1
|
Schamiloglu S, Wu H, Zhou M, Kwan AC, Bender KJ. Dynamic Foraging Behavior Performance Is Not Affected by Scn2a Haploinsufficiency. eNeuro 2023; 10:ENEURO.0367-23.2023. [PMID: 38151324 PMCID: PMC10755640 DOI: 10.1523/eneuro.0367-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Dysfunction in the gene SCN2A, which encodes the voltage-gated sodium channel Nav1.2, is strongly associated with neurodevelopmental disorders including autism spectrum disorder and intellectual disability (ASD/ID). This dysfunction typically manifests in these disorders as a haploinsufficiency, where loss of one copy of a gene cannot be compensated for by the other allele. Scn2a haploinsufficiency affects a range of cells and circuits across the brain, including associative neocortical circuits that are important for cognitive flexibility and decision-making behaviors. Here, we tested whether Scn2a haploinsufficiency has any effect on a dynamic foraging task that engages such circuits. Scn2a +/- mice and wild-type (WT) littermates were trained on a choice behavior where the probability of reward between two options varied dynamically across trials and where the location of the high reward underwent uncued reversals. Despite impairments in Scn2a-related neuronal excitability, we found that both male and female Scn2a +/- mice performed these tasks as well as wild-type littermates, with no behavioral difference across genotypes in learning or performance parameters. Varying the number of trials between reversals or probabilities of receiving reward did not result in an observable behavioral difference, either. These data suggest that, despite heterozygous loss of Scn2a, mice can perform relatively complex foraging tasks that make use of higher-order neuronal circuits.
Collapse
Affiliation(s)
- Selin Schamiloglu
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Hao Wu
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
| | - Mingkang Zhou
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Alex C Kwan
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Kevin J Bender
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| |
Collapse
|
2
|
Salvati KA, Ritger ML, Davoudian PA, O’Dell F, Wyskiel DR, Souza GMPR, Lu AC, Perez-Reyes E, Drake JC, Yan Z, Beenhakker MP. OUP accepted manuscript. Brain 2022; 145:2332-2346. [PMID: 35134125 PMCID: PMC9337815 DOI: 10.1093/brain/awac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures. We propose that activation of thalamic AMP-activated protein kinase, a sensor of cellular energetic stress and potentiator of metabotropic GABAB-receptor function, is a significant driver of hypoglycaemia-induced spike-wave seizures. We show that AMP-activated protein kinase augments postsynaptic GABAB-receptor-mediated currents in thalamocortical neurons and strengthens epileptiform network activity evoked in thalamic brain slices. Selective thalamic AMP-activated protein kinase activation also increases spike-wave seizures. Finally, systemic administration of metformin, an AMP-activated protein kinase agonist and common diabetes treatment, profoundly increased spike-wave seizures. These results advance the decades-old observation that glucose metabolism regulates thalamocortical circuit excitability by demonstrating that AMP-activated protein kinase and GABAB-receptor cooperativity is sufficient to provoke spike-wave seizures.
Collapse
Affiliation(s)
- Kathryn A Salvati
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Epilepsy Research Laboratory and Weil Institute for Neurosciences, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew L Ritger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Pasha A Davoudian
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- MD-PhD Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Finnegan O’Dell
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel R Wyskiel
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam C Lu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joshua C Drake
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Robert M. Berne Center for Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Zhen Yan
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- The Robert M. Berne Center for Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark P Beenhakker
- Correspondence to: Mark P. Beenhakker Department of Pharmacology University of Virginia School of Medicine Charlottesville, VA, 22908, USA E-mail:
| |
Collapse
|
3
|
Qu S, Zhou C, Howe R, Shen W, Huang X, Catron M, Hu N, Macdonald RL. The K328M substitution in the human GABA A receptor gamma2 subunit causes GEFS+ and premature sudden death in knock-in mice. Neurobiol Dis 2021; 152:105296. [PMID: 33582225 PMCID: PMC8243844 DOI: 10.1016/j.nbd.2021.105296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Shimian Qu
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Chengwen Zhou
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Rachel Howe
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Wangzhen Shen
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Xuan Huang
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Mackenzie Catron
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Ningning Hu
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America.
