1
|
Cortes S, Farhat E, Talarico G, Mennigen JA. The dynamic transcriptomic response of the goldfish brain under chronic hypoxia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101233. [PMID: 38608489 DOI: 10.1016/j.cbd.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Oxygen is essential to fuel aerobic metabolism. Some species evolved mechanisms to tolerate periods of severe hypoxia and even anoxia in their environment. Among them, goldfish (Carassius auratus) are unique, in that they do not enter a comatose state under severely hypoxic conditions. There is thus significant interest in the field of comparative physiology to uncover the mechanistic basis underlying hypoxia tolerance in goldfish, with a particular focus on the brain. Taking advantage of the recently published and annotated goldfish genome, we profile the transcriptomic response of the goldfish brain under normoxic (21 kPa oxygen saturation) and, following gradual reduction, constant hypoxic conditions after 1 and 4 weeks (2.1 kPa oxygen saturation). In addition to analyzing differentially expressed protein-coding genes and enriched pathways, we also profile differentially expressed microRNAs (miRs). Using in silico approaches, we identify possible miR-mRNA relationships. Differentially expressed transcripts compared to normoxia were either common to both timepoints of hypoxia exposure (n = 174 mRNAs; n = 6 miRs), or exclusive to 1-week (n = 441 mRNAs; n = 23 miRs) or 4-week hypoxia exposure (n = 491 mRNAs; n = 34 miRs). Under chronic hypoxia, an increasing number of transcripts, including those of paralogous genes, was downregulated over time, suggesting a decrease in transcription. GO-terms related to the vascular system, oxidative stress, stress signalling, oxidoreductase activity, nucleotide- and intermediary metabolism, and mRNA posttranscriptional regulation were found to be enriched under chronic hypoxia. Known 'hypoxamiRs', such as miR-210-3p/5p, and miRs such as miR-29b-3p likely contribute to posttranscriptional regulation of these pathways under chronic hypoxia in the goldfish brain.
Collapse
Affiliation(s)
- S Cortes
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - E Farhat
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Ggm Talarico
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada
| | - J A Mennigen
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Bosco F, Guarnieri L, Leo A, Tallarico M, Gallelli L, Rania V, Citraro R, De Sarro G. Audiogenic epileptic DBA/2 mice strain as a model of genetic reflex seizures and SUDEP. Front Neurol 2023; 14:1223074. [PMID: 37681009 PMCID: PMC10481168 DOI: 10.3389/fneur.2023.1223074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023] Open
Abstract
Epilepsy is a chronic neurological disease characterized by abnormal brain activity, which results in repeated spontaneous seizures. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of seizure-related premature death, particularly in drug-resistant epilepsy patients. The etiology of SUDEP is a structural injury to the brain that is not fully understood, but it is frequently associated with poorly controlled and repeated generalized tonic-clonic seizures (GTCSs) that cause cardiorespiratory and autonomic dysfunctions, indicating the involvement of the brainstem. Both respiratory and cardiac abnormalities have been observed in SUDEP, but not much progress has been made in their prevention. Owing to the complexity of SUDEP, experimental animal models have been used to investigate cardiac and/or respiratory dysregulation due to or associated with epileptic seizures that may contribute to death in humans. Numerous rodent models, especially mouse models, have been developed to better understand epilepsy and SUDEP physiopathology. This review synthesizes the current knowledge about dilute brown agouti coat color (DBA/2) mice as a possible SUDEP model because respiratory arrest (RA) and sudden death induced by audiogenic generalized seizures (AGSs) have been observed in these animals. Respiratory/cardiac dysfunction, brainstem arousal system dysfunction, and alteration of the neurotransmitter systems, which are observed in human SUDEP, have also been observed in these mice. In particular, serotonin (5-HT) alteration and adenosine neurotransmission appear to contribute to not only the pathophysiological mechanisms of medication but also seizure-related respiratory dysfunctions in this animal model. These neurotransmitter systems could be the relevant targets for medication development for chronic epilepsy and SUDEP prevention. We reviewed data on AGSs in DBA/2 mice and the relevance of this model of generalized tonic-clonic epilepsy to human SUDEP. Furthermore, the advantages of using this strain prone to AGSs for the identification of possible new therapeutic targets and treatment options have also been assessed.
Collapse
Affiliation(s)
- Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Martina Tallarico
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Luca Gallelli
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Rania
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Woo AM, Sontheimer H. Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1198021. [PMID: 39086689 PMCID: PMC11285605 DOI: 10.3389/fmmed.2023.1198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2024]
Abstract
Often considered the "housekeeping" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.
Collapse
Affiliation(s)
- AnnaLin M. Woo
- Neuroscience Graduate Program, Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| | - Harald Sontheimer
- Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
4
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Li L, Zhang C, Wang Z, Wang Y, Guo Y, Qi C, You G, Zhang Z, Fan X, Jiang T. Development of an integrated predictive model for postoperative glioma-related epilepsy using gene-signature and clinical data. BMC Cancer 2023; 23:42. [PMID: 36631762 PMCID: PMC9835377 DOI: 10.1186/s12885-022-10385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND This study aimed to develop an integrated model for predicting the occurrence of postoperative seizures in patients with diffuse high-grade gliomas (DHGGs) using clinical and RNA-seq data. METHODS Patients with DHGGs, who received prophylactic anti-epileptic drugs (AEDs) for three months following surgery, were enrolled into the study. The patients were assigned randomly into training (n = 166) and validation (n = 42) cohorts. Differentially expressed genes (DEGs) were identified based on preoperative glioma-related epilepsy (GRE) history. Least absolute shrinkage and selection operator (LASSO) logistic regression analysis was used to construct a predictive gene-signature for the occurrence of postoperative seizures. The final integrated prediction model was generated using the gene-signature and clinical data. Receiver operating characteristic analysis and calibration curve method were used to evaluate the accuracy of the gene-signature and prediction model using the training and validation cohorts. RESULTS A seven-gene signature for predicting the occurrence of postoperative seizures was developed using LASSO logistic regression analysis of 623 DEGs. The gene-signature showed satisfactory predictive capacity in the training cohort [area under the curve (AUC) = 0.842] and validation cohort (AUC = 0.751). The final integrated prediction model included age, temporal lobe involvement, preoperative GRE history, and gene-signature-derived risk score. The AUCs of the integrated prediction model were 0.878 and 0.845 for the training and validation cohorts, respectively. CONCLUSION We developed an integrated prediction model for the occurrence of postoperative seizures in patients with DHGG using clinical and RNA-Seq data. The findings of this study may contribute to the development of personalized management strategies for patients with DHGGs and improve our understanding of the mechanisms underlying GRE in these patients.
Collapse
Affiliation(s)
- Lianwang Li
- grid.411918.40000 0004 1798 6427Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Chuanbao Zhang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Zheng Wang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Yinyan Wang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Yuhao Guo
- grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Chong Qi
- grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Gan You
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Zhong Zhang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Xing Fan
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China ,grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Tao Jiang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China ,grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China ,grid.506261.60000 0001 0706 7839Research Units of Accurate Diagnosis and Treatment of Brain Tumors and Translational Medicine, Chinese Academy of Medical Sciences, Beijing, 100730 China
| |
Collapse
|
6
|
Mulkey DK, Milla BM. Perspectives on the basis of seizure-induced respiratory dysfunction. Front Neural Circuits 2022; 16:1033756. [PMID: 36605420 PMCID: PMC9807672 DOI: 10.3389/fncir.2022.1033756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is an umbrella term used to define a wide variety of seizure disorders and sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in epilepsy. Although some SUDEP risk factors have been identified, it remains largely unpredictable, and underlying mechanisms remain poorly understood. Most seizures start in the cortex, but the high mortality rate associated with certain types of epilepsy indicates brainstem involvement. Therefore, to help understand SUDEP we discuss mechanisms by which seizure activity propagates to the brainstem. Specifically, we highlight clinical and pre-clinical evidence suggesting how seizure activation of: (i) descending inhibitory drive or (ii) spreading depolarization might contribute to brainstem dysfunction. Furthermore, since epilepsy is a highly heterogenous disorder, we also considered factors expected to favor or oppose mechanisms of seizure propagation. We also consider whether epilepsy-associated genetic variants directly impact brainstem function. Because respiratory failure is a leading cause of SUDEP, our discussion of brainstem dysfunction focuses on respiratory control.
