model of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel or between CRS and the hNaV1.7 channel reflects the ability of CRS to bind to amino acid residues in HCN or hNaV1.7 channel via hydrogen bonds and hydrophobic interactions. These findings reveal the propensity of CRS to modify INa(T) and INa(L) differentially and to effectively suppress the magnitude of Ih. INa and Ih are thus potential targets of the actions of CRS in terms of modulating cellular excitability.
Collapse
Affiliation(s)
- Te-Yu Hung
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- College of Medicine, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Song C, Zhao J, Hao J, Mi D, Zhang J, Liu Y, Wu S, Gao F, Jiang W. Aminoprocalcitonin protects against hippocampal neuronal death via preserving oxidative phosphorylation in refractory status epilepticus. Cell Death Discov 2023; 9:144. [PMID: 37142587 PMCID: PMC10160063 DOI: 10.1038/s41420-023-01445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Refractory status epilepticus (RSE) is a neurological emergency where sustaining seizure causes severe neuronal death. Currently, there is no available neuroprotectant effective in RSE. Aminoprocalcitonin (NPCT) is a conserved peptide cleaved from procalcitonin, but its distribution and function in the brain remain enigmatic. Survival of neurons relies on sufficient energy supply. Recently, we found that NPCT was extensively distributed in the brain and had potent modulations on neuronal oxidative phosphorylation (OXPHOS), suggesting that NPCT might be involved in neuronal death by regulating energy status. In the present study, combining biochemical and histological methods, high-throughput RNA-sequence, Seahorse XFe analyser, an array of mitochondria function assays, and behavior-electroencephalogram (EEG) monitoring, we investigated the roles and translational values of NPCT in neuronal death after RSE. We found that NPCT was extensively distributed throughout gray matters in rat brain while RSE triggered NPCT overexpression in hippocampal CA3 pyramidal neurons. High-throughput RNA-sequence demonstrated that the influences of NPCT on primary hippocampal neurons were enriched in OXPHOS. Further function assays verified that NPCT facilitated ATP production, enhanced the activities of mitochondrial respiratory chain complexes I, IV, V, and increased neuronal maximal respiration capacity. NPCT exerted multiple neurotrophic effects including facilitating synaptogenesis, neuritogenesis, spinogenesis, and suppression of caspase-3. A polyclonal NPCT immunoneutralization antibody was developed to antagonize NPCT. In the in vitro 0-Mg2+ seizure model, immunoneutralization of NPCT caused more neuronal death, while exogenous NPCT supplementation, though did not reverse death outcomes, preserved mitochondrial membrane potential. In rat RSE model, both peripheral and intracerebroventricular immunoneutralization of NPCT exacerbated hippocampal neuronal death and peripheral immunoneutralization increased mortality. Intracerebroventricular immunoneutralization of NPCT further led to more serious hippocampal ATP depletion, and significant EEG power exhaustion. We conclude that NPCT is a neuropeptide regulating neuronal OXPHOS. During RSE, NPCT was overexpressed to protect hippocampal neuronal survival via facilitating energy supply.
Collapse
Affiliation(s)
- Changgeng Song
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jingjing Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jianmin Hao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Dan Mi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jiajia Zhang
- National Translational Science Centre for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Yingying Liu
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
6
|
The Aerial Parts of Bupleurum Chinense DC. Aromatic Oil Attenuate Kainic Acid-Induced Epilepsy-Like Behavior and Its Potential Mechanisms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1234612. [PMID: 35445130 PMCID: PMC9015862 DOI: 10.1155/2022/1234612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
Abstract
The aerial parts of Bupleurum Chinense DC. aromatic oil (BAO) were a well-known Chinese herbal medicine plant extract used to treat epilepsy. This study aimed to explore the therapeutic effect of BAO on kainic acid- (KA-) induced epileptic rats and the possible mechanism of its antiepileptic effect. The composition and content of BAO were analyzed by GC-MS, and BAO was administered orally to alleviate the epileptic behavior induced by KA brain injection. The behavior of epileptic rats was determined by Racine grading criteria. And hematoxylin-eosin staining (HE), Nissl staining, immunohistochemistry, Elisa, Western blot, and other methods were used to study the antiepileptic mechanism of BAO, and the possible mechanism was verified by the epileptic cell model of hippocampal neurons induced by the low-Mg2+ extracellular fluid. BAO was mainly composed of terpenoids and aliphatic compounds. And BAO could improve KA-induced epilepsy-like behavior, neuroinflammation, and neurotransmitter abnormalities in the hippocampus. Furthermore, BAO could regulate the expression of GABA, NMDAR1, Notch1, and MAP2 to improve the symptoms of epilepsy. These results were also validated at the cellular level. These results indicated that BAO could alleviate the epilepsy-like behavior through the action of the Notch/NMDAR/GABA pathway.