| | - Robert L Macdonald
- Departments of Neurology, Vanderbilt University, Nashville, TN 37232, United States of America; Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, United States of America; Pharmacology, Vanderbilt University, Nashville, TN 37232, United States of America.
| |
Collapse
|
4
|
Fei Y, Shi R, Song Z, Wu J. Metabolic Control of Epilepsy: A Promising Therapeutic Target for Epilepsy. Front Neurol 2020; 11:592514. [PMID: 33363507 PMCID: PMC7753014 DOI: 10.3389/fneur.2020.592514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a common neurological disease that is not always controlled, and the ketogenic diet shows good antiepileptic effects drug-resistant epilepsy or seizures caused by specific metabolic defects via regulating the metabolism. The brain is a vital organ with high metabolic demands, and epileptic foci tend to exhibit high metabolic characteristics. Accordingly, there has been growing interest in the relationship between brain metabolism and epilepsy in recent years. To date, several new antiepileptic therapies targeting metabolic pathways have been proposed (i.e., inhibiting glycolysis, targeting lactate dehydrogenase, and dietary therapy). Promising strategies to treat epilepsy via modulating the brain's metabolism could be expected, while a lack of thorough understanding of the role of brain metabolism in the control of epilepsy remains. Herein, this review aims to provide insight into the state of the art concerning the brain's metabolic patterns and their association with epilepsy. Regulation of neuronal excitation via metabolic pathways and antiepileptic therapies targeting metabolic pathways are emphasized, which could provide a better understanding of the role of metabolism in epilepsy and could reveal potential therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Fei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruting Shi
- Department of Rehabilitation, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinze Wu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Sekar S, Marks WN, Gopalakrishnan V, Greba Q, Snutch TP, Howland JG, Taghibiglou C. Evidence for altered insulin signalling in the brains of genetic absence epilepsy rats from Strasbourg. Clin Exp Pharmacol Physiol 2020; 47:1530-1536. [PMID: 32304254 DOI: 10.1111/1440-1681.13326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/15/2023]
Abstract
Insulin-mediated signalling in the brain is critical for neuronal functioning. Insulin resistance is implicated in the development of some neurological diseases, although changes associated with absence epilepsy have not been established yet. Therefore, we examined the major components of PI3K/Akt-mediated insulin signalling in cortical, thalamic, and hippocampal tissues collected from Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and Non-Epileptic Control (NEC) rats. Insulin levels were also measured in plasma and cerebrospinal fluid (CSF). For the brain samples, the nuclear fraction (NF) and total homogenate (TH) were isolated and investigated for insulin signalling markers including insulin receptor beta (IRβ), IR substrate-1 and 2 (IRS1 & 2), phosphatase and tensin homologue (PTEN), phosphoinositide 3-kinase phospho-85 alpha (PI3K p85α), phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol (3,4,5)-trisphosphate, protein kinase B (PKB/Akt1/2/3), glucose transporter-1 and 4 (GLUT1 & 4) and glycogen synthase kinase-3β (GSK3β) using western blotting. A significant increase in PTEN and GSK3β levels and decreased PI3K p85α and pAkt1/2/3 levels were observed in NF of GAERS cortical and hippocampal tissues. IRβ, IRS1, GLUT1, and GLUT4 levels were significantly decreased in hippocampal TH of GAERS compared to NEC. A non-significant increase in insulin levels was observed in plasma and CSF of GAERS rats. An insulin sensitivity assay showed decreased p-Akt level in cortical and hippocampal tissues. Together, altered hippocampal insulin signalling was more prominent in NF and TH compared to cortical and thalamic regions in GAERS. Restoring insulin signalling may improve the pathophysiology displayed by GAERS, including the spike-and-wave discharges that relate to absence seizures in patients.