Collapse
Affiliation(s)
- Daniel K. Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
7
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
8
|
Abulseoud OA, Alasmari F, Hussein AM, Sari Y. Ceftriaxone as a Novel Therapeutic Agent for Hyperglutamatergic States: Bridging the Gap Between Preclinical Results and Clinical Translation. Front Neurosci 2022; 16:841036. [PMID: 35864981 PMCID: PMC9294323 DOI: 10.3389/fnins.2022.841036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of glutamate homeostasis is a well-established core feature of neuropsychiatric disorders. Extracellular glutamate concentration is regulated by glutamate transporter 1 (GLT-1). The discovery of a beta-lactam antibiotic, ceftriaxone (CEF), as a safe compound with unique ability to upregulate GLT-1 sparked the interest in testing its efficacy as a novel therapeutic agent in animal models of neuropsychiatric disorders with hyperglutamatergic states. Indeed, more than 100 preclinical studies have shown the efficacy of CEF in attenuating the behavioral manifestations of various hyperglutamatergic brain disorders such as ischemic stroke, amyotrophic lateral sclerosis (ALS), seizure, Huntington’s disease, and various aspects of drug use disorders. However, despite rich and promising preclinical data, only one large-scale clinical trial testing the efficacy of CEF in patients with ALS is reported. Unfortunately, in that study, there was no significant difference in survival between placebo- and CEF-treated patients. In this review, we discussed the translational potential of preclinical efficacy of CEF based on four different parameters: (1) initiation of CEF treatment in relation to induction of the hyperglutamatergic state, (2) onset of response in preclinical models in relation to onset of GLT-1 upregulation, (3) mechanisms of action of CEF on GLT-1 expression and function, and (4) non-GLT-1-mediated mechanisms for CEF. Our detailed review of the literature brings new insights into underlying molecular mechanisms correlating the preclinical efficacy of CEF. We concluded here that CEF may be clinically effective in selected cases in acute and transient hyperglutamatergic states such as early drug withdrawal conditions.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Alex School of Medicine at Mayo Clinic, Phoenix, AZ, United States
- *Correspondence: Osama A. Abulseoud,
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Youssef Sari,
| |
Collapse
|
9
|
Huang WY, Lai YL, Liu KH, Lin S, Chen HY, Liang CH, Wu HM, Hsu KS. TNFα-mediated necroptosis in brain endothelial cells as a potential mechanism of increased seizure susceptibility in mice following systemic inflammation. J Neuroinflammation 2022; 19:29. [PMID: 35109859 PMCID: PMC8809013 DOI: 10.1186/s12974-022-02406-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Systemic inflammation is a potent contributor to increased seizure susceptibility. However, information regarding the effects of systemic inflammation on cerebral vascular integrity that influence neuron excitability is scarce. Necroptosis is closely associated with inflammation in various neurological diseases. In this study, necroptosis was hypothesized to be involved in the mechanism underlying sepsis-associated neuronal excitability in the cerebrovascular components (e.g., endothelia cells). METHODS Lipopolysaccharide (LPS) was used to induce systemic inflammation. Kainic acid intraperitoneal injection was used to measure the susceptibility of the mice to seizure. The pharmacological inhibitors C87 and GSK872 were used to block the signaling of TNFα receptors and necroptosis. In order to determine the features of the sepsis-associated response in the cerebral vasculature and CNS, brain tissues of mice were obtained for assays of the necroptosis-related protein expression, and for immunofluorescence staining to identify morphological changes in the endothelia and glia. In addition, microdialysis assay was used to assess the changes in extracellular potassium and glutamate levels in the brain. RESULTS Some noteworthy findings, such as increased seizure susceptibility and brain endothelial necroptosis, Kir4.1 dysfunction, and microglia activation were observed in mice following LPS injection. C87 treatment, a TNFα receptor inhibitor, showed considerable attenuation of increased kainic acid-induced seizure susceptibility, endothelial cell necroptosis, microglia activation and restoration of Kir4.1 protein expression in LPS-treated mice. Treatment with GSK872, a RIP3 inhibitor, such as C87, showed similar effects on these changes following LPS injection. CONCLUSIONS The findings of this study showed that TNFα-mediated necroptosis induced cerebrovascular endothelial damage, neuroinflammation and astrocyte Kir4.1 dysregulation, which may coalesce to contribute to the increased seizure susceptibility in LPS-treated mice. Pharmacologic inhibition targeting this necroptosis pathway may provide a promising therapeutic approach to the reduction of sepsis-associated brain endothelia cell injury, astrocyte ion channel dysfunction, and subsequent neuronal excitability.
Collapse
Affiliation(s)
- Wan-Yu Huang
- Institute of Basic Medical Sciences Basic Medicine, College of Medicine, National Cheng-Kung University, Tainan, Taiwan.,Pediatrics of Kung-Ten General Hospital, Taichung City, Taiwan
| | - Yen-Ling Lai
- Inflammation Research and Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ko-Hung Liu
- Inflammation Research and Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Shankung Lin
- Inflammation Research and Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsuan-Ying Chen
- Inflammation Research and Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Hung Liang
- Department of Food Science, Tunghai University, Taichung City, Taiwan
| | - Hung-Ming Wu
- Inflammation Research and Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan. .,Department of Neurology, Changhua Christian Hospital, Changhua City, Taiwan. .,Institute of Acupuncture, School of Chinese Medicine, China Medical University, Taichung City, Taiwan.
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences Basic Medicine, College of Medicine, National Cheng-Kung University, Tainan, Taiwan.
| |
Collapse
|
10
|
Volnova A, Tsytsarev V, Ganina O, Vélez-Crespo GE, Alves JM, Ignashchenkova A, Inyushin M. The Anti-Epileptic Effects of Carbenoxolone In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23020663. [PMID: 35054848 PMCID: PMC8775396 DOI: 10.3390/ijms23020663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Gap junctions (GJs) are intercellular junctions that allow the direct transfer of ions and small molecules between neighboring cells, and GJs between astrocytes play an important role in the development of various pathologies of the brain, including regulation of the pathological neuronal synchronization underlying epileptic seizures. Recently, we found that a pathological change is observed in astrocytes during the ictal and interictal phases of 4-aminopyridin (4-AP)-elicited epileptic activity in vitro, which was correlated with neuronal synchronization and extracellular epileptic electrical activity. This finding raises the question: Does this signal depend on GJs between astrocytes? In this study we investigated the effect of the GJ blocker, carbenoxolone (CBX), on epileptic activity in vitro and in vivo. Based on the results obtained, we came to the conclusion that the astrocytic syncytium formed by GJ-associated astrocytes, which is responsible for the regulation of potassium, affects the formation of epileptic activity in astrocytes in vitro and epileptic seizure onset. This effect is probably an important, but not the only, mechanism by which CBX suppresses epileptic activity. It is likely that the mechanisms of selective inhibition of GJs between astrocytes will show important translational benefits in anti-epileptic therapies.
Collapse
Affiliation(s)
- Anna Volnova
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia;
- Correspondence: (A.V.); (M.I.)
| | | | - Olga Ganina
- Nevsky Center of Scientific Collaboration, 192119 St. Petersburg, Russia;
| | - Grace E. Vélez-Crespo
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA; (G.E.V.-C.); (J.M.A.)
| | - Janaina M. Alves
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA; (G.E.V.-C.); (J.M.A.)
| | - Alla Ignashchenkova
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia;
- Nevsky Center of Scientific Collaboration, 192119 St. Petersburg, Russia;
| | - Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA; (G.E.V.-C.); (J.M.A.)
- Correspondence: (A.V.); (M.I.)
| |
Collapse
|
11
|
Dynamic expression of homeostatic ion channels in differentiated cortical astrocytes in vitro. Pflugers Arch 2021; 474:243-260. [PMID: 34734327 PMCID: PMC8766406 DOI: 10.1007/s00424-021-02627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/02/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
The capacity of astrocytes to adapt their biochemical and functional features upon physiological and pathological stimuli is a fundamental property at the basis of their ability to regulate the homeostasis of the central nervous system (CNS). It is well known that in primary cultured astrocytes, the expression of plasma membrane ion channels and transporters involved in homeostatic tasks does not closely reflect the pattern observed in vivo. The individuation of culture conditions that promote the expression of the ion channel array found in vivo is crucial when aiming at investigating the mechanisms underlying their dynamics upon various physiological and pathological stimuli. A chemically defined medium containing growth factors and hormones (G5) was previously shown to induce the growth, differentiation, and maturation of primary cultured astrocytes. Here we report that under these culture conditions, rat cortical astrocytes undergo robust morphological changes acquiring a multi-branched phenotype, which develops gradually during the 2-week period of culturing. The shape changes were paralleled by variations in passive membrane properties and background conductance owing to the differential temporal development of inwardly rectifying chloride (Cl−) and potassium (K+) currents. Confocal and immunoblot analyses showed that morphologically differentiated astrocytes displayed a large increase in the expression of the inward rectifier Cl− and K+ channels ClC-2 and Kir4.1, respectively, which are relevant ion channels in vivo. Finally, they exhibited a large diminution of the intermediate filaments glial fibrillary acidic protein (GFAP) and vimentin which are upregulated in reactive astrocytes in vivo. Taken together the data indicate that long-term culturing of cortical astrocytes in this chemical-defined medium promotes a quiescent functional phenotype. This culture model could aid to address the regulation of ion channel expression involved in CNS homeostasis in response to physiological and pathological challenges.
Collapse
|
12
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
13
|
Khan SS, Sobu Y, Dhekne HS, Tonelli F, Berndsen K, Alessi DR, Pfeffer SR. Pathogenic LRRK2 control of primary cilia and Hedgehog signaling in neurons and astrocytes of mouse brain. eLife 2021; 10:67900. [PMID: 34658337 PMCID: PMC8550758 DOI: 10.7554/elife.67900] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Activating LRRK2 mutations cause Parkinson’s disease, and pathogenic LRRK2 kinase interferes with ciliogenesis. Previously, we showed that cholinergic interneurons of the dorsal striatum lose their cilia in R1441C LRRK2 mutant mice (Dhekne et al., 2018). Here, we show that cilia loss is seen as early as 10 weeks of age in these mice and also in two other mouse strains carrying the most common human G2019S LRRK2 mutation. Loss of the PPM1H phosphatase that is specific for LRRK2-phosphorylated Rab GTPases yields the same cilia loss phenotype seen in mice expressing pathogenic LRRK2 kinase, strongly supporting a connection between Rab GTPase phosphorylation and cilia loss. Moreover, astrocytes throughout the striatum show a ciliation defect in all LRRK2 and PPM1H mutant models examined. Hedgehog signaling requires cilia, and loss of cilia in LRRK2 mutant rodents correlates with dysregulation of Hedgehog signaling as monitored by in situ hybridization of Gli1 and Gdnf transcripts. Dopaminergic neurons of the substantia nigra secrete a Hedgehog signal that is sensed in the striatum to trigger neuroprotection; our data support a model in which LRRK2 and PPM1H mutant mice show altered responses to critical Hedgehog signals in the nigrostriatal pathway.