Collapse
|
7
|
Wang Y, Yuan J, Yu X, Liu X, Tan C, Chen Y, Xu T. Vezatin regulates seizures by controlling AMPAR-mediated synaptic activity. Cell Death Dis 2021; 12:936. [PMID: 34642320 PMCID: PMC8511046 DOI: 10.1038/s41419-021-04233-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
Although many studies have explored the mechanism of epilepsy, it remains unclear and deserves further investigation. Vezatin has been reported to be a synaptic regulatory protein involved in regulating neuronal synaptic transmission (NST). However, the role of vezatin in epilepsy remains unknown. Therefore, the aims of this study are to investigate the underlying roles of vezatin in epilepsy. In this study, vezatin expression was increased in hippocampal tissues from pilocarpine (PILO)-induced epileptic mice and a Mg2+-free medium-induced in vitro seizure-like model. Vezatin knockdown suppressed seizure activity in PILO-induced epileptic mice. Mechanistically, vezatin knockdown suppressed AMPAR-mediated synaptic events in epileptic mice and downregulated the surface expression of the AMPAR GluA1 subunit (GluA1). Interestingly, vezatin knockdown decreased the phosphorylation of GluA1 at serine 845 and reduced protein kinase A (PKA) phosphorylation; when PKA phosphorylation was suppressed by H-89 (a selective inhibitor of PKA phosphorylation) in vitro, the effects of vezatin knockdown on reducing the phosphorylation of GluA1 at serine 845 and the surface expression of GluA1 were blocked. Finally, we investigated the pattern of vezatin in brain tissues from patients with temporal lobe epilepsy (TLE), and we found that vezatin expression was also increased in patients with TLE. In summary, the vezatin expression pattern is abnormal in individuals with epilepsy, and vezatin regulates seizure activity by affecting AMPAR-mediated NST and the surface expression of GluA1, which is involved in PKA-mediated phosphorylation of GluA1 at serine 845, indicating that vezatin-mediated regulation of epileptic seizures represents a novel target for epilepsy.
Collapse
Affiliation(s)
- You Wang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Jinxian Yuan
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Xinyuan Yu
- Department of Neurology, Chongqing Hospital of Traditional Chinese Medicine, 400021, Chongqing, China
| | - Xi Liu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Changhong Tan
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Tao Xu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China.
| |
Collapse
|
8
|
Yang J, Jiang Q, Yu X, Xu T, Wang Y, Deng J, Liu Y, Chen Y. STK24 modulates excitatory synaptic transmission in epileptic hippocampal neurons. CNS Neurosci Ther 2020; 26:851-861. [PMID: 32436359 PMCID: PMC7366740 DOI: 10.1111/cns.13391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023] Open
Abstract
Introduction A large amount of literature has indicated that excitatory synaptic transmission plays a crucial role in epilepsy, but the detailed pathogenesis still needs to be clarified. Methods In the present study, we used samples from patients with temporal lobe epilepsy, pentylenetetrazole‐kindled mice, and Mg2+‐free‐induced epileptic cultured hippocampal neurons to detect the expression pattern of STK24. Then, the whole‐cell recording was carried out after STK24 overexpression in the Mg2+‐free‐induced epileptic cultured hippocampal neurons. In addition, coimmunoprecipitation was performed to detect the association between endogenous STK24 and main subunits of NMDARs and AMPARs in the hippocampus of PTZ‐kindled mice. Results Here, we reported that STK24 was specifically located in epileptic neurons of human and pentylenetetrazole‐kindled mice. Meanwhile, the expression of STK24 was significantly down‐regulated in these samples which are mentioned above. Besides, we found that the amplitude of miniature excitatory postsynaptic currents was increased in STK24 overexpressed epileptic hippocampal cultured neurons, which means the excitatory synaptic transmission was changed. Moreover, the coimmunoprecipitation, which further supported the previous experiment, indicated an association between STK24 and the subunits of the NMDA receptor. Conclusion These findings expand our understanding of how STK24 involved in the excitatory synaptic transmission in epilepsy and lay a foundation for exploring the possibility of STK24 as a drug target.
Collapse
Affiliation(s)
- Juan Yang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Jiang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyuan Yu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - You Wang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Deng
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Liu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Inhibition of microRNA-34a Suppresses Epileptiform Discharges Through Regulating Notch Signaling and Apoptosis in Cultured Hippocampal Neurons. Neurochem Res 2019; 44:1252-1261. [PMID: 30877521 DOI: 10.1007/s11064-019-02772-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
Epilepsy is characterized by recurrent unprovoked seizures and some seizures can cause neuronal apoptosis, which is possible to make contributions to the epilepsy phenotype, impairments in cognitive function or even epileptogenesis. Moreover, many studies have indicated that microRNA-34a (miRNA-34a) is involved in apoptosis through regulating Notch signaling. However, whether miRNA-34a participates in neuronal apoptosis after seizures remain unclear. Therefore, we aimed to explore the expression of miRNA-34a and its effects on the epileptiform discharge in spontaneous recurrent epileptiform discharges (SREDs) rat hippocampal neuronal pattern. Mg2+-free medium was used to induce SREDs, quantitative reverse-transcription polymerase chain reaction was used to detect the expression of miRNA-34a, western blot was used to determine the expression of Notch pathway and apoptosis-related proteins, and whole cell current clamp recordings was used to observe the alteration of epileptiform discharge. We found obvious apoptosis, increased expression of miRNA-34a and decreased expression of Notch signaling in Mg2+-free-treated neurons. Treatment with miRNA-34a inhibitor decreased the frequency of action potentials, activated Notch signaling and prevented neuronal apoptosis in Mg2+-free-treated neurons. However, treatment with miRNA-34a mimics increased the frequency of action potentials, down-regulated Notch signaling and promoted neuronal apoptosis in Mg2+-free-treated neurons. Furthermore, γ-secretase inhibitor N-[N-(3,5-di-uorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester (DAPT), an inhibitor of Notch signaling, could weaken anti-apoptosis effect of miRNA-34a inhibitor. These results suggest that inhibition of miRNA-34a could suppress epileptiform discharges through regulating Notch signaling and apoptosis in the rat hippocampal neuronal model of SREDs.