Collapse
Affiliation(s)
- Sathiya Sekar
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wendie N Marks
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Venkat Gopalakrishnan
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - John G Howland
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Zarnowska I, Luszczki JJ, Zarnowski T, Wlaz P, Czuczwar SJ, Gasior M. Proconvulsant effects of the ketogenic diet in electroshock-induced seizures in mice. Metab Brain Dis 2017; 32:351-358. [PMID: 27644408 PMCID: PMC5346421 DOI: 10.1007/s11011-016-9900-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/19/2016] [Indexed: 11/03/2022]
Abstract
Among non-pharmacological treatments, the ketogenic diet (KD) has the strongest demonstrated evidence of clinical success in drug resistant epilepsy. In an attempt to model the anticonvulsant effects of the KD pre-clinically, the present study assessed the effects of the KD against electroshock-induced convulsions in mice. After confirming that exposure to the KD for 2 weeks resulted in stable ketosis and hypoglycemia, mice were exposed to electroshocks of various intensities to establish general seizure susceptibility. When compared to mice fed the standard rodent chow diet (SRCD), we found that mice fed the KD were more sensitive to electroconvulsions as reflected by a significant decrease in seizure threshold (3.86 mA in mice on the KD vs 7.29 mA in mice on the SRCD; P < 0.05) in the maximal electroshock seizure threshold (MEST) test. To examine if this increased seizure sensitivity to electroconvulsions produced by the KD would affect anticonvulsant effects of antiepileptic drugs (AEDs), anticonvulsant potencies of carbamazepine (CBZ), phenobarbital (PB), phenytoin (PHT), and valproate (VPA) against maximal electroshock (MES)-induced convulsions were compared in mice fed the KD and SRCD. We found that potencies of all AEDs studied were decreased in mice fed the KD in comparison to those on the SRCD, with decreases in the anticonvulsant potencies ranging from 1.4 fold (PB) to 1.7 fold (PHT). Finally, the lack of differences in brain exposures of the AEDs studied in mice fed the KD and SRCD ruled out a pharmacokinetic nature of the observed findings. Taken together, exposure to the KD in the present study had an overall pro-convulsant effect. Since electroconvulsions require large metabolic reserves to support their rapid spread throughout the brain and consequent generalized tonic-clonic convulsions, this effect may be explained by a high energy state produced by the KD in regards to increased energy storage and utilization.
Collapse
Affiliation(s)
- Iwona Zarnowska
- Department of Pathophysiology, Medical University, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Jarogniew J Luszczki
- Department of Pathophysiology, Medical University, Jaczewskiego 8, 20-090, Lublin, Poland
- Department of Physiopathology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950, Lublin, Poland
| | - Tomasz Zarnowski
- Chair of Ophthalmology, Medical University, Chmielna 1, 20-079, Lublin, Poland
| | - Piotr Wlaz
- Department of Animal Physiology, Institute of Biology and Biochemisry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Stanislaw J Czuczwar
- Department of Pathophysiology, Medical University, Jaczewskiego 8, 20-090, Lublin, Poland
- Department of Physiopathology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950, Lublin, Poland
| | - Maciej Gasior
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Arain F, Zhou C, Ding L, Zaidi S, Gallagher MJ. The developmental evolution of the seizure phenotype and cortical inhibition in mouse models of juvenile myoclonic epilepsy. Neurobiol Dis 2015; 82:164-175. [PMID: 26054439 DOI: 10.1016/j.nbd.2015.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/13/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
The GABA(A) receptor (GABA(A)R) α1 subunit mutation, A322D, causes autosomal dominant juvenile myoclonic epilepsy (JME). Previous in vitro studies demonstrated that A322D elicits α1(A322D) protein degradation and that the residual mutant protein causes a dominant-negative effect on wild type GABA(A)Rs. Here, we determined the effects of heterozygous A322D knockin (Het(α1)AD) and deletion (Het(α1)KO) on seizures, GABA(A)R expression, and motor cortex (M1) miniature inhibitory postsynaptic currents (mIPSCs) at two developmental time-points, P35 and P120. Both Het(α1)AD and Het(α1)KO mice experience absence seizures at P35 that persist at P120, but have substantially more frequent spontaneous and evoked polyspike wave discharges and myoclonic seizures at P120. Both mutant mice have increased total and synaptic α3 subunit expression at both time-points and decreased α1 subunit expression at P35, but not P120. There are proportional reductions in α3, β2, and γ2 subunit expression between P35 and P120 in wild type and mutant mice. In M1, mutants have decreased mIPSC peak amplitudes and prolonged decay constants compared with wild type, and the Het(α1)AD mice have reduced mIPSC frequency and smaller amplitudes than Het(α1)KO mice. Wild type and mutants exhibit proportional increases in mIPSC amplitudes between P35 and P120. We conclude that Het(α1)KO and Het(α1)AD mice model the JME subsyndrome, childhood absence epilepsy persisting and evolving into JME. Both mutants alter GABA(A)R composition and motor cortex physiology in a manner expected to increase neuronal synchrony and excitability to produce seizures. However, developmental changes in M1 GABA(A)Rs do not explain the worsened phenotype at P120 in mutant mice.