Collapse
Affiliation(s)
- Shahzad S Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| | - Yuriko Sobu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| | - Herschel S Dhekne
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Francesca Tonelli
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Kerryn Berndsen
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| |
Collapse
|
14
|
Ohno Y, Kunisawa N, Shimizu S. Emerging Roles of Astrocyte Kir4.1 Channels in the Pathogenesis and Treatment of Brain Diseases. Int J Mol Sci 2021; 22:ijms221910236. [PMID: 34638578 PMCID: PMC8508600 DOI: 10.3390/ijms221910236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Inwardly rectifying Kir4.1 channels in astrocytes mediate spatial potassium (K+) buffering, a clearance mechanism for excessive extracellular K+, in tripartite synapses. In addition to K+ homeostasis, astrocytic Kir4.1 channels also play an essential role in regulating extracellular glutamate levels via coupling with glutamate transporters. Moreover, Kir4.1 channels act as novel modulators of the expression of brain-derived neurotrophic factor (BDNF) in astrocytes. Specifically, inhibition of astrocytic Kir4.1 channels elevates extracellular K+ and glutamate levels at synapses and facilitates BDNF expression in astrocytes. These changes elevate neural excitability, which may facilitate synaptic plasticity and connectivity. In this article, we summarize the functions and pharmacological features of Kir4.1 channels in astrocytes and highlight the importance of these channels in the treatment of brain diseases. Although further validation in animal models and human patients is required, astrocytic Kir4.1 channel could potentially serve as a novel therapeutic target for the treatment of depressive disorders and epilepsy.
Collapse
|
15
|
Shi J, Shi S, Shi S, Jia Q, Yuan G, Chu Y, Wang H, Hu Y, Cui H. Bibliometric analysis of potassium channel research. Channels (Austin) 2021; 14:18-27. [PMID: 31842669 PMCID: PMC7039634 DOI: 10.1080/19336950.2019.1705055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT Objective: To explore the research status, hotspots, and trends in research on potassium channel. Methods: The Web of Science core collection database was used as the data source and the visual analysis software Citespace5.4 R3 was used to visualize the studies of potassium channel in the past 10 years. The national/institutional distribution, journal distribution, authors, and related research were discussed. Results 17,392 articles were obtained. The USA, Peoples R China, Germany, England, and Japan were the main countries in the field and University of California was the most important institution for the study of potassium channel. PLoS One was the most productive journal and proceedings of the national academy of sciences of the united states of america was the most frequently cited journal in potassium channel research. The author with the highest number was Colin G Nichols and the author with the highest co- cited frequency was Sanguinetti MC. The three hot spots of potassium channel research were gene expression, Ca2+ activated k+ channel and nitric oxide. The top four research frontiers of potassium channel research were bk channel,blood pressure,oxidative stress and electrophysiology. Conclusion The study provides a perspective for understanding the potassium channel research and provides valuable information for potassium channel researchers to identify potential collaborators, partner institutions, hot topics and research frontiers.
Collapse
Affiliation(s)
- Jingjing Shi
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Shuai Shi
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiulei Jia
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguang Chu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Szabó Z, Péter M, Héja L, Kardos J. Dual Role for Astroglial Copper-Assisted Polyamine Metabolism during Intense Network Activity. Biomolecules 2021; 11:604. [PMID: 33921742 PMCID: PMC8073386 DOI: 10.3390/biom11040604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Astrocytes serve essential roles in human brain function and diseases. Growing evidence indicates that astrocytes are central players of the feedback modulation of excitatory Glu signalling during epileptiform activity via Glu-GABA exchange. The underlying mechanism results in the increase of tonic inhibition by reverse operation of the astroglial GABA transporter, induced by Glu-Na+ symport. GABA, released from astrocytes, is synthesized from the polyamine (PA) putrescine and this process involves copper amino oxidase. Through this pathway, putrescine can be considered as an important source of inhibitory signaling that counterbalances epileptic discharges. Putrescine, however, is also a precursor for spermine that is known to enhance gap junction channel communication and, consequently, supports long-range Ca2+ signaling and contributes to spreading of excitatory activity through the astrocytic syncytium. Recently, we presented the possibility of neuron-glia redox coupling through copper (Cu+/Cu2+) signaling and oxidative putrescine catabolism. In the current work, we explore whether the Cu+/Cu2+ homeostasis is involved in astrocytic control on neuronal excitability by regulating PA catabolism. We provide supporting experimental data underlying this hypothesis. We show that the blockade of copper transporter (CTR1) by AgNO3 (3.6 µM) prevents GABA transporter-mediated tonic inhibitory currents, indicating causal relationship between copper (Cu+/Cu2+) uptake and the catabolism of putrescine to GABA in astrocytes. In addition, we show that MnCl2 (20 μM), an inhibitor of the divalent metal transporter DMT1, also prevents the astrocytic Glu-GABA exchange. Furthermore, we observed that facilitation of copper uptake by added CuCl2 (2 µM) boosts tonic inhibitory currents. These findings corroborate the hypothesis that modulation of neuron-glia coupling by copper uptake drives putrescine → GABA transformation, which leads to subsequent Glu-GABA exchange and tonic inhibition. Findings may in turn highlight the potential role of copper signaling in fine-tuning the activity of the tripartite synapse.
Collapse
Affiliation(s)
- Zsolt Szabó
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Márton Péter
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Julianna Kardos
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| |
Collapse
|
17
|
Kinboshi M, Ikeda A, Ohno Y. Role of Astrocytic Inwardly Rectifying Potassium (Kir) 4.1 Channels in Epileptogenesis. Front Neurol 2020; 11:626658. [PMID: 33424762 PMCID: PMC7786246 DOI: 10.3389/fneur.2020.626658] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/08/2020] [Indexed: 12/25/2022] Open
Abstract
Astrocytes regulate potassium and glutamate homeostasis via inwardly rectifying potassium (Kir) 4.1 channels in synapses, maintaining normal neural excitability. Numerous studies have shown that dysfunction of astrocytic Kir4.1 channels is involved in epileptogenesis in humans and animal models of epilepsy. Specifically, Kir4.1 channel inhibition by KCNJ10 gene mutation or expressional down-regulation increases the extracellular levels of potassium ions and glutamate in synapses and causes hyperexcitation of neurons. Moreover, recent investigations demonstrated that inhibition of Kir4.1 channels facilitates the expression of brain-derived neurotrophic factor (BDNF), an important modulator of epileptogenesis, in astrocytes. In this review, we summarize the current understanding on the role of astrocytic Kir4.1 channels in epileptogenesis, with a focus on functional and expressional changes in Kir4.1 channels and their regulation of BDNF secretion. We also discuss the potential of Kir4.1 channels as a therapeutic target for the prevention of epilepsy.
Collapse
Affiliation(s)
- Masato Kinboshi
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan.,Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| |
Collapse
|
18
|
Ibrahim O, Sutherland HG, Maksemous N, Smith R, Haupt LM, Griffiths LR. Exploring Neuronal Vulnerability to Head Trauma Using a Whole Exome Approach. J Neurotrauma 2020; 37:1870-1879. [PMID: 32233732 PMCID: PMC7462038 DOI: 10.1089/neu.2019.6962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain injuries are associated with oxidative stress and a need to restore neuronal homeostasis. Mutations in ion channel genes, in particular CACNA1A, have been implicated in familial hemiplegic migraine (FHM) and in the development of concussion-related symptoms in response to trivial head trauma. The aim of this study was to explore the potential role of variants in other ion channel genes in the development of such responses. We conducted whole exome sequencing (WES) on16 individuals who developed a range of neurological and concussion-related symptoms following minor or trivial head injuries. All individuals were initially tested and shown to be negative for mutations in known FHM genes. Variants identified from the WES results were filtered to identify rare variants (minor allele frequency [MAF] <0.01) in genes related to neural processes as well as genes highly expressed in the brain using a combination of in silico prediction tools (SIFT, PolyPhen, PredictSNP, Mutation Taster, and Mutation Assessor). Rare (MAF <0.001) or novel heterozygous variants in 7 ion channel genes were identified in 37.5% (6/16) of the cases (CACNA1I, CACNA1C, ATP10A, ATP7B, KCNAB1, KCNJ10, and SLC26A4), rare variants in neurotransmitter genes were found in 2 cases (GABRG1 and GRIK1), and rare variants in 3 ubiquitin-related genes identified in 4 cases (SQSTM1, TRIM2, and HECTD1). In this study, the largest proportion of potentially pathogenic variants in individuals with severe responses to minor head trauma were identified in genes previously implicated in migraine and seizure-related autosomal recessive neurological disorders. Together with results implicating variants in the hemiplegic migraine genes, CACNA1A and ATP1A2, in severe head trauma response, our results support a role for heterozygous deleterious mutations in genes implicated in neurological dysfunction and potentially increasing the risk of poor response to trivial head trauma.
Collapse
Affiliation(s)
- Omar Ibrahim
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Neven Maksemous
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Robert Smith
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| |
Collapse
|
19
|
Cucchiara F, Pasqualetti F, Giorgi FS, Danesi R, Bocci G. Epileptogenesis and oncogenesis: An antineoplastic role for antiepileptic drugs in brain tumours? Pharmacol Res 2020; 156:104786. [PMID: 32278037 DOI: 10.1016/j.phrs.2020.104786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
The first description of epileptic seizures due to brain tumours occurred in 19th century. Nevertheless, after over one hundred years, scientific literature is still lacking on how epilepsy and its treatment can affect tumour burden, progression and clinical outcomes. In patients with brain tumours, epilepsy dramatically impacts their quality of life (QoL). Even antiepileptic therapy seems to affect tumor lesion development. Numerous studies suggest that certain actors involved in epileptogenesis (inflammatory changes, glutamate and its ionotropic and metabotropic receptors, GABA-A and its GABA-AR receptor, as well as certain ligand- and voltage-gated ion channel) may also contribute to tumorigenesis. Although some antiepileptic drugs (AEDs) are known operating on such mechanisms underlying epilepsy and tumor development, few preclinical and clinical studies have tried to investigate them as targets of pharmacological tools acting to control both phenomena. The primary aim of this review is to summarize known determinants and pathophysiological mechanisms of seizures, as well as of cell growth and spread, in patients with brain tumors. Therefore, a special focus will be provided on the anticancer effects of commonly prescribed AEDs (including levetiracetam, valproic acid, oxcarbazepine and others), with an overview of both preclinical and clinical data. Potential clinical applications of this finding are discussed.