Collapse
|
10
|
Deshpande LS, DeLorenzo RJ. Novel therapeutics for treating organophosphate-induced status epilepticus co-morbidities, based on changes in calcium homeostasis. Neurobiol Dis 2019; 133:104418. [PMID: 30872159 DOI: 10.1016/j.nbd.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/26/2019] [Accepted: 03/09/2019] [Indexed: 11/24/2022] Open
Abstract
Organophosphate (OP) chemicals include pesticides such as parathion, and nerve gases such as sarin and soman and are considered major chemical threat agents. Acute OP exposure is associated with a cholinergic crisis and status epilepticus (SE). It is also known that the survivors of OP toxicity exhibit neurobehavioral deficits such as mood changes, depression, and memory impairment, and acquired epilepsy. Our research has focused on addressing the need to develop effective therapeutic agents that could be administered even after prolonged seizures and would prevent or lessen the chronic morbidity associated with OP-SE survival. We have developed rat survival models of OP pesticide metabolite paraoxon (POX) and nerve agent sarin surrogate diisopropyl fluorophosphate (DFP) induced SE that are being used to screen for medical countermeasures against an OP attack. Our research has focused on studying neuronal calcium (Ca2+) homeostatic mechanisms for identifying mechanisms and therapeutics for the expression of neurological morbidities associated with OP-SE survival. We have observed development of a "Ca2+ plateau" characterized by sustained elevations in neuronal Ca2+ levels in OP-SE surviving rats that coincided with the appearance of OP-SE chronic morbidities. These Ca2+ elevations had their origin in Ca2+ release from the intracellular stores such that blockade with antagonists like dantrolene, carisbamate, and levetiracetam lowered OP-SE mediated Ca2+ plateau and afforded significant neuroprotection. Since the Ca2+ plateau lasts for a prolonged period, our studies suggest that blocking it after the control of SE may represent a unique target for development of novel countermeasures to prevent long term Ca2+ mediated OP-SE neuropsychiatric comorbidities such as depression, anxiety, and acquired epilepsy (AE).
Collapse
Affiliation(s)
- Laxmikant S Deshpande
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
11
|
Phillips KF, Deshpande LS, DeLorenzo RJ. Hypothermia Reduces Mortality, Prevents the Calcium Plateau, and Is Neuroprotective Following Status Epilepticus in Rats. Front Neurol 2018; 9:438. [PMID: 29942282 PMCID: PMC6005175 DOI: 10.3389/fneur.2018.00438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Status Epilepticus (SE) is a major neurological emergency and is considered a leading cause of Acquired Epilepsy (AE). We have shown that SE produces neuronal injury and prolonged alterations in hippocampal calcium levels ([Ca2+]i) that may underlie the development of AE. Interventions preventing the SE-induced Ca2+ plateau could therefore prove to be beneficial in lowering the development of AE after SE. Hypothermia is used clinically to prevent neurological complications associated with Traumatic Brain Injury, cardiac arrest, and stroke. Here, we investigated whether hypothermia prevented the development of Ca2+ plateau following SE. SE was induced in hippocampal neuronal cultures (HNC) by exposing them to no added MgCl2 solution for 3 h. To terminate SE, low Mg2+ solution was washed off with 31°C (hypothermic) or 37°C (normothermic) physiological recording solution. [Ca2+]i was estimated with ratiometric Fura-2 imaging. HNCs washed with hypothermic solution exhibited [Ca2+]i ratios, which were significantly lower than ratios obtained from HNCs washed with normothermic solution. For in vivo SE, the rat pilocarpine (PILO) model was used. Moderate hypothermia (30–33°C) in rats was induced at 30-min post-SE using chilled ethanol spray in a cold room. Hypothermia following PILO-SE significantly reduced mortality. Hippocampal neurons isolated from hypothermia-treated PILO SE rats exhibited [Ca2+]i ratios which were significantly lower than ratios obtained from PILO SE rats. Hypothermia also provided significant neuroprotection against SE-induced delayed hippocampal injury as characterized by decreased FluoroJade C labeling in hypothermia-treated PILO SE rats. We previously demonstrated that hypothermia reduced Ca2+ entry via N-methyl-D-aspartate and ryanodine receptors in HNC. Together, our studies indicate that by targeting these two receptor systems hypothermia could interfere with epileptogenesis and prove to be an effective therapeutic intervention for reducing SE-induced AE.