Collapse
Affiliation(s)
- Fazal Arain
- Department of Neurology, Vanderbilt University, Nashville, TN 37232-8552 USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University, Nashville, TN 37232-8552 USA
| | - Li Ding
- Department of Neurology, Vanderbilt University, Nashville, TN 37232-8552 USA
| | - Sahar Zaidi
- Department of Neurology, Vanderbilt University, Nashville, TN 37232-8552 USA
| | - Martin J Gallagher
- Department of Neurology, Vanderbilt University, Nashville, TN 37232-8552 USA.
| |
Collapse
|
8
|
Ethosuximide reduces electrographical and behavioral correlates of alcohol withdrawal seizure in DBA/2J mice. Alcohol 2014; 48:445-53. [PMID: 24933286 DOI: 10.1016/j.alcohol.2014.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 11/20/2022]
Abstract
Chronic alcohol abuse depresses the nervous system and, upon cessation, rebound hyperexcitability can result in withdrawal seizure. Withdrawal symptoms, including seizures, may drive individuals to relapse, thus representing a significant barrier to recovery. Our lab previously identified an upregulation of the thalamic T-type calcium (T channel) isoform CaV3.2 as a potential contributor to the generation and propagation of seizures in a model of withdrawal. In the present study, we examined whether ethosuximide (ETX), a T-channel antagonist, could decrease the severity of ethanol withdrawal seizures by evaluating electrographical and behavioral correlates of seizure activity. DBA/2J mice were exposed to an intermittent ethanol exposure paradigm. Mice were treated with saline or ETX in each withdrawal period, and cortical EEG activity was recorded to determine seizure severity. We observed a progression in seizure activity with each successive withdrawal period. Treatment with ETX reduced ethanol withdrawal-induced spike and wave discharges (SWDs), in terms of absolute number, duration of events, and contribution to EEG power in the 6-10 Hz frequency range. We also evaluated the effects of ETX on handling-induced convulsions. Overall, we observed a decrease in handling-induced convulsion severity in mice treated with ETX. Our findings suggest that ETX may be a useful pharmacological agent for studies of alcohol withdrawal and treatment of resulting seizures.