Collapse
Affiliation(s)
- Federico Cucchiara
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- U.O. Radioterapia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - Filippo Sean Giorgi
- U.O. Neurologia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Pisa, Italy; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Romano Danesi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy.
| |
Collapse
|
20
|
Méndez-González MP, Rivera-Aponte DE, Benedikt J, Maldonado-Martínez G, Tejeda-Bayron F, Skatchkov SN, Eaton MJ. Downregulation of Astrocytic Kir4.1 Potassium Channels Is Associated with Hippocampal Neuronal Hyperexcitability in Type 2 Diabetic Mice. Brain Sci 2020; 10:brainsci10020072. [PMID: 32019062 PMCID: PMC7071513 DOI: 10.3390/brainsci10020072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Epilepsy, characterized by recurrent seizures, affects 1% of the general population. Interestingly, 25% of diabetics develop seizures with a yet unknown mechanism. Hyperglycemia downregulates inwardly rectifying potassium channel 4.1 (Kir4.1) in cultured astrocytes. Therefore, the present study aims to determine if downregulation of functional astrocytic Kir4.1 channels occurs in brains of type 2 diabetic mice and could influence hippocampal neuronal hyperexcitability. Using whole-cell patch clamp recording in hippocampal brain slices from male mice, we determined the electrophysiological properties of stratum radiatum astrocytes and CA1 pyramidal neurons. In diabetic mice, astrocytic Kir4.1 channels were functionally downregulated as evidenced by multiple characteristics including depolarized membrane potential, reduced barium-sensitive Kir currents and impaired potassium uptake capabilities of hippocampal astrocytes. Furthermore, CA1 pyramidal neurons from diabetic mice displayed increased spontaneous activity: action potential frequency was ≈9 times higher in diabetic compared with non-diabetic mice and small EPSC event frequency was significantly higher in CA1 pyramidal cells of diabetics compared to non-diabetics. These differences were apparent in control conditions and largely pronounced in response to the pro-convulsant 4-aminopyridine. Our data suggest that astrocytic dysfunction due to downregulation of Kir4.1 channels may increase seizure susceptibility by impairing astrocytic ability to maintain proper extracellular homeostasis.
Collapse
Affiliation(s)
- Miguel P. Méndez-González
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00960-6032, USA; (M.P.M.-G.); (F.T.-B.)
- Department of Sciences and Technology, Antilles Adventist University, Mayaguez, PR 00680, USA
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00604-6150, USA
| | - David E. Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00960-6032, USA; (M.P.M.-G.); (F.T.-B.)
| | - Jan Benedikt
- Departments of Physiology and Biochemistry Universidad Central del Caribe, Bayamón, PR 00960-6032, USA;
| | | | - Flavia Tejeda-Bayron
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00960-6032, USA; (M.P.M.-G.); (F.T.-B.)
| | - Serguei N. Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00960-6032, USA; (M.P.M.-G.); (F.T.-B.)
- Departments of Physiology and Biochemistry Universidad Central del Caribe, Bayamón, PR 00960-6032, USA;
- Correspondence: (S.N.S.); (M.J.E.); Tel.: +787-798-3001 (ext. 2057) (S.N.S.); +787-798-3001 (ext. 2034) (M.J.E.); Fax: +787-786-6285 (M.J.E.)
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00960-6032, USA; (M.P.M.-G.); (F.T.-B.)
- Correspondence: (S.N.S.); (M.J.E.); Tel.: +787-798-3001 (ext. 2057) (S.N.S.); +787-798-3001 (ext. 2034) (M.J.E.); Fax: +787-786-6285 (M.J.E.)
| |
Collapse
|
21
|
Bossu JL, Wioland L, Doussau F, Isope P, Popoff MR, Poulain B. Epsilon Toxin from Clostridium perfringens Causes Inhibition of Potassium inward Rectifier (Kir) Channels in Oligodendrocytes. Toxins (Basel) 2020; 12:toxins12010036. [PMID: 31935961 PMCID: PMC7020416 DOI: 10.3390/toxins12010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, causes serious neurological disorders in animals. ETX can bind to the white matter of the brain and the oligodendrocytes, which are the cells forming the myelin sheath around neuron axons in the white matter of the central nervous system. After binding to oligodendrocytes, ETX causes demyelination in rat cerebellar slices. We further investigated the effects of ETX on cerebellar oligodendrocytes and found that ETX induced small transmembrane depolarization (by ~ +6.4 mV) in rat oligodendrocytes primary cultures. This was due to partial inhibition of the transmembrane inward rectifier potassium current (Kir). Of the two distinct types of Kir channel conductances (~25 pS and ~8.5 pS) recorded in rat oligodendrocytes, we found that ETX inhibited the large-conductance one. This inhibition did not require direct binding of ETX to a Kir channel. Most likely, the binding of ETX to its membrane receptor activates intracellular pathways that block the large conductance Kir channel activity in oligodendrocyte. Altogether, these findings and previous observations pinpoint oligodendrocytes as a major target for ETX. This supports the proposal that ETX might be a cause for Multiple Sclerosis, a disease characterized by myelin damage.
Collapse
Affiliation(s)
- Jean Louis Bossu
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France; (J.L.B.); (L.W.); (F.D.); (P.I.)
| | - Laetitia Wioland
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France; (J.L.B.); (L.W.); (F.D.); (P.I.)
| | - Frédéric Doussau
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France; (J.L.B.); (L.W.); (F.D.); (P.I.)
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France; (J.L.B.); (L.W.); (F.D.); (P.I.)
| | - Michel R. Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 28 rue du Docteur Roux, Paris 75724, France;
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France; (J.L.B.); (L.W.); (F.D.); (P.I.)
- Correspondence:
| |
Collapse
|
22
|
Li K, Li J, Zheng J, Qin S. Reactive Astrocytes in Neurodegenerative Diseases. Aging Dis 2019; 10:664-675. [PMID: 31165009 PMCID: PMC6538217 DOI: 10.14336/ad.2018.0720] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kunyu Li
- 1Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiatong Li
- 1Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jialin Zheng
- 2Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Song Qin
- 1Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
23
|
Down-Regulation of Astrocytic Kir4.1 Channels during the Audiogenic Epileptogenesis in Leucine-Rich Glioma-Inactivated 1 ( Lgi1) Mutant Rats. Int J Mol Sci 2019; 20:ijms20051013. [PMID: 30813600 PMCID: PMC6429235 DOI: 10.3390/ijms20051013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
The dysfunction of astrocytic inwardly rectifying potassium (Kir) 4.1 channels, which mediate the spatial potassium-buffering function of astrocytes, is known to be involved in the development of epilepsy. Here, we analyzed the Kir4.1 expressional changes in Leucine-Rich Glioma-Inactivated 1 (Lgi1) mutant rats, which is a model of autosomal dominant lateral temporal lobe epilepsy in humans, to clarify the role of astrocytic Kir4.1 channels in Lgi1-related epileptogenesis. Priming acoustic stimulation (at postnatal day 16) conferred seizure susceptibility on Lgi1 mutant rats, which evoked audiogenic seizures with test stimulation at eight weeks. In the seizure-susceptible Lgi1 mutant rats (before test stimulation), astrocytic Kir4.1 expression was down-regulated region-specifically in the cerebral cortex, hippocampus, and amygdala. In addition, prophylactic treatments of Lgi1 mutant rats with valproic acid (VPA, 30 mg/kg and 200 mg/kg) for two weeks prevented both the development of seizure susceptibility and the down-regulation of Kir4.1 expression in astrocytes. The present study demonstrated for the first time that the astrocytic Kir4.1 expression was reduced in the Lgi1-related seizure model, suggesting that the down-regulation of Kir4.1 channels in astrocytes is involved in audiogenic epileptogenesis caused by Lgi1 mutation. In addition, VPA seemed to have a prophylactic effect on Lgi1-related seizures.
Collapse
|
24
|
Ohno Y, Kinboshi M, Shimizu S. Inwardly Rectifying Potassium Channel Kir4.1 as a Novel Modulator of BDNF Expression in Astrocytes. Int J Mol Sci 2018; 19:ijms19113313. [PMID: 30356026 PMCID: PMC6274740 DOI: 10.3390/ijms19113313] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/02/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key molecule essential for neural plasticity and development, and is implicated in the pathophysiology of various central nervous system (CNS) disorders. It is now documented that BDNF is synthesized not only in neurons, but also in astrocytes which actively regulate neuronal activities by forming tripartite synapses. Inwardly rectifying potassium (Kir) channel subunit Kir4.1, which is specifically expressed in astrocytes, constructs Kir4.1 and Kir4.1/5.1 channels, and mediates the spatial potassium (K+) buffering action of astrocytes. Recent evidence illustrates that Kir4.1 channels play important roles in bringing about the actions of antidepressant drugs and modulating BDNF expression in astrocytes. Although the precise mechanisms remain to be clarified, it seems likely that inhibition (down-regulation or blockade) of astrocytic Kir4.1 channels attenuates K+ buffering, increases neuronal excitability by elevating extracellular K+ and glutamate, and facilitates BDNF expression. Conversely, activation (up-regulation or opening) of Kir4.1 channels reduces neuronal excitability by lowering extracellular K+ and glutamate, and attenuates BDNF expression. Particularly, the former pathophysiological alterations seem to be important in epileptogenesis and pain sensitization, and the latter in the pathogenesis of depressive disorders. In this article, we review the functions of Kir4.1 channels, with a focus on their regulation of spatial K+ buffering and BDNF expression in astrocytes, and discuss the role of the astrocytic Kir4.1-BDNF system in modulating CNS disorders.