Collapse
Affiliation(s)
- Kristin F Phillips
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | - Laxmikant S Deshpande
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
12
|
Inhibition of Acid Sensing Ion Channel 3 Aggravates Seizures by Regulating NMDAR Function. Neurochem Res 2018; 43:1227-1241. [DOI: 10.1007/s11064-018-2540-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
|
13
|
Wang L, Wang Y, Duan C, Yang Q. Inositol phosphatase INPP4A inhibits the apoptosis of in vitro neurons with characteristic of intractable epilepsy by reducing intracellular Ca 2+ concentration. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1999-2007. [PMID: 31938306 PMCID: PMC6958220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/09/2017] [Indexed: 06/10/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent seizures. Seizures can be controlled for most epilepsy patients after drug therapy, but at least 20% of patients develop intractable epilepsy (IE). The mechanism by which IE causes neuronal damage has not been completely understood. Inositol polyphosphate 4 phosphatase (INPP4A), a magnesium-dependent phosphatase, is shown to be associated with glutamate excitotoxicity. Herein, we show that INPP4A plays an essential role in seizure-induced neuronal apoptosis using an in vitro IE neuron model. In this model, INPP4A expression significantly decreased compared to normal neurons. Our results showed that overexpression of INPP4A significantly inhibited LDH activity and increased cell viability while knockdown of INPP4A markedly increased LDH activity and inhibited cell viability. Similarly, overexpression of INPP4A significantly enhanced G1 phase transition to S phase and inhibited apoptosis while knockdown of INPP4A significantly inhibited cell cycle progression and increased apoptosis in IE neurons. Furthermore, INPP4A-mediated inhibition of apoptosis might be associated with reduced intracellular Ca2+ concentration. Our findings thus support the results of the previous in vivo studies that INPP4A is linked to the pathogenesis and progression of intractable epilepsy, which suggest that INPP4A may be an important target against epilepsy, especially IE.
Collapse
Affiliation(s)
- Li Wang
- Department of Neurology of The Second Affiliated Hospital, Third Military Medical University No. 1 Xinqiao Main Street, Shapingba District, Chongqing 40037, China
| | - Yue Wang
- Department of Neurology of The Second Affiliated Hospital, Third Military Medical University No. 1 Xinqiao Main Street, Shapingba District, Chongqing 40037, China
| | - Chunmei Duan
- Department of Neurology of The Second Affiliated Hospital, Third Military Medical University No. 1 Xinqiao Main Street, Shapingba District, Chongqing 40037, China
| | - Qingwu Yang
- Department of Neurology of The Second Affiliated Hospital, Third Military Medical University No. 1 Xinqiao Main Street, Shapingba District, Chongqing 40037, China
| |
Collapse
|
14
|
Wu G, Yu J, Wang L, Ren S, Zhang Y. PKC/CREB pathway mediates the expressions of GABA A receptor subunits in cultured hippocampal neurons after low-Mg 2+ solution treatment. Epilepsy Res 2018; 140:155-161. [PMID: 29414524 DOI: 10.1016/j.eplepsyres.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/08/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the potential effects of the PKC/CREB pathway on the expressions of GABAA receptor subunits α1, γ2, and δ in cultured hippocampal neurons using a model of epilepsy that employed conditions of low magnesium (Mg2+). METHODS A total of 108 embryonic rats at the age of 18 embryonic days (E18)prepared from adult female SD rats were used as experimental subjects. Primary rat hippocampal cultures were prepared from the embryonic 18 days rats. The cultured hippocampal neurons were then treated with artificial cerebrospinal fluid containing low Mg2+ solutions to generate a low Mg2+ model of epilepsy. The low Mg2+ stimulation lasted for 3 h and then returned to in maintenance medium for 20 h. The changes of the GABAA receptor subunit α1, γ2, δ were observed by blocking or activating the function of the CREB. The quantification of the GABAA receptor subunit α1, γ2, δ and the CREB were determined by a qRT-PCR and a Western blot method. RESULTS After the neurons were exposed to a low-Mg2+ solution for 3 h, GABAA receptor mRNA expression markedly increased compared to the control, and then gradually decreased. In contrast, CREB mRNA levels exhibited a dramatic down-regulation 3 h after terminating low-Mg2+ treatment, and then peaked at 9 h. Western blot analyses verified that staurosporine suppressed CREB phosphorylation (p-CREB). The mRNA expression of GABAA receptor subunit α1 increased only in the presence of staurosporine, whereas the expressions of subunits γ2 and δ significantly increased in the presence of either KG-501 or staurosporine. Furthermore, phorbol 12-myristate 13-acetate (PMA) decreased the expressions of GABAA subunits α1, γ2, and δ when administered alone. However, the administration of either KG-501 or staurosporine reversed the inhibitory effects of PMA. CONCLUSIONS The PKC/CREB pathway may negatively regulate the expressions of GABAA receptor subunits α1, γ2, and δ in cultured hippocampal neurons in low Mg2+ model of epilepsy.