Collapse
|
9
|
Reid CA, Mullen S, Kim TH, Petrou S. Epilepsy, energy deficiency and new therapeutic approaches including diet. Pharmacol Ther 2014; 144:192-201. [PMID: 24924701 DOI: 10.1016/j.pharmthera.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/08/2023]
Abstract
Metabolic dysfunction leading to epilepsy is well recognised. Dietary therapy, in particular the ketogenic diet, is now considered an effective option. Recent genetic studies have highlighted the central role that metabolism can play in setting seizure susceptibility. Here we discuss various metabolic disorders implicated in epilepsy focusing on energy deficiency due to genetic and environmental causes. We argue that low, uncompensated brain glucose levels can precipitate seizures. We will also explore mechanisms of disease and therapy in an attempt to identify common metabolic pathways involved in modulating seizure susceptibility. Finally, newer therapeutic approaches based on diet manipulation in the context of energy deficiency are discussed.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Saul Mullen
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Tae Hwan Kim
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia; Centre for Neural Engineering, The University of Melbourne, Parkville, Melbourne, Australia; Department of Electrical Engineering, The University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
10
|
Kim TH, Petrou S, Reid CA. Low glycaemic index diet reduces seizure susceptibility in a syndrome-specific mouse model of generalized epilepsy. Epilepsy Res 2014; 108:139-43. [DOI: 10.1016/j.eplepsyres.2013.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/20/2013] [Accepted: 10/18/2013] [Indexed: 12/01/2022]
|
11
|
Varlamis S, Vavatsi N, Pavlou E, Kotsis V, Spilioti M, Kavga M, Varlamis G, Sotiriadou F, Agakidou E, Voutoufianakis S, Evangeliou AE. Evaluation of Oral Glucose Tolerance Test in Children With Epilepsy. J Child Neurol 2013; 28:1437-1442. [PMID: 23071070 DOI: 10.1177/0883073812460919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glucose metabolism of children with drug-resistant epilepsy, controlled by antiepileptic drugs epilepsy, and first-time nonfebrile seizures was studied through the performance of an oral glucose tolerance test and through insulin, C-peptide, and glycosylated hemoglobin measurements. In the refractory epilepsy group, there were more abnormal oral glucose tolerance test results (62.07%) in comparison to the controlled epilepsy group (25%) and the group of first-time seizures (21.21%). There was a significant difference between the group of refractory epilepsy and every other group concerning the abnormality of the oral glucose tolerance test (P < .05). The mean values of insulin, HbA1c, and C-peptide levels were normal for all groups. The results of the present study suggest that there is a distinction of refractory epilepsies from the drug-controlled ones and the first-induced seizures relating to their metabolic profile, regardless of the type of seizures.
Collapse
Affiliation(s)
- Sotirios Varlamis
- 1Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cortical excitability changes correlate with fluctuations in glucose levels in patients with epilepsy. Epilepsy Behav 2013; 27:455-60. [PMID: 23603690 DOI: 10.1016/j.yebeh.2013.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/09/2013] [Accepted: 03/16/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We used transcranial magnetic stimulation (TMS) to investigate motor cortical excitability changes in relation to blood glucose levels. METHODS Twenty-two drug-naïve patients with epilepsy [11 generalized and 11 focal] and 10 controls were studied twice on the same day; first after 12h of fasting and then 2h postprandial. Motor threshold and paired-pulse TMS at a number of short and long interstimulus intervals were measured. Serum glucose levels were measured each time. RESULTS Decreased long intracortical inhibition was seen in patients and controls during fasting compared to postprandial studies. This effect was much more prominent in patients with generalized epilepsy (with effect sizes of up to 0.8) in whom there was also evidence of increased intracortical facilitation (effect size: 0.3). CONCLUSION Cortical excitability varies with fluctuations in blood glucose levels. This variation is more prominent in patients with epilepsy. Decreased glucose levels may be an important physiological seizure trigger.
Collapse
|
13
|