Collapse
Affiliation(s)
- Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masato Kinboshi
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
25
|
Chiacchiaretta M, Bramini M, Rocchi A, Armirotti A, Giordano E, Vázquez E, Bandiera T, Ferroni S, Cesca F, Benfenati F. Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. NANO LETTERS 2018; 18:5827-5838. [PMID: 30088941 DOI: 10.1021/acs.nanolett.8b02487] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Graphene-based materials are the focus of intense research efforts to devise novel theranostic strategies for targeting the central nervous system. In this work, we have investigated the consequences of long-term exposure of primary rat astrocytes to pristine graphene (GR) and graphene oxide (GO) flakes. We demonstrate that GR/GO interfere with a variety of intracellular processes as a result of their internalization through the endolysosomal pathway. Graphene-exposed astrocytes acquire a more differentiated morphological phenotype associated with extensive cytoskeletal rearrangements. Profound functional alterations are induced by GO internalization, including the upregulation of inward-rectifying K+ channels and of Na+-dependent glutamate uptake, which are linked to the astrocyte capacity to control the extracellular homeostasis. Interestingly, GO-pretreated astrocytes promote the functional maturation of cocultured primary neurons by inducing an increase in intrinsic excitability and in the density of GABAergic synapses. The results indicate that graphene nanomaterials profoundly affect astrocyte physiology in vitro with consequences for neuronal network activity. This work supports the view that GO-based materials could be of great interest to address pathologies of the central nervous system associated with astrocyte dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | - Ester Vázquez
- Departamento de Química Orgánica , Universidad de Castilla La-Mancha , 13071 Ciudad Real , Spain
| | | | - Stefano Ferroni
- Department of Pharmacy and Biotechnology , University of Bologna , 40126 Bologna , Italy
| | - Fabrizia Cesca
- IRCCS Ospedale Policlinico , San Martino, Genova , Italy
| | | |
Collapse
|
26
|
Mukai T, Kinboshi M, Nagao Y, Shimizu S, Ono A, Sakagami Y, Okuda A, Fujimoto M, Ito H, Ikeda A, Ohno Y. Antiepileptic Drugs Elevate Astrocytic Kir4.1 Expression in the Rat Limbic Region. Front Pharmacol 2018; 9:845. [PMID: 30127740 PMCID: PMC6088221 DOI: 10.3389/fphar.2018.00845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022] Open
Abstract
Inwardly rectifying potassium (Kir) channel subunits Kir4.1 are specifically expressed in astrocytes and regulate neuronal excitability by mediating spatial potassium buffering. In addition, it is now known that astrocytic Kir4.1 channels are closely involved in the pathogenesis of epilepsy. Here, to explore the role of Kir4.1 channels in the treatment of epilepsy, we evaluated the effects of the antiepileptic drugs, valproate, phenytoin, phenobarbital and ethosuximide, on Kir4.1 expression in astrocytes using immunohistochemical techniques. Repeated treatment of rats with valproate (30–300 mg/kg, i.p., for 1–10 days) significantly elevated the Kir4.1 expression levels in the cerebral cortex, amygdala and hippocampus. Up-regulation of Kir4.1 expression by valproate occurred in a dose- and treatment period-related manner, and did not accompany an increase in the number of astrocytes probed by glial fibrillary acidic protein (GFAP). In addition, repeated treatment with phenytoin (30 mg/kg, i.p., for 10 days) or phenobarbital (30 mg/kg, i.p., for 10 days) also elevated Kir4.1 expression region-specifically in the amygdala. However, ethosuximide (100 mg/kg, i.p., for 10 days), which can alleviate absence but not convulsive seizures, showed no effects on the astrocytic Kir4.1 expression. The present results demonstrated for the first time that the antiepileptic drugs effective for convulsive seizures (valproate, phenytoin, and phenobarbital) commonly elevate the astrocytic Kir4.1 channel expression in the limbic regions, which may be related to their antiepileptic actions.
Collapse
Affiliation(s)
- Takahiro Mukai
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Masato Kinboshi
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan.,Department of Neurology, Wakayama Medical University, Wakayama, Japan.,Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Nagao
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Asuka Ono
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Yoshihisa Sakagami
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Aoi Okuda
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Megumi Fujimoto
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| |
Collapse
|
27
|
Rivera-Pagán AF, Méndez-González MP, Rivera-Aponte DE, Malpica-Nieves CJ, Melnik-Martínez KV, Zayas-Santiago A, Maldonado-Martínez G, Shuba YM, Skatchkov SN, Eaton MJ. A-Kinase-Anchoring Protein (AKAP150) is expressed in Astrocytes and Upregulated in Response to Ischemia. Neuroscience 2018; 384:54-63. [PMID: 29800717 DOI: 10.1016/j.neuroscience.2018.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
A-kinase-anchoring proteins, AKAPs, are scaffolding proteins that associate with kinases and phosphatases, and direct them to a specific submembrane site to coordinate signaling events. AKAP150, a rodent ortholog of human AKAP79, has been extensively studied in neurons, but very little is known about the localization and function of AKAP150 in astrocytes, the major cell type in brain. Thus, in this study, we assessed the localization of AKAP150 in astrocytes and elucidated its role during physiological and ischemic conditions. Herein, we demonstrate that AKAP150 is localized in astrocytes and is up-regulated during ischemia both in vitro and in vivo. Knock-down of AKAP150 by RNAi depolarizes the astrocytic membrane potential and substantially reduces by 80% the ability of astrocytes to take up extracellular potassium during ischemic conditions. Therefore, upregulation of AKAP150 during ischemia preserves potassium conductance and the associated hyperpolarized membrane potential of astrocytes; properties of astrocytes needed to maintain extracellular brain homeostasis. Taken together, these data suggest that AKAP150 may play a pivotal role in the neuroprotective mechanism of astrocytes during pathological conditions.
Collapse
Affiliation(s)
- Aixa F Rivera-Pagán
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, United States
| | - Miguel P Méndez-González
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, United States; University of Puerto Rico, Natural Sciences Department, Aguadilla, PR, United States
| | - David E Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, United States
| | | | | | - Astrid Zayas-Santiago
- Department of Pathology and Laboratory Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| | | | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology of the National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Serguei N Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, United States; Department of Physiology, Universidad Central del Caribe, Bayamón, PR, United States.
| | - Misty J Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, United States.
| |
Collapse
|
28
|
Larson VA, Mironova Y, Vanderpool KG, Waisman A, Rash JE, Agarwal A, Bergles DE. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. eLife 2018; 7:34829. [PMID: 29596047 PMCID: PMC5903864 DOI: 10.7554/elife.34829] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
The inwardly rectifying K+ channel Kir4.1 is broadly expressed by CNS glia and deficits in Kir4.1 lead to seizures and myelin vacuolization. However, the role of oligodendrocyte Kir4.1 channels in controlling myelination and K+ clearance in white matter has not been defined. Here, we show that selective deletion of Kir4.1 from oligodendrocyte progenitors (OPCs) or mature oligodendrocytes did not impair their development or disrupt the structure of myelin. However, mice lacking oligodendrocyte Kir4.1 channels exhibited profound functional impairments, including slower clearance of extracellular K+ and delayed recovery of axons from repetitive stimulation in white matter, as well as spontaneous seizures, a lower seizure threshold, and activity-dependent motor deficits. These results indicate that Kir4.1 channels in oligodendrocytes play an important role in extracellular K+ homeostasis in white matter, and that selective loss of this channel from oligodendrocytes is sufficient to impair K+ clearance and promote seizures.
Collapse
Affiliation(s)
- Valerie A Larson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yevgeniya Mironova
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kimberly G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, United States
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, United States
| | - Amit Agarwal
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
29
|
Kinboshi M, Mukai T, Nagao Y, Matsuba Y, Tsuji Y, Tanaka S, Tokudome K, Shimizu S, Ito H, Ikeda A, Inanobe A, Kurachi Y, Inoue S, Ohno Y. Inhibition of Inwardly Rectifying Potassium (Kir) 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF) Expression in Astrocytes. Front Mol Neurosci 2017; 10:408. [PMID: 29358904 PMCID: PMC5768989 DOI: 10.3389/fnmol.2017.00408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/24/2017] [Indexed: 11/16/2022] Open
Abstract
Inwardly rectifying potassium (Kir) 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown) on expression of brain-derived neurotrophic factor (BDNF), a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine) also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA) targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Masato Kinboshi
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka, Japan.,Department of Neurology, Wakayama Medical University, Wakayama, Japan.,Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Mukai
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Yuki Nagao
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Yusuke Matsuba
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Yoshimi Tsuji
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Shiho Tanaka
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Kentaro Tokudome
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka, Japan.,Department of Molecular and Cellular Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Saki Shimizu
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Inanobe
- Department of Molecular and Cellular Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshihisa Kurachi
- Department of Molecular and Cellular Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Seiji Inoue
- Education and Research Center for Fundamental Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Yukihiro Ohno
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| |
Collapse
|
30
|
Genetically epilepsy-prone rats (GEPRs) and DBA/2 mice: Two animal models of audiogenic reflex epilepsy for the evaluation of new generation AEDs. Epilepsy Behav 2017; 71:165-173. [PMID: 26254980 DOI: 10.1016/j.yebeh.2015.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023]
Abstract
This review summarizes the current knowledge about DBA/2 mice and genetically epilepsy-prone rats (GEPRs) and discusses the contribution of such animal models on the investigation of possible new therapeutic targets and new anticonvulsant compounds for the treatment of epilepsy. Also, possible chemical or physical agents acting as proconvulsant agents are described. Abnormal activities of enzymes involved in catecholamine and serotonin synthesis and metabolism were reported in these models, and as a result of all these abnormalities, seizure susceptibility in both animals is greatly affected by pharmacological manipulations of the brain levels of monoamines and, prevalently, serotonin. In addition, both genetic epileptic models permit the evaluation of pharmacodynamic and pharmacokinetic interactions among several drugs measuring plasma and/or brain level of each compound. Audiogenic models of epilepsy have been used not only for reflex epilepsy studies, but also as animal models of epileptogenesis. The seizure predisposition (epileptiform response to sound stimulation) and substantial characterization of behavioral, cellular, and molecular alterations in both acute and chronic (kindling) protocols potentiate the usefulness of these models in elucidating ictogenesis, epileptogenesis, and their mechanisms. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
|
31
|
Tanaka T, Ihara M. Post-stroke epilepsy. Neurochem Int 2017; 107:219-228. [PMID: 28202284 DOI: 10.1016/j.neuint.2017.02.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 01/17/2023]
Abstract
Post-stroke epilepsy (PSE) is a common complication after stroke, yet treatment options remain limited. While many physicians prescribe antiepileptic drugs (AED) for secondary prevention of PSE, it is unclear which treatments are most effective in the prevention of recurrence of symptoms, or whether such therapy is needed for primary prevention. This review discusses the current understanding of epidemiology, diagnoses, mechanisms, risk factors, and treatments of PSE.