Collapse
Affiliation(s)
- Guofeng Wu
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China.
| | - Jinpeng Yu
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China
| | - Likun Wang
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China
| | - Siying Ren
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China
| | - Yixia Zhang
- Guizhou Centre for Disease Control and Prevention, Guiyang City, 550004, PR China
| |
Collapse
|
15
|
Kim DY, Zhang FX, Nakanishi ST, Mettler T, Cho IH, Ahn Y, Hiess F, Chen L, Sullivan PG, Chen SRW, Zamponi GW, Rho JM. Carisbamate blockade of T-type voltage-gated calcium channels. Epilepsia 2017; 58:617-626. [PMID: 28230232 DOI: 10.1111/epi.13710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Carisbamate (CRS) is a novel monocarbamate compound that possesses antiseizure and neuroprotective properties. However, the mechanisms underlying these actions remain unclear. Here, we tested both direct and indirect effects of CRS on several cellular systems that regulate intracellular calcium concentration [Ca2+ ]i . METHODS We used a combination of cellular electrophysiologic techniques, as well as cell viability, Store Overload-Induced Calcium Release (SOICR), and mitochondrial functional assays to determine whether CRS might affect [Ca2+ ]i levels through actions on the endoplasmic reticulum (ER), mitochondria, and/or T-type voltage-gated Ca2+ channels. RESULTS In CA3 pyramidal neurons, kainic acid induced significant elevations in [Ca2+ ]i and long-lasting neuronal hyperexcitability, both of which were reversed in a dose-dependent manner by CRS. Similarly, CRS suppressed spontaneous rhythmic epileptiform activity in hippocampal slices exposed to zero-Mg2+ or 4-aminopyridine. Treatment with CRS also protected murine hippocampal HT-22 cells against excitotoxic injury with glutamate, and this was accompanied by a reduction in [Ca2+ ]i . Neither kainic acid nor CRS alone altered the mitochondrial membrane potential (ΔΨ) in intact, acutely isolated mitochondria. In addition, CRS did not affect mitochondrial respiratory chain activity, Ca2+ -induced mitochondrial permeability transition, and Ca2+ release from the ER. However, CRS significantly decreased Ca2+ flux in human embryonic kidney tsA-201 cells transfected with Cav 3.1 (voltage-dependent T-type Ca2+ ) channels. SIGNIFICANCE Our data indicate that the neuroprotective and antiseizure activity of CRS likely results in part from decreased [Ca2+ ]i accumulation through blockade of T-type Ca2+ channels.
Collapse
Affiliation(s)
- Do Young Kim
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, U.S.A
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stan T Nakanishi
- Department of Biology, University of Hawaii at Hilo, Hilo, Hawaii, U.S.A
| | - Timothy Mettler
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, U.S.A
| | - Ik-Hyun Cho
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, U.S.A
| | - Younghee Ahn
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Florian Hiess
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lina Chen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, U.S.A
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Deshpande LS, Blair RE, Phillips KF, DeLorenzo RJ. Role of the calcium plateau in neuronal injury and behavioral morbidities following organophosphate intoxication. Ann N Y Acad Sci 2016; 1374:176-83. [PMID: 27327161 DOI: 10.1111/nyas.13122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 12/28/2022]
Abstract
Organophosphate (OP) chemicals include nerve agents and pesticides, and there is a growing concern of OP-based chemical attacks against civilians. Current antidotes are essential in limiting immediate mortality associated with OP exposure. However, further research is needed to identify the molecular mechanisms underlying long-term neurological deficits following survival of OP toxicity in order to develop effective therapeutics. We have developed rat survival models of OP-induced status epilepticus (SE) that mimic chronic mortality and morbidity following OP intoxication. We have observed significant elevations in hippocampal calcium levels after OP SE that persisted for weeks following initial survival. Drugs inhibiting intracellular calcium-induced calcium release, such as dantrolene, levetiracetam, and carisbamate, lowered OP SE-mediated protracted calcium elevations. Given the critical role of calcium signaling in modulating behavior and cell death mechanisms, drugs targeted at preventing the development of the calcium plateau could enhance neuroprotection, help reduce morbidity, and improve outcomes following survival of OP SE.