Reid CA, Kim T, Phillips AM, Low J, Berkovic SF, Luscher B, Petrou S. Multiple molecular mechanisms for a single GABAA mutation in epilepsy. Neurology 2013; 80:1003-8. [PMID: 23408872 DOI: 10.1212/wnl.0b013e3182872867] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To understand the molecular basis and differential penetrance of febrile seizures and absence seizures in patients with the γ2(R43Q) GABA receptor mutation. METHODS Spike-and-wave discharges and thermal seizure susceptibility were measured in heterozygous GABA γ2 knock-out and GABA γ2(R43Q) knock-in mice models crossed to different mouse strains. RESULTS By comparing the GABA γ2 knock-out with the GABA γ2(R43Q) knock-in mouse model we show that haploinsufficiency underlies the genesis of absence seizures but cannot account for the thermal seizure susceptibility. Additionally, while the expression of the absence seizure phenotype was very sensitive to mouse background genetics, the thermal seizure phenotype was not. CONCLUSIONS Our results show that a single gene mutation can cause distinct seizure phenotypes through independent molecular mechanisms. A lack of effect of genetic background on thermal seizure susceptibility is consistent with the higher penetrance of febrile seizures compared to absence seizures seen in family members with the mutation. These mouse studies help to provide a conceptual framework within which clinical heterogeneity seen in genetic epilepsy can be explained.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Triheptanoin is a triglyceride containing heptanoate, an odd-chained medium fatty acid that is metabolized to produce propionyl-CoA and subsequently C4 intermediates of the citric acid cycle and therefore capable of anaplerosis. These metabolic products are believed to underlie triheptanoin's anticonvulsant effects in rodent seizure models. Here we investigate the anticonvulsive effects of oral triheptanoin in a syndrome-specific genetic mouse model of generalized epilepsy based on the GABA(A)γ2(R43Q) mutation. Mice were fed a diet supplemented with triheptanoin from weaning for three weeks prior to electrocortical recordings. Occurrence and durations of spike and wave discharges (SWDs) were measured. Triheptanoin did not alter body weight or basal blood glucose levels suggesting that it was well tolerated. Triheptanoin supplementation halved the time spent in seizures due to a reduction in both SWD occurrence and duration. An injection of insulin was used to reduce blood glucose, a metabolic stress known to precipitate seizures in the GABA(A)γ2(R43Q) mouse. The reduction in seizure count was also evident following insulin induced hypoglycemia with the triheptanoin treated group having significantly less SWDs than control animals under similar low blood glucose conditions. In summary, triheptanoin may be an effective and well tolerated dietary therapy for generalized epilepsy.
Collapse
|
15
|
Özdemir MB, Akça H, Erdoğan Ç, Tokgün O, Demiray A, Semin F, Becerir C. Protective effect of insulin and glucose at different concentrations on penicillin-induced astrocyte death on the primer astroglial cell line. Neural Regen Res 2012; 7:1895-9. [PMID: 25624816 PMCID: PMC4298904 DOI: 10.3969/j.issn.1673-5374.2012.24.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022] Open
Abstract
Astrocytes perform many functions in the brain and spinal cord. Glucose metabolism is important for astroglial cells and astrocytes are the only cells with insulin receptors in the brain. The common antibiotic penicillin is also a chemical agent that causes degenerative effect on neuronal cell. The aim of this study is to show the effect of insulin and glucose at different concentrations on the astrocyte death induced by penicillin on primer astroglial cell line. It is well known that intracranial penicillin treatment causes neuronal cell death and it is used for experimental epilepsy model commonly. Previous studies showed that insulin and glucose might protect neuronal cell in case of proper concentrations. But, the present study is about the effect of insulin and glucose against astrocyte death induced by penicillin. For this purpose, newborn rat brain was extracted and then mechanically dissociated to astroglial cell suspension and finally grown in culture medium. Clutters were maintained for 2 weeks prior to being used in these experiments. Different concentrations of insulin (0, 1, 3 nM) and glucose (0, 3, 30 mM) were used in media without penicillin and with 2 500 μM penicillin. Penicillin decreased the viability of astroglial cell seriously. The highest cell viability appeared in medium with 3 nM insulin and 3 mM glucose but without penicillin. However, in medium with penicillin, the best cell survival was in medium with 1 nM insulin but without glucose. We concluded that insulin and glucose show protective effects on the damage induced by penicillin to primer astroglial cell line. Interestingly, cell survival depends on concentrations of insulin and glucose strongly. The results of this study will help to explain cerebrovascular pathologies parallel to insulin and glucose conditions of patient after intracranial injuries.