Collapse
Affiliation(s)
- Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
32
|
Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem Res 2016; 42:1724-1734. [DOI: 10.1007/s11064-016-2105-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
|
33
|
Wanke E, Gullo F, Dossi E, Valenza G, Becchetti A. Neuron-glia cross talk revealed in reverberating networks by simultaneous extracellular recording of spikes and astrocytes' glutamate transporter and K+ currents. J Neurophysiol 2016; 116:2706-2719. [PMID: 27683885 PMCID: PMC5133298 DOI: 10.1152/jn.00509.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/22/2016] [Indexed: 01/11/2023] Open
Abstract
In neocortex networks, we simultaneously captured spikes and the slower astrocytes' K+and glutamate transporter (GluT) currents with the use of individual MEA electrodes. Inward and outward K+currents in different regions of the glial syncytium suggested that spatial buffering was operant. Moreover, in organotypic slices from ventral tegmental area and prefrontal cortex, the large GluT current amplitudes allowed to measure transporter currents with a single electrode. Our method allows direct study of the dynamic interplay of different cell types in excitable and nonexcitable tissue. Astrocytes uptake synaptically released glutamate with electrogenic transporters (GluT) and buffer the spike-dependent extracellular K+ excess with background K+ channels. We studied neuronal spikes and the slower astrocytic signals on reverberating neocortical cultures and organotypic slices from mouse brains. Spike trains and glial responses were simultaneously captured from individual sites of multielectrode arrays (MEA) by splitting the recorded traces into appropriate filters and reconstructing the original signal by deconvolution. GluT currents were identified by using dl-threo-β-benzyloxyaspartate (TBOA). K+ currents were blocked by 30 μM Ba2+, suggesting a major contribution of inwardly rectifying K+ currents. Both types of current were tightly correlated with the spike rate, and their astrocytic origin was tested in primary cultures by blocking glial proliferation with cytosine β-d-arabinofuranoside (AraC). The spike-related, time-locked inward and outward K+ currents in different regions of the astrocyte syncytium were consistent with the assumptions of the spatial K+ buffering model. In organotypic slices from ventral tegmental area and prefrontal cortex, the GluT current amplitudes exceeded those observed in primary cultures by several orders of magnitude, which allowed to directly measure transporter currents with a single electrode. Simultaneously measuring cell signals displaying widely different amplitudes and kinetics will help clarify the neuron-glia interplay and make it possible to follow the cross talk between different cell types in excitable as well as nonexcitable tissue.
Collapse
Affiliation(s)
- Enzo Wanke
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Francesca Gullo
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Elena Dossi
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Gaetano Valenza
- Research Centre "E. Piaggio" and Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| | - Andrea Becchetti
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| |
Collapse
|
34
|
Gu C. KIR4.1: K + Channel Illusion or Reality in the Autoimmune Pathogenesis of Multiple Sclerosis. Front Mol Neurosci 2016; 9:90. [PMID: 27729847 PMCID: PMC5037192 DOI: 10.3389/fnmol.2016.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/12/2016] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Many believe autoimmune pathogenesis plays a key role in MS, but its target(s) remains elusive. A recent study detected autoantibodies against KIR4.1, an ATP-sensitive, inward rectifier potassium channel, in nearly half of the MS patients examined. KIR4.1 channels are expressed in astrocytes. Together with aquaporin 4 (AQP4) water channels, they regulate astrocytic functions vital for myelination. Autoantibodies against AQP4 have been established as a key biomarker for neuromyelitis optica (NMO) and contributed to diagnostic and treatment strategy adjustments. Similarly, identification of KIR4.1 autoantibodies could have high therapeutic values in treating MS. Consistent with its potential role in MS, KIR4.1 dysfunction is implicated in several neurological disorders. However, the enrichment of KIR4.1 autoantibodies in MS patients is questioned by follow-up studies. Further, investigations are needed to clarify this controversy and unravel the underlying mechanisms of MS pathogenesis.
Collapse
Affiliation(s)
- Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University Columbus, OH, USA
| |
Collapse
|
35
|
Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC, Olsen ML. The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol 2016; 132:1-21. [PMID: 26961251 PMCID: PMC6774634 DOI: 10.1007/s00401-016-1553-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/15/2022]
Abstract
Kir4.1 is an inwardly rectifying K(+) channel expressed exclusively in glial cells in the central nervous system. In glia, Kir4.1 is implicated in several functions including extracellular K(+) homeostasis, maintenance of astrocyte resting membrane potential, cell volume regulation, and facilitation of glutamate uptake. Knockout of Kir4.1 in rodent models leads to severe neurological deficits, including ataxia, seizures, sensorineural deafness, and early postnatal death. Accumulating evidence indicates that Kir4.1 plays an integral role in the central nervous system, prompting many laboratories to study the potential role that Kir4.1 plays in human disease. In this article, we review the growing evidence implicating Kir4.1 in a wide array of neurological disease. Recent literature suggests Kir4.1 dysfunction facilitates neuronal hyperexcitability and may contribute to epilepsy. Genetic screens demonstrate that mutations of KCNJ10, the gene encoding Kir4.1, causes SeSAME/EAST syndrome, which is characterized by early onset seizures, compromised verbal and motor skills, profound cognitive deficits, and salt-wasting. KCNJ10 has also been linked to developmental disorders including autism. Cerebral trauma, ischemia, and inflammation are all associated with decreased astrocytic Kir4.1 current amplitude and astrocytic dysfunction. Additionally, neurodegenerative diseases such as Alzheimer disease and amyotrophic lateral sclerosis demonstrate loss of Kir4.1. This is particularly exciting in the context of Huntington disease, another neurodegenerative disorder in which restoration of Kir4.1 ameliorated motor deficits, decreased medium spiny neuron hyperexcitability, and extended survival in mouse models. Understanding the expression and regulation of Kir4.1 will be critical in determining if this channel can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Sinifunanya E Nwaobi
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Vishnu A Cuddapah
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Kelsey C Patterson
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Anita C Randolph
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Michelle L Olsen
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK.
| |
Collapse
|
36
|
Skatchkov SN, Antonov SM, Eaton MJ. Glia and glial polyamines. Role in brain function in health and disease. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Abstract
This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models.
Collapse
Affiliation(s)
- Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| |
Collapse
|
38
|
Méndez-González MP, Kucheryavykh YV, Zayas-Santiago A, Vélez-Carrasco W, Maldonado-Martínez G, Cubano LA, Nichols CG, Skatchkov SN, Eaton MJ. Novel KCNJ10 Gene Variations Compromise Function of Inwardly Rectifying Potassium Channel 4.1. J Biol Chem 2016; 291:7716-26. [PMID: 26867573 PMCID: PMC4817196 DOI: 10.1074/jbc.m115.679910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/09/2016] [Indexed: 11/06/2022] Open
Abstract
TheKCNJ10gene encoding Kir4.1 contains numerous SNPs whose molecular effects remain unknown. We investigated the functional consequences of uncharacterized SNPs (Q212R, L166Q, and G83V) on homomeric (Kir4.1) and heteromeric (Kir4.1-Kir5.1) channel function. We compared these with previously characterized EAST/SeSAME mutants (G77R and A167V) in kidney-derived tsA201 cells and in glial cell-derived C6 glioma cells. The membrane potentials of tsA201 cells expressing G77R and G83V were significantly depolarized as compared with WTKir4.1, whereas cells expressing Q212R, L166Q, and A167V were less affected. Furthermore, macroscopic currents from cells expressing WTKir4.1 and Q212R channels did not differ, whereas currents from cells expressing L166Q, G83V, G77R, and A167V were reduced. Unexpectedly, L166Q current responses were rescued when co-expressed with Kir5.1. In addition, we observed notable differences in channel activity between C6 glioma cells and tsA201 cells expressing L166Q and A167V, suggesting that there are underlying differences between cell lines in terms of Kir4.1 protein synthesis, stability, or expression at the surface. Finally, we determined spermine (SPM) sensitivity of these uncharacterized SNPs and found that Q212R-containing channels displayed reduced block by 1 μmSPM. At 100 μmSPM, the block was equal to or greater than WT, suggesting that the greater driving force of SPM allowed achievement of steady state. In contrast, L166Q-Kir5.1 channels achieved a higher block than WT, suggesting a more stable interaction of SPM in the deep pore cavity. Overall, our data suggest that G83V, L166Q, and Q212R residues play a pivotal role in controlling Kir4.1 channel function.