Collapse
Affiliation(s)
- Laxmikant S Deshpande
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia.,Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Robert E Blair
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia
| | - Kristin F Phillips
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia
| | - Robert J DeLorenzo
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia.,Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Pharmacological blockade of the calcium plateau provides neuroprotection following organophosphate paraoxon induced status epilepticus in rats. Neurotoxicol Teratol 2016; 56:81-86. [PMID: 27224207 DOI: 10.1016/j.ntt.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 05/16/2016] [Indexed: 12/25/2022]
Abstract
Organophosphate (OP) compounds which include nerve agents and pesticides are considered chemical threat agents. Currently approved antidotes are crucial in limiting OP mediated acute mortality. However, survivors of lethal OP exposure exhibit delayed neuronal injury and chronic behavioral morbidities. In this study, we investigated neuroprotective capabilities of dantrolene and carisbamate in a rat survival model of paraoxon (POX) induced status epilepticus (SE). Significant elevations in hippocampal calcium levels were observed 48-h post POX SE survival, and treatment with dantrolene (10mg/kg, i.m.) and carisbamate (90mg/kg, i.m.) lowered these protracted calcium elevations. POX SE induced delayed neuronal injury as characterized by Fluoro Jade C labeling was observed in critical brain areas including the dentate gyrus, parietal cortex, amygdala, and thalamus. Dantrolene and carisbamate treatment provided significant neuroprotection against delayed neuronal damage in these brain regions when administered one-hour after POX-SE. These results indicate that dantrolene or carisbamate could be effective adjuvant therapies to the existing countermeasures to reduce neuronal injury and behavioral morbidities post OP SE survival.
Collapse
|
18
|
Deshpande LS, Carter DS, Phillips KF, Blair RE, DeLorenzo RJ. Development of status epilepticus, sustained calcium elevations and neuronal injury in a rat survival model of lethal paraoxon intoxication. Neurotoxicology 2014; 44:17-26. [PMID: 24785379 DOI: 10.1016/j.neuro.2014.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 01/23/2023]
Abstract
Paraoxon (POX) is an active metabolite of organophosphate (OP) pesticide parathion that has been weaponized and used against civilian populations. Exposure to POX produces high mortality. OP poisoning is often associated with chronic neurological disorders. In this study, we optimize a rat survival model of lethal POX exposures in order to mimic both acute and long-term effects of POX intoxication. Male Sprague-Dawley rats injected with POX (4mg/kg, ice-cold PBS, s.c.) produced a rapid cholinergic crisis that evolved into status epilepticus (SE) and death within 6-8min. The EEG profile for POX induced SE was characterized and showed clinical and electrographic seizures with 7-10Hz spike activity. Treatment of 100% lethal POX intoxication with an optimized three drug regimen (atropine, 2mg/kg, i.p., 2-PAM, 25mg/kg, i.m. and diazepam, 5mg/kg, i.p.) promptly stopped SE and reduced acute mortality to 12% and chronic mortality to 18%. This model is ideally suited to test effective countermeasures against lethal POX exposure. Animals that survived the POX SE manifested prolonged elevations in hippocampal [Ca(2+)]i (Ca(2+) plateau) and significant multifocal neuronal injury. POX SE induced Ca(2+) plateau had its origin in Ca(2+) release from intracellular Ca(2+) stores since inhibition of ryanodine/IP3 receptor lowered elevated Ca(2+) levels post SE. POX SE induced neuronal injury and alterations in Ca(2+) dynamics may underlie some of the long term morbidity associated with OP toxicity.
Collapse
Affiliation(s)
| | - Dawn S Carter
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kristin F Phillips
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert E Blair
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert J DeLorenzo
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Departments of Molecular Biophysics and Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
19
|
Smith GR, Brenneman DE, Zhang Y, Du Y, Reitz AB. Small-molecule anticonvulsant agents with potent in vitro neuroprotection and favorable drug-like properties. J Mol Neurosci 2014; 52:446-58. [PMID: 24277343 PMCID: PMC3945118 DOI: 10.1007/s12031-013-0180-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/07/2013] [Indexed: 12/19/2022]
Abstract
Severe seizure activity is associated with reoccurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention with these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. We have optimized a series of small molecules for neuroprotective and anticonvulsant activity as well as altered their physical properties to address potential metabolic liabilities, to improve CNS penetration, and to prolong the duration of action in vivo. Utilizing phenotypic screening of hippocampal cultures with nutrient medium depleted of antioxidants as a disease model, cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented. Modifications to our previously reported proof of concept compounds have resulted in a lead which has full neuroprotective action at <1 nM and antiseizure activity across six animal models including the kindled rat and displays excellent pharmacokinetics including high exposure to the brain. These modifications have also eliminated the requirement for a chiral molecule, removing the possibility of racemization and making large-scale synthesis more easily accessible. These studies strengthen our earlier findings which indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity which also possesses favorable CNS-active drug properties in vitro and in vivo.
Collapse
Affiliation(s)
- Garry R Smith
- Fox Chase Chemical Diversity Center, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA, 18902, USA,
| | | | | | | | | |
Collapse
|
20
|
Deshpande LS, Delorenzo RJ. Mechanisms of levetiracetam in the control of status epilepticus and epilepsy. Front Neurol 2014; 5:11. [PMID: 24550884 PMCID: PMC3907711 DOI: 10.3389/fneur.2014.00011] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/17/2014] [Indexed: 11/27/2022] Open
Abstract
Status epilepticus (SE) is a major clinical emergency that is associated with high mortality and morbidity. SE causes significant neuronal injury and survivors are at a greater risk of developing acquired epilepsy and other neurological morbidities, including depression and cognitive deficits. Benzodiazepines and some anticonvulsant agents are drugs of choice for initial SE management. Despite their effectiveness, over 40% of SE cases are refractory to the initial treatment with two or more medications. Thus, there is an unmet need of developing newer anti-SE drugs. Levetiracetam (LEV) is a widely prescribed anti-epileptic drug that has been reported to be used in SE cases, especially in benzodiazepine-resistant SE or where phenytoin cannot be used due to allergic side-effects. Levetiracetam’s non-classical anti-epileptic mechanisms of action, favorable pharmacokinetic profile, general lack of central depressant effects, and lower incidence of drug interactions contribute to its use in SE management. This review will focus on LEV’s unique mechanism of action that makes it a viable candidate for SE treatment.