Collapse
Affiliation(s)
- Mehmet Bülent Özdemir
- Department of Anatomy, Pamukkale University School of Medicine, Denizli 20070, Turkey
| | - Hakan Akça
- Department of Medical Biology, Pamukkale University School of Medicine, Denizli 20070, Turkey
| | - Çağdaş Erdoğan
- Department of Neurology, Pamukkale University School of Medicine, Denizli 20070, Turkey
| | - Onur Tokgün
- Department of Medical Biology, Pamukkale University School of Medicine, Denizli 20070, Turkey
| | - Aydın Demiray
- Department of Medical Biology, Pamukkale University School of Medicine, Denizli 20070, Turkey
| | - Fenkçi Semin
- Department of Endocrinology, Turkish Health Ministry, Denizli Hospital, Denizli 20070, Turkey
| | - Cem Becerir
- Department of Pediatrics, Pamukkale University School of Medicine, Denizli 20070, Turkey
| |
Collapse
|
16
|
Arain FM, Boyd KL, Gallagher MJ. Decreased viability and absence-like epilepsy in mice lacking or deficient in the GABAA receptor α1 subunit. Epilepsia 2012; 53:e161-5. [PMID: 22812724 DOI: 10.1111/j.1528-1167.2012.03596.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Autosomal dominant mutations S326fs328X and A322D in the GABA(A) receptor α1 subunit are associated with human absence epilepsy and juvenile myoclonic epilepsy, respectively. Because these mutations substantially reduce α1 subunit protein expression in vitro, it was hypothesized that they produce epilepsy by causing α1 subunit haploinsufficiency. However, in a mixed background strain of mice, α1 subunit deletion does not reduce viability or cause visually apparent seizures; the effects of α1 subunit deletion on electroencephalography (EEG) waveforms were not investigated. Here, we determined the effects of α1 subunit loss on viability, EEG spike-wave discharges and seizures in congenic C57BL/6J and DBA/2J mice. Deletion of α1 subunit caused strain- and sex-dependent reductions in viability. Heterozygous mice experienced EEG discharges and absence-like seizures within both background strains, and exhibited a sex-dependent effect on the discharges and viability in the C57BL/6J strain. These findings suggest that α1 subunit haploinsufficiency can produce epilepsy and may be a major mechanism by which the S326fs328X and A322D mutations cause these epilepsy syndromes.
Collapse
Affiliation(s)
- Fazal M Arain
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232-8552, USA
| | | | | |
Collapse
|
17
|
Abstract
Epilepsy accounts for a significant portion of the dis-ease burden worldwide. Research in this field is fundamental and mandatory. Animal models have played, and still play, a substantial role in understanding the patho-physiology and treatment of human epilepsies. A large number and variety of approaches are available, and they have been applied to many animals. In this chapter the in vitro and in vivo animal models are discussed,with major emphasis on the in vivo studies. Models have used phylogenetically different animals - from worms to monkeys. Our attention has been dedicated mainly to rodents.In clinical practice, developmental aspects of epilepsy often differ from those in adults. Animal models have often helped to clarify these differences. In this chapter, developmental aspects have been emphasized.Electrical stimulation and chemical-induced models of seizures have been described first, as they represent the oldest and most common models. Among these models, kindling raised great interest, especially for the study of the epileptogenesis. Acquired focal models mimic seizures and occasionally epilepsies secondary to abnormal cortical development, hypoxia, trauma, and hemorrhage.Better knowledge of epileptic syndromes will help to create new animal models. To date, absence epilepsy is one of the most common and (often) benign forms of epilepsy. There are several models, including acute pharmacological models (PTZ, penicillin, THIP, GBL) and chronic models (GAERS, WAG/Rij). Although atypical absence seizures are less benign, thus needing more investigation, only two models are so far available (AY-9944,MAM-AY). Infantile spasms are an early childhood encephalopathy that is usually associated with a poor out-come. The investigation of this syndrome in animal models is recent and fascinating. Different approaches have been used including genetic (Down syndrome,ARX mutation) and acquired (multiple hit, TTX, CRH,betamethasone-NMDA) models.An entire section has been dedicated to genetic models, from the older models obtained with spontaneous mutations (GEPRs) to the new engineered knockout, knocking, and transgenic models. Some of these models have been created based on recently recognized patho-genesis such as benign familial neonatal epilepsy, early infantile encephalopathy with suppression bursts, severe myoclonic epilepsy of infancy, the tuberous sclerosis model, and the progressive myoclonic epilepsy. The contribution of animal models to epilepsy re-search is unquestionable. The development of further strategies is necessary to find novel strategies to cure epileptic patients, and optimistically to allow scientists first and clinicians subsequently to prevent epilepsy and its consequences.
Collapse
Affiliation(s)
- Antonietta Coppola
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | | |
Collapse
|