Collapse
Affiliation(s)
| | | | | | | | | | - Luis A Cubano
- Anatomy and Cell Biology, Universidad Central del Caribe, Bayamón, Puerto Rico 00960-6032 and
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | | | |
Collapse
|
39
|
Rivera-Aponte DE, Méndez-González MP, Rivera-Pagán AF, Kucheryavykh YV, Kucheryavykh LY, Skatchkov SN, Eaton MJ. Hyperglycemia reduces functional expression of astrocytic Kir4.1 channels and glial glutamate uptake. Neuroscience 2015; 310:216-23. [PMID: 26404875 DOI: 10.1016/j.neuroscience.2015.09.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 11/24/2022]
Abstract
Diabetics are at risk for a number of serious health complications including an increased incidence of epilepsy and poorer recovery after ischemic stroke. Astrocytes play a critical role in protecting neurons by maintaining extracellular homeostasis and preventing neurotoxicity through glutamate uptake and potassium buffering. These functions are aided by the presence of potassium channels, such as Kir4.1 inwardly rectifying potassium channels, in the membranes of astrocytic glial cells. The purpose of the present study was to determine if hyperglycemia alters Kir4.1 potassium channel expression and homeostatic functions of astrocytes. We used q-PCR, Western blot, patch-clamp electrophysiology studying voltage and potassium step responses and a colorimetric glutamate clearance assay to assess Kir4.1 channel levels and homeostatic functions of rat astrocytes grown in normal and high glucose conditions. We found that astrocytes grown in high glucose (25 mM) had an approximately 50% reduction in Kir4.1 mRNA and protein expression as compared with those grown in normal glucose (5mM). These reductions occurred within 4-7 days of exposure to hyperglycemia, whereas reversal occurred between 7 and 14 days after return to normal glucose. The decrease in functional Kir channels in the astrocytic membrane was confirmed using barium to block Kir channels. In the presence of 100-μM barium, the currents recorded from astrocytes in response to voltage steps were reduced by 45%. Furthermore, inward currents induced by stepping extracellular [K(+)]o from 3 to 10mM (reflecting potassium uptake) were 50% reduced in astrocytes grown in high glucose. In addition, glutamate clearance by astrocytes grown in high glucose was significantly impaired. Taken together, our results suggest that down-regulation of astrocytic Kir4.1 channels by elevated glucose may contribute to the underlying pathophysiology of diabetes-induced CNS disorders and contribute to the poor prognosis after stroke.
Collapse
Affiliation(s)
- D E Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - M P Méndez-González
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - A F Rivera-Pagán
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - Y V Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - L Y Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - S N Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA; Department of Physiology, Universidad Central del Caribe, Bayamón, PR, USA.
| | - M J Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| |
Collapse
|
40
|
Li DC, Nichols CG, Sala-Rabanal M. Role of a Hydrophobic Pocket in Polyamine Interactions with the Polyspecific Organic Cation Transporter OCT3. J Biol Chem 2015; 290:27633-43. [PMID: 26405039 DOI: 10.1074/jbc.m115.668913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 01/11/2023] Open
Abstract
Organic cation transporter 3 (OCT3, SLC22A3) is a polyspecific, facilitative transporter expressed in astrocytes and in placental, intestinal, and blood-brain barrier epithelia, and thus elucidating the molecular mechanisms underlying OCT3 substrate recognition is critical for the rational design of drugs targeting these tissues. The pharmacology of OCT3 is distinct from that of other OCTs, and here we investigated the role of a hydrophobic cavity tucked within the translocation pathway in OCT3 transport properties. Replacement of an absolutely conserved Asp by charge reversal (D478E), neutralization (D478N), or even exchange (D478E) abolished MPP(+) uptake, demonstrating this residue to be obligatory for OCT3-mediated transport. Mutations at non-conserved residues lining the putative binding pocket of OCT3 to the corresponding residue in OCT1 (L166F, F450L, and E451Q) reduced the rate of MPP(+) transport, but recapitulated the higher sensitivity pharmacological profile of OCT1. Thus, interactions of natural polyamines (putrescine, spermidine, spermine) and polyamine-like potent OCT1 blockers (1,10-diaminodecane, decamethonium, bistriethylaminodecane, and 1,10-bisquinuclidinedecane) with wild-type OCT3 were weak, but were significantly potentiated in the mutant OCT3s. Conversely, a reciprocal mutation in OCT1 (F161L) shifted the polyamine-sensitivity phenotype toward that of OCT3. Further analysis indicated that OCT1 and OCT3 can recognize essentially the same substrates, but the strength of substrate-transporter interactions is weaker in OCT3, as informed by the distinct makeup of the hydrophobic cleft. The residues identified here are key contributors to both the observed differences between OCT3 and OCT1 and to the mechanisms of substrate recognition by OCTs in general.
Collapse
Affiliation(s)
- Dan C Li
- From the Department of Cell Biology and Physiology, and the Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, Missouri 63110
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology, and the Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, Missouri 63110
| | - Monica Sala-Rabanal
- From the Department of Cell Biology and Physiology, and the Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
41
|
Guo Y, Yan KP, Qu Q, Qu J, Chen ZG, Song T, Luo XY, Sun ZY, Bi CL, Liu JF. Common variants of KCNJ10 are associated with susceptibility and anti-epileptic drug resistance in Chinese genetic generalized epilepsies. PLoS One 2015; 10:e0124896. [PMID: 25874548 PMCID: PMC4395153 DOI: 10.1371/journal.pone.0124896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/07/2015] [Indexed: 11/26/2022] Open
Abstract
To explore genetic mechanism of genetic generalized epilepsies (GGEs) is challenging because of their complex heritance pattern and genetic heterogeneity. KCNJ10 gene encodes Kir4.1 channels and plays a major role in modulating resting membrane potentials in excitable cells. It may cause GGEs if mutated. The purpose of this study was to investigate the possible association between KCNJ10 common variants and the susceptibility and drug resistance of GGEs in Chinese population. The allele-specific MALDI–TOF mass spectrometry method was used to assess 8 single nucleotide polymorphisms (SNPs) of KCNJ10 in 284 healthy controls and 483 Chinese GGEs patients including 279 anti-epileptic drug responsive patients and 204 drug resistant patients. We found the rs6690889 TC+TT genotypes were lower frequency in the GGEs group than that in the healthy controls (6.7% vs 9.5%, p = 0.01, OR = 0.50[0.29–0.86]). The frequency of rs1053074 G allele was lower in the childhood absence epilepsy (CAE) group than that in the healthy controls (28.4% vs 36.2%, p = 0.01, OR = 0.70[0.53–0.93]). The frequency of rs12729701 G allele and AG+GG genotypes was lower in the CAE group than that in the healthy controls (21.2% vs 28.4%, p = 0.01, OR = 0.74[0.59–0.94] and 36.3% vs 48.1%, p = 0.01, OR = 0.83[0.72–0.96], respectively). The frequency of rs12402969 C allele and the CC+CT genotypes were higher in the GGEs drug responsive patients than that in the drug resistant patients (9.3% vs 5.6%, OR = 1.73[1.06–2.85], p = 0.026 and 36.3% vs 48.1%, p = 0.01, OR = 0.83[0.72–0.96], respectively). This study identifies potential SNPs of KCNJ10 gene that may contribute to seizure susceptibility and anti-epileptic drug resistance.
Collapse
Affiliation(s)
- Yong Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Kui Po Yan
- Department of Cardiology, the First Affiliated Hospital of Henan Collede of TCM, 450008, Zhengzhou, China
| | - Qiang Qu
- Department of Pharmacology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Jian Qu
- Institute of Clinical Pharmacology, Central South University, 410008, Changsha, China
| | - Zi Gui Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Tao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Xiang-Ying Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Zhong-Yi Sun
- Department of Neurosurgery, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Chang-Long Bi
- Department of Neurosurgery, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Jin-Fang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 410008, Changsha, China
| |
Collapse
|
42
|
Dai AI, Akcali A, Koska S, Oztuzcu S, Cengiz B, Demiryürek AT. Contribution of KCNJ10 gene polymorphisms in childhood epilepsy. J Child Neurol 2015; 30:296-300. [PMID: 25008907 DOI: 10.1177/0883073814539560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to investigate the possible association between childhood epilepsy and KCNJ10 gene polymorphisms (rs61822012 and rs2486253). A total of 200 epileptic cases and 200 healthy controls enrolled to this study. Genomic DNAs from the patients and control cases were analyzed by polymerase chain reaction (PCR) and restriction fragment length polymorphism methods. There were significant associations between the G/T genotype of KCNJ10 gene rs2486253 polymorphism in the idiopathic generalized epilepsy group (P = .037) and in subjects with generalized tonic-clonic seizures (P = .0015). T allele was also increased in patients with generalized tonic-clonic seizures (P = .0158). However, no statistically significant association was found between rs61822012 polymorphism and epilepsy. Our data suggest that G/T genotype of the KCNJ10 gene rs2486253 polymorphism affects risk for development of common types of childhood epilepsy. The T allele of this polymorphism was found to be a seizure-susceptibility allele for tonic-clonic epilepsy.
Collapse
Affiliation(s)
- Alper I Dai
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, University of Gaziantep, Gaziantep, Turkey
| | - Aylin Akcali
- Faculty of Medicine, Department of Neurology, University of Gaziantep, Gaziantep, Turkey
| | - Safinur Koska
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, University of Gaziantep, Gaziantep, Turkey
| | - Serdar Oztuzcu
- Faculty of Medicine, Department of Medical Biology, University of Gaziantep, Gaziantep, Turkey
| | - Beyhan Cengiz
- Faculty of Medicine, Department of Physiology, University of Gaziantep, Gaziantep, Turkey
| | - Abdullah T Demiryürek
- Faculty of Medicine, Department of Medical Pharmacology, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
43
|
Jukkola P, Gu C. Regulation of neurovascular coupling in autoimmunity to water and ion channels. Autoimmun Rev 2015; 14:258-67. [PMID: 25462580 PMCID: PMC4303502 DOI: 10.1016/j.autrev.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/15/2014] [Indexed: 12/27/2022]
Abstract
Much progress has been made in understanding autoimmune channelopathies, but the underlying pathogenic mechanisms are not always clear due to broad expression of some channel proteins. Recent studies show that autoimmune conditions that interfere with neurovascular coupling in the central nervous system (CNS) can lead to neurodegeneration. Cerebral blood flow that meets neuronal activity and metabolic demand is tightly regulated by local neural activity. This process of reciprocal regulation involves coordinated actions of a number of cell types, including neurons, glia, and vascular cells. In particular, astrocytic endfeet cover more than 90% of brain capillaries to assist blood-brain barrier (BBB) function, and wrap around synapses and nodes of Ranvier to communicate with neuronal activity. In this review, we highlight four types of channel proteins that are expressed in astrocytes, regarding their structures, biophysical properties, expression and distribution patterns, and related diseases including autoimmune disorders. Water channel aquaporin 4 (AQP4) and inwardly rectifying potassium (Kir4.1) channels are concentrated in astrocytic endfeet, whereas some voltage-gated Ca(2+) and two-pore domain K(+) channels are expressed throughout the cell body of reactive astrocytes. More channel proteins are found in astrocytes under normal and abnormal conditions. This research field will contribute to a better understanding of pathogenic mechanisms underlying autoimmune disorders.