Collapse
Affiliation(s)
| | - Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University , Richmond, VA , USA ; Department of Pharmacology and Toxicology, Virginia Commonwealth University , Richmond, VA , USA ; Department of Biochemistry, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
21
|
Brenneman DE, Smith GR, Zhang Y, Du Y, Kondaveeti SK, Zdilla MJ, Reitz AB. Small molecule anticonvulsant agents with potent in vitro neuroprotection. J Mol Neurosci 2012; 47:368-79. [PMID: 22535312 DOI: 10.1007/s12031-012-9765-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
Severe seizure activity is associated with recurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention to halt these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. In the present study, a core small molecule with anticonvulsant activity has been structurally optimized for neuroprotection. Phenotypic screening of rat hippocampal cultures with nutrient medium depleted of antioxidants was utilized as a disease model. Increased cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented by our novel molecules. The neuroprotection associated with this chemical series has marked structure activity relationships that focus on modification of the benzylic position of a 2-phenyl-2-hydroxyethyl sulfamide core structure. Complete separation between anticonvulsant activity and neuroprotective action was dependent on substitution at the benzylic carbon. Chiral selectivity was evident in that the S-enantiomer of the benzylic hydroxy group had neither neuroprotective nor anticonvulsant activity, while the R-enantiomer of the lead compound had full neuroprotective action at <40 nM and antiseizure activity in three animal models. These studies indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity.
Collapse
Affiliation(s)
- Douglas E Brenneman
- Advanced Neural Dynamics, Inc., Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Cognitive effects of carisbamate in randomized, placebo-controlled, healthy-volunteer, multidose studies. Epilepsy Behav 2011; 22:324-30. [PMID: 21849260 DOI: 10.1016/j.yebeh.2011.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/24/2022]
Abstract
Adverse cognitive effects are an important concern for drugs that influence the central nervous system. Carisbamate is a novel drug in development for treatment of seizures and neuropathic pain. Information on its cognitive effects is limited. Three controlled, multiple-dose, crossover studies with treatment durations of 5-9 days were designed to examine the cognitive effects of carisbamate on healthy volunteers. In one study, apparent dose-dependent effects on response, vigilance, and recognition speed were observed (1000 mg and 1500 mg/day). Carisbamate did not differ from placebo for most variables in the other two studies, but increased reaction time and reduced Sternberg memory were seen at higher dosages. Carisbamate did not produce clinically significant adverse effects on cognitive performance at doses <1000 mg/day. Effects were mild to modest at the higher doses tested.
Collapse
|
23
|
Lee CY, Lee ML, Shih CC, Liou HH. Carisbamate (RWJ-333369) inhibits glutamate transmission in the granule cell of the dentate gyrus. Neuropharmacology 2011; 61:1239-47. [PMID: 21824485 DOI: 10.1016/j.neuropharm.2011.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 11/26/2022]
Abstract
Carisbamate (CRS, RWJ-333369) is a novel antiepileptic drug awaiting approval for use in the treatment of partial and generalized seizures. Our aim was to determine whether CRS modulates synaptic transmission in the dentate gyrus (DG) and the underlying mechanism. The whole-cell patch-clamp method was used to record AMPA receptor- and NMDA receptor-mediated excitatory postsynaptic currents (EPSC(AMPA) and EPSC(NMDA)) and GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) in granule cells of the DG in brain slices prepared from 3- to 5-week-old male Wistar rats. CRS (30-300 μM) inhibited the evoked EPSC(AMPA) and EPSC(NMDA) by the same extent (20%) with significantly altered CV(-2), suggesting presynaptic modulation. It did not significantly change the inward currents induced by AMPA application. The inhibitory effect of CRS on the evoked EPSC(AMPA) was not occluded by selective voltage-gated Ca(2+) channel blockers, ruling out the involvement of presynaptic Ca(2+) channels. The frequency, but not the amplitude, of spontaneous EPSC(AMPA) was significantly reduced by CRS. However, CRS did not alter either the frequency or the amplitude of TTX-insensitive miniature EPSC(AMPA), indicating an action potential-dependent mechanism was involved. In addition, CRS (100 or 300 μM) did not significantly change the amplitude of the evoked IPSCs. To summarize, our results suggest that CRS reduces glutamatergic transmission by an action potential-dependent presynaptic mechanism and consequently inhibits excitatory synaptic strength in the DG without affecting GABAergic transmission. This effect may contribute to the antiepileptic action observed clinically at therapeutic concentrations of CRS.
Collapse
Affiliation(s)
- Chun-Yao Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taiwan
| | | | | | | |
Collapse
|
24
|
François J, Germe K, Ferrandon A, Koning E, Nehlig A. Carisbamate has powerful disease-modifying effects in the lithium-pilocarpine model of temporal lobe epilepsy. Neuropharmacology 2011; 61:313-28. [PMID: 21539848 DOI: 10.1016/j.neuropharm.2011.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 11/30/2022]
Abstract
Lithium-pilocarpine, a relevant model of temporal lobe epilepsy was used to test the neuroprotective and antiepileptogenic effects of carisbamate. Status epilepticus (SE) was induced in adult rats by lithium and pilocarpine. Carisbamate (30, 60, 90, and 120 mg/kg) was injected at 1 and 9 h after SE onset and continued twice daily for 6 additional days. The reference groups received diazepam instead of carisbamate. Neuroprotection was assessed during the first 24 h of SE with Fluoro-Jade B and after 14 days with thionine staining. SE severity and epileptic outcome were assessed by video, and surface and depth electroencephalographic recordings. At the two highest doses, carisbamate treatment reduced SE severity; produced strong neuroprotection of hippocampus, ventral cortices, thalamus, and amygdala; prevented mossy fiber sprouting in the dentate gyrus of the hippocampus; and delayed or suppressed the occurrence of spontaneous motor seizures. Rats with no spontaneous motor seizures displayed spike-and-wave discharges that share all the characteristics of absence seizures. In conclusion, carisbamate is able to induce strong neuroprotection and affect the nature of epileptogenic events occurring during and after lithium-pilocarpine status epilepticus, reflecting marked insult- and disease-modifying effects.
Collapse
Affiliation(s)
- Jennifer François
- InsermU666, University Louis Pasteur; Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France.
| | | | | | | | | |
Collapse
|
25
|
Nagarkatti N, Deshpande LS, Carter DS, DeLorenzo RJ. Dantrolene inhibits the calcium plateau and prevents the development of spontaneous recurrent epileptiform discharges following in vitro status epilepticus. Eur J Neurosci 2010; 32:80-8. [PMID: 20597971 DOI: 10.1111/j.1460-9568.2010.07262.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Status epilepticus is a clinical emergency that can lead to the development of acquired epilepsy following neuronal injury. Understanding the pathophysiological changes that occur between the injury itself and the expression of epilepsy is important in the development of new therapeutics to prevent epileptogenesis. Currently, no anti-epileptogenic agents exist; thus, the ability to treat an individual immediately after status epilepticus to prevent the ultimate development of epilepsy remains an important clinical challenge. In the Sprague-Dawley rat pilocarpine model of status epilepticus-induced acquired epilepsy, intracellular calcium has been shown to increase in hippocampal neurons during status epilepticus and remain elevated well past the duration of the injury in those animals that develop epilepsy. This study aimed to determine if such changes in calcium dynamics exist in the hippocampal culture model of status epilepticus-induced acquired epilepsy and, if so, to study whether manipulating the calcium plateau after status epilepticus would prevent epileptogenesis. The in vitro status epilepticus model resembled the in vivo model in terms of elevations in neuronal calcium concentrations that were maintained well past the duration of the injury. When used following in vitro status epilepticus, dantrolene, a ryanodine receptor inhibitor, but not the N-methyl-D-aspartic acid channel blocker MK-801 inhibited the elevations in intracellular calcium, decreased neuronal death and prevented the expression of spontaneous recurrent epileptiform discharges, the in vitro correlate of epilepsy. These findings offer potential for a novel treatment to prevent the development of epileptiform discharges following brain injuries.
Collapse
Affiliation(s)
- Nisha Nagarkatti
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | |
Collapse
|
26
|
Nagarkatti N, Deshpande LS, DeLorenzo RJ. Development of the calcium plateau following status epilepticus: role of calcium in epileptogenesis. Expert Rev Neurother 2009; 9:813-24. [PMID: 19496685 DOI: 10.1586/ern.09.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Status epilepticus is a clinical emergency defined as continuous seizure activity or rapid, recurrent seizures without regaining consciousness and can lead to the development of acquired epilepsy, characterized by spontaneous, recurrent seizures. Understanding epileptogenesis--the transformation of healthy brain tissue into hyperexcitable neuronal networks--is an important challenge and the elucidation of molecular mechanisms can lend insight into new therapeutic targets to halt this progression. It has been demonstrated that intracellular calcium increases during status epilepticus and that these elevations are maintained past the duration of the injury (Ca(2+) plateau). As an important second messenger, Ca(2+) elevations can lead to changes in gene expression, neurotransmitter release and plasticity. Thus, characterization of the post-injury Ca(2+) plateau may be important in eventually understanding the pathophysiology of epileptogenesis and preventing the progression to chronic epilepsy after brain injury.
Collapse
Affiliation(s)
- Nisha Nagarkatti
- Department of , Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | |
Collapse
|