Collapse
Affiliation(s)
- Peter Jukkola
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Gu
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
44
|
Abstract
This review focuses on the roles of glia and polyamines (PAs) in brain function and dysfunction, highlighting how PAs are one of the principal differences between glia and neurons. The novel role of PAs, such as putrescine, spermidine, and spermine and their precursors and derivatives, is discussed. However, PAs have not yet been a focus of much glial research. They affect many neuronal and glial receptors, channels, and transporters. They are therefore key elements in the development of many diseases and syndromes, thus forming the rationale for PA-focused and glia-focused therapy for these conditions.
Collapse
Affiliation(s)
- Serguei N Skatchkov
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA; Department of Physiology, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA.
| | - Michel A Woodbury-Fariña
- Department of Psychiatry, University of Puerto Rico School of Medicine, 307 Calle Eleonor Roosevelt, San Juan, PR 00918-2720, USA
| | - Misty Eaton
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA
| |
Collapse
|
45
|
Expression of astrocyte-related receptors in cortical dysplasia with intractable epilepsy. J Neuropathol Exp Neurol 2014; 73:798-806. [PMID: 25003238 DOI: 10.1097/nen.0000000000000099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epilepsy is one of the major neurologic diseases, and astrocytes play important roles in epileptogenesis. To investigate possible roles of astrocyte-related receptors in patients with intractable epilepsy associated with focal cortical dysplasia (FCD) and other conditions, we examined resected epileptic foci from 31 patients, including 23 with FCD type I, IIa, or IIb, 5 with tuberous sclerosis complex, and 3 with low-grade astrocytoma. Control samples were from 21 autopsied brains of patients without epilepsy or neurologic deficits and 5 patients with pathologic gliosis without epilepsy. Immunohistochemical and immunoblot analyses with antibodies against purinergic receptor subtypes P2RY1, P2RY2, P2RY4, potassium channels Kv4.2 and Kir4.1, and metabotropic receptor subtypes mGluR1 and mGluR5 were performed. Anti-glial fibrillary acidic protein, anti-NeuN, and anti-CD68 immunostaining was used to identify astrocytes, neurons, and microglia, respectively. Most glial fibrillary acidic protein-immunopositive astrocyte cells in the brain samples from patients with epilepsy were P2RY1-, P2RY2-, P2RY4-, Kv4.2-, Kir4.1-, mGluR1-, and mGluR5-positive, whereas samples from controls and pathologic gliosis showed lower expression levels of these astrocyte-related receptors. Our findings suggest that, although these receptors are necessary for astrocyte transmission, formation of the neuron-glia network, and other physiologic functions, overexpression in the brains of patients with intractable epilepsy may be associated with activation of intracellular and glio-neuronal signaling pathways that contribute to epileptogenesis.
Collapse
|
46
|
Genetic association of KCNA5 and KCNJ3 polymorphisms in Korean children with epilepsy. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Zayas-Santiago A, Agte S, Rivera Y, Benedikt J, Ulbricht E, Karl A, Dávila J, Savvinov A, Kucheryavykh Y, Inyushin M, Cubano LA, Pannicke T, Veh RW, Francke M, Verkhratsky A, Eaton MJ, Reichenbach A, Skatchkov SN. Unidirectional photoreceptor-to-Müller glia coupling and unique K+ channel expression in Caiman retina. PLoS One 2014; 9:e97155. [PMID: 24831221 PMCID: PMC4022631 DOI: 10.1371/journal.pone.0097155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/15/2014] [Indexed: 02/07/2023] Open
Abstract
Background Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown. Methods We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus), endowed with both diurnal and nocturnal vision, by (i) immunohistochemistry, (ii) whole-cell voltage-clamp, and (iii) fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications. Results Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100β, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling. Conclusion Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering.
Collapse
Affiliation(s)
- Astrid Zayas-Santiago
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Silke Agte
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Division of Soft Matter Physics, Department of Physics, University of Leipzig, Leipzig, Germany
| | - Yomarie Rivera
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Jan Benedikt
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Elke Ulbricht
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Anett Karl
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - José Dávila
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Alexey Savvinov
- Department of Physical Sciences, Universidad de Puerto Rico, Recinto de Río Piedras, Río Piedras, Puerto Rico, United States of America
| | - Yuriy Kucheryavykh
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Mikhail Inyushin
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Luis A. Cubano
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Mike Francke
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM) University of Leipzig, Leipzig, Germany
| | - Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Misty J. Eaton
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Serguei N. Skatchkov
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
48
|
Papa M, De Luca C, Petta F, Alberghina L, Cirillo G. Astrocyte-neuron interplay in maladaptive plasticity. Neurosci Biobehav Rev 2014; 42:35-54. [PMID: 24509064 DOI: 10.1016/j.neubiorev.2014.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/03/2014] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
The complexity of neuronal networks cannot only be explained by neuronal activity so neurobiological research in the last decade has focused on different components of the central nervous system: the glia. Glial cells are fundamental elements for development and maintenance of physiological brain work. New data confirm that glia significantly influences neuronal communication through specific molecules, named "gliotransmitters", and their related receptors. This new approach to the traditional model of the way synapses work is also supported by changes occurring in pathological conditions, such as neurodegenerative diseases or toxic/traumatic injury to nervous system. Experimental models have revealed that glial cells are the starting point of damage progression that subsequently involves neurons. The "bedside to bench" approach has demonstrated that clinical phenotypes are strictly related to neuronal death, however it is conceivable that the disease begins earlier, years before clinical onset. This temporal gap is necessary to determine complex changes in the neuro-glial network organization and produce a "maladaptive plasticity". We review the function of glial cells in health and disease, pointing the putative mechanisms of maladaptive plasticity, suggesting that glial cells may represent a fascinating therapeutic target to prevent irreversible neuronal cell death.
Collapse
Affiliation(s)
- Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy; SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy.
| | - Ciro De Luca
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy
| | - Federica Petta
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy; SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Giovanni Cirillo
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy
| |
Collapse
|
49
|
D'Adamo MC, Catacuzzeno L, Di Giovanni G, Franciolini F, Pessia M. K(+) channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci 2013; 7:134. [PMID: 24062639 PMCID: PMC3772396 DOI: 10.3389/fncel.2013.00134] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/06/2013] [Indexed: 12/19/2022] Open
Abstract
K(+) channels are important determinants of seizure susceptibility. These membrane proteins, encoded by more than 70 genes, make the largest group of ion channels that fine-tune the electrical activity of neuronal and non-neuronal cells in the brain. Their ubiquity and extremely high genetic and functional diversity, unmatched by any other ion channel type, place K(+) channels as primary targets of genetic variations or perturbations in K(+)-dependent homeostasis, even in the absence of a primary channel defect. It is therefore not surprising that numerous inherited or acquired K(+) channels dysfunctions have been associated with several neurologic syndromes, including epilepsy, which often generate confusion in the classification of the associated diseases. Therefore, we propose to name the K(+) channels defects underlying distinct epilepsies as "K(+) channelepsies," and introduce a new nomenclature (e.g., Kx.y-channelepsy), following the widely used K(+) channel classification, which could be also adopted to easily identify other channelopathies involving Na(+) (e.g., Nav x.y-phenotype), Ca(2+) (e.g., Cav x.y-phenotype), and Cl(-) channels. Furthermore, we discuss novel genetic defects in K(+) channels and associated proteins that underlie distinct epileptic phenotypes in humans, and analyze critically the recent progress in the neurobiology of this disease that has also been provided by investigations on valuable animal models of epilepsy. The abundant and varied lines of evidence discussed here strongly foster assessments for variations in genes encoding for K(+) channels and associated proteins in patients with idiopathic epilepsy, provide new avenues for future investigations, and highlight these proteins as critical pharmacological targets.
Collapse
Key Words
- Potassium channels: [Kv1, Kv2, Kv3, Kv4, Kv8, Kv11(HERG), KCa1.1, Kvβ1, Kvβ2, KChIP LGI1, Kir1-Kir7 (GIRK, KATP)]
- autism–epilepsy
- channelopathies
- temporal lobe epilepsy
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Faculty of Medicine, Section of Human Physiology, Department of Internal Medicine, University of Perugia Perugia, Italy ; Istituto Euro Mediterraneo di Scienza e Tecnologia, IEMEST Palermo, Italy
| | | | | | | | | |
Collapse
|
50
|
Liao LD, Tsytsarev V, Delgado-Martínez I, Li ML, Erzurumlu R, Vipin A, Orellana J, Lin YR, Lai HY, Chen YY, Thakor NV. Neurovascular coupling: in vivo optical techniques for functional brain imaging. Biomed Eng Online 2013; 12:38. [PMID: 23631798 PMCID: PMC3655834 DOI: 10.1186/1475-925x-12-38] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023] Open
Abstract
Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.
Collapse
Affiliation(s)
- Lun-De Liao
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn street, HSF-2, Baltimore, MD 21201, USA
| | - Ignacio Delgado-Martínez
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Meng-Lin Li
- Department of Electrical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd, Hsinchu 300, R.O.C, Taiwan
| | - Reha Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn street, HSF-2, Baltimore, MD 21201, USA
| | - Ashwati Vipin
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Josue Orellana
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Yan-Ren Lin
- Department of Emergency Medicine, Changhua Christian Hospital, 135 Nanshsiao Street, Changhua 500, R.O.C, Taiwan
| | - Hsin-Yi Lai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, R.O.C, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St, Taipei 112, R.O.C, Taiwan
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- Department of Biomedical Engineering, Johns Hopkins University, Traylor 701/720 Rutland Ave, Baltimore, MD 21205, USA
| |
Collapse